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Abstract: Deep Reinforcement Learning (DRL) has revolutionized the field of cognitive training by integrating the 
decision-making capabilities of Reinforcement Learning (RL) and the perceptual power of Deep Learning 
(DL). A key component of DRL is the use of personalized reward mechanisms, which dynamically adjust the 
reinforcement signals to optimize individual learning trajectories. This review explores the application of 
personalized reward strategies, such as Q-learning, Advantage Actor-Critic (A3C), and Proximal Policy 
Optimization (PPO), in neurofeedback (NF) interventions for cognitive enhancement. We focus on their roles 
in treating conditions like attention deficit hyperactivity disorder (ADHD) and anxiety disorders and discuss 
their effectiveness in virtual reality-based cognitive training environments. Personalized reward mechanisms 
have shown significant potential in improving learning outcomes, engagement, and motivation by tailoring 
the difficulty and feedback of tasks to the user’s physiological and behavioral states. Despite these successes, 
challenges remain in Electroencephalography (EEG) data's real-time processing and personalized 
interventions' scalability across diverse populations. Future research should focus on improving the 
adaptability and generalization of these reward systems through multimodal data integration and advanced 
DRL techniques, while also addressing ethical concerns related to data privacy and user well-being. 

1 INTRODUCTION 

Cognitive training has gained substantial interest in 
recent years due to its potential to enhance cognitive 
function across different age groups and populations. 
It is designed to improve specific cognitive abilities, 
such as attention, memory, and executive function, 
through systematic practice. In neurofeedback (NF), 
cognitive training typically employs methods that 
enable individuals to regulate their brain activity via 
real-time feedback, thereby improving attention and 
executive functions (Enriquez-Geppert, Huster, & 
Herrmann, 2017). 

Deep reinforcement learning (DRL) has 
emerged as a powerful tool for enhancing the efficacy 
of NF interventions by personalizing the feedback 
and task difficulty based on the user's brain signals 
and performance (Mnih et al., 2015). The application 
of DRL in cognitive training allows for more adaptive, 
personalized approaches that can better address 
individual needs, thereby optimizing learning 
outcomes and cognitive improvement. 

A personalized reward mechanism in 
reinforcement learning (RL) refers to dynamically 
adjusting the reward system based on an individual's 
behavior and performance to optimize learning. In 
cognitive training, such mechanisms are critical as 
they help maintain participant engagement and adapt 
the training to individual differences in cognitive 
function and learning pace (Sutton, & Barto, 2018). 
This personalized approach has been more effective 
than fixed reward strategies because it aligns the 
reinforcement signal with each individual's learning 
trajectory, improving motivation and outcomes. 

This review aims to explore the role of 
personalized reward mechanisms in DRL-driven 
cognitive training, focusing on their applications, 
challenges, and future directions. The review is 
arranged as follows: The initial section will provide 
the theoretical basis for personalized reward 
mechanisms and DRL, as depicted in Figure 1. We 
will subsequently analyze their applications in NF 
interventions for attention deficit hyperactivity 
disorder (ADHD), anxiety disorders, and cognitive  
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Figure 1: The overall framework of this paper. 

training in virtual reality (VR) environments. 
Following that, we will examine the application of 
DRL models in personalized reward systems, 
encompassing Deep Q-Networks (DQN) and policy 
gradient techniques. Ultimately, we evaluate the 
effectiveness of these mechanisms, delineate current 
challenges, and propose recommendations for future 
research. 

2 THEORETICAL BASIS 

2.1 Deep Reinforcement Learning 

Deep reinforcement learning is a machine learning 
methodology integrating RL with deep neural 
networks, allowing agents to derive optimal policies 
from unprocessed input data (Mnih et al., 2015). The 
core principle of deep learning (DL) is to employ 
multi-layered network architectures and nonlinear 
transformations to integrate low-level features, 
creating abstract, easily identifiable high-level 
representations, thus uncovering the distributed 
feature representations of data. The fundamental 
concept of RL is to ascertain the optimal policy for 
attaining a specified objective by maximizing the 
cumulative reward obtained by the agent through 
interactions with the environment (Sutton & Barto, 
2018). Consequently, DL methods concentrate on the 
perception and representation of objects, whereas 
reinforcement learning methods prioritize the 
acquisition of strategies for problem-solving. 
Consequently, Google's DeepMind, an AI research 
division, integrated the perceptual faculties of DL 
with the decision-making prowess of RL, establishing 
a novel research focal point in artificial intelligence 

— DRL. Since then, the DeepMind team has 
developed and deployed human expert-level agents 
across numerous challenging domains. These agents 
construct and acquire knowledge from unprocessed 
input signals autonomously, without necessitating 
manual coding or specialized domain expertise. 
Therefore, DRL is an end-to-end perception and 
control system with strong generalization capabilities.  

The process of learning can be delineated as 
follows: (1) The agent continuously interacts with the 
environment, acquires a high-dimensional 
observation, and employs deep learning techniques to 
interpret the observation, yielding both abstract and 
specific state feature representations; (2) The agent 
assesses the value function of each action predicated 
on the anticipated return and correlates the current 
state to the appropriate action via a defined policy; (3) 
The environment reacts to this action, and the agent 
obtains the subsequent observation. By continuously 
iterating through this process, the optimal policy to 
achieve the goal can be obtained. The theoretical 
framework of DRL is shown in Figure 2. 

In the DRL framework, the agent interacts with an 
environment, observes states, takes actions, and 
receives rewards (Sutton & Barto, 2018). The goal is 
to maximize cumulative rewards by learning an 
optimal policy that maps states to actions. DRL has 
been successfully applied to cognitive training to 
personalize learning experiences and optimize 
outcomes based on individual user behaviors 
(Watanabe, Sasaki, Shibata & Kawato, 2018). By 
modeling complex environments and learning from 
rich sensory data, DRL provides a powerful tool for 
adaptive interventions in NF and cognitive 
enhancement. 
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Figure 2: DRL Theoretical Framework. 

Table 1. Summary of Personalized Reward Strategies in DRL 

Strategy Key Characteristics Applications 

Q-learning-based 
Reward Adjustment 

    Adjusts reward function based on 
individual progress 
    Uses Q-values to estimate action-
value pairs 

    NF interventions for cognitive training
    ADHD treatment using personalized 
feedback 

Proximal Policy 
Optimization 

    Policy gradient method 
    Optimizes training tasks in real 
time 
    Ensures stable updates to policy

    Personalized task difficulty adjustment 
in cognitive training 
    Electroencephalography (EEG) - based 
NF for anxiety management 

Advantage Actor-
Critic 

    Combines value-based and policy-
based methods 
    Multi-agent learning enables rapid 
adaptation 

    Real-time personalized feedback in 
complex environments 
    VR-based cognitive training with EEG 
signals

 
2.2 Personalized Rewards 

Reward mechanisms play a central role in guiding the 
behavior of learning agents by providing feedback on 
the success of actions taken in a given state (Sutton & 
Barto, 2018). In traditional RL, fixed rewards are 
used to reinforce desired behaviors, but this approach 
can be limited when dealing with complex human 
learning tasks. Personalized rewards, which adapt 
based on an individual's performance and learning 
trajectory, have been shown to be significantly more 
effective in optimizing cognitive outcomes (Silver et 
al., 2017). Personalized reward mechanisms can 
maintain learner engagement and motivation, which 
are crucial for successful cognitive training, 
especially in NF settings where learning depends 
heavily on individual differences (D'Esposito, 2008). 
As shown in Table 1, various personalized reward 
strategies have been developed to enhance the 
learning experience in cognitive training. One such 
strategy is Q-learning-based reward adjustment, 
where the reward function is tailored to reflect 
individual progress and specific learning needs 
(Watkins & Dayan, 1992). Another approach involves 

policy gradient methods, such as Proximal Policy 
Optimization (PPO) and Advantage Actor-Critic 
(A3C), which optimize rewards in real time to 
maximize the effectiveness of training sessions 
(Schulman, Wolski, Dhariwal, Radford & Klimov, 
2017). These techniques have been successfully 
applied to NF, providing tailored interventions that 
dynamically adjust training tasks and reinforcement 
signals based on individual performance metrics 
(Watanabe et al., 2018).) 

3 APPLICATIONS 

3.1 ADHD 

Personalized reward mechanisms are particularly 
beneficial in cognitive training because they provide 
customized reinforcement based on the individual’s 
responses and progress, thus optimizing learning 
outcomes (Sutton & Barto, 2018). In ADHD, 
individuals often exhibit challenges in maintaining 
attention and require adaptive strategies to stay 
engaged in cognitive training sessions (Enriquez-
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Geppert et al., 2017). Personalized rewards can be 
tailored to each individual's learning pattern, which 
helps in maintaining motivation and ensuring that the 
interventions are appropriately challenging, yet 
achievable (Arns et al., 2020). 
Electroencephalography (EEG)-based NF is well-
suited for this personalization, as it provides real-time 
insights into an individual’s neural activity, enabling 
adaptive adjustments to the training protocols. 

In VR environments, personalized reward 
strategies can enhance the immersive experience by 
tailoring the difficulty and feedback based on the 
user's physiological state and behavior. This 
personalization not only makes the VR experience 
more engaging but also promotes better cognitive 
outcomes by providing optimal challenges suited to 
each user's cognitive abilities. The combination of 
VR with EEG signals further enhances the potential 
for personalized feedback, ensuring that users receive 
interventions that are responsive to their immediate 
neural states (Bouchard, Bernier, oivin, Morin & 
Robillard, 2012). 

3.1.1 Application Examples 

EEG-based NF combined with DRL has proven 
effective for personalizing interventions in children 
and adults with ADHD. In these interventions, EEG 
signals are used to monitor brain activity, and DRL 
algorithms adjust NF protocols in real-time to 
optimize learning outcomes (Enriquez-Geppert et al., 
2017; Watanabe et al., 2018). Recent studies have 
demonstrated that personalized NF using DRL can 
improve attention and reduce hyperactivity 
symptoms more effectively compared to conventional 
methods (Arns et al., 2020). For example, the 
application of DRL in theta/beta ratio (TBR) NF has 
shown significant improvements in ADHD patients' 
cognitive performance, making it a promising 
treatment alternative to medication (Enriquez-
Geppert et al., 2019). 
The following provides a comparative overview of 
EEG-based NF treatments, emphasizing the 
advantages of personalized interventions for ADHD, 
as discussed by Garcia Pimenta, Brown, Arns, and 
Enriquez-Geppert (2021). Personalized reward 
mechanisms, adapted to each individual's EEG 
characteristics, have been found to significantly 
enhance treatment outcomes, yielding a remission 
rate of 57%, which surpasses that of methylphenidate 
(31%) and matches the results of medication alone in 
controlled trials (56%). Techniques such as slow 
cortical potential (SCP), TBR, and sensorimotor 
rhythm (SMR) training, when combined with various 

control conditions and pharmacological treatments, 
are more effective in improving cognitive 
performance and reducing ADHD symptoms than 
conventional methods. Incorporating multimodal 
strategies, including pharmacotherapy or lifestyle 
adjustments, further increases the clinical 
effectiveness of these customized NF interventions. 

3.1.2 Real-Time Adaptive Task Generation 

Real-time adaptive task generation is crucial in NF 
interventions to address the specific needs of ADHD 
patients. DRL can be used to dynamically adjust task 
difficulty and feedback based on the patient’s real-
time EEG data, thereby maintaining optimal 
engagement and promoting effective learning (Cohen 
et al., 2015). This personalized approach enables 
adaptive task settings that align with each patient’s 
cognitive capacity, ensuring that the challenges are 
neither too easy nor too difficult. Such personalized 
adjustments have been found to improve both the 
effectiveness of the NF training and the motivation of 
the participants (Sitaram et al., 2016). 

3.2 Anxiety Disorders 

EEG-based α-wave regulation has been used in the 
treatment of anxiety disorders, utilizing personalized 
reward mechanisms to optimize NF training. Studies 
show that increasing α-wave activity in the frontal 
lobe can reduce anxiety symptoms, and reinforcement 
learning-based NF is used to achieve this by 
providing individualized rewards for successful 
regulation (Ros et al., 2010; Enriquez-Geppert et al., 
2017). DRL helps in dynamically adjusting the 
reward structure based on real-time EEG signals, 
which allows patients to achieve better outcomes 
through a tailored training process (Hammond, 2005). 
Personalized α-wave NF has been shown to 
significantly enhance relaxation and reduce anxiety 
compared to fixed-reward approaches, as the training 
targets individual - specific brain dynamics 
(Gevensleben et al., 2014). 

3.3 Virtual Reality (VR) 

Combining EEG with VR environments has been 
used to create immersive and personalized cognitive 
training experiences. By using EEG signals, 
personalized feedback can be delivered in real-time, 
thereby enhancing the effectiveness of the VR 
training (Bouchard et al., 2012). The immersive 
nature of VR, coupled with EEG-based personalized 
feedback, has been shown to improve user 
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engagement and task performance. For example, 
DRL algorithms have been used to adjust VR 
scenarios in response to the user's cognitive state, 
measured through EEG signals, to provide an optimal 
level of challenge and reward. Such tailored 
interventions are particularly beneficial in treating 
anxiety disorders, where the immersive VR 
environment can simulate real-world situations while 
the EEG-based feedback helps the individual manage 
stress responses in real-time. 

4 PERSONALISED REWARD 

4.1 Deep Q-Networks and Personalized 
Rewards 

DQN have been widely used for implementing 
personalized rewards in NF training, enabling 
individualized learning experiences based on each 
user's performance. In DQN, the agent learns to take 
actions that maximize cumulative rewards through 
approximating the optimal action-value function with 
deep neural networks (Mnih et al., 2015). This 
framework allows for the dynamic adjustment of 
rewards to better suit individual differences in 
cognitive training, thereby improving engagement 
and overall learning outcomes (Silver et al., 2018). 

In the context of NF, DQN can be used to model 
complex reward structures that reflect the changing 
needs of participants during training. For example, 
personalized reward functions can be used to enhance 
the relevance and saliency of the NF signals provided, 
which has been shown to significantly improve 
motivation and training effectiveness (Enriquez-
Geppert et al., 2017). By tailoring the reward system 
to the user's progress, DQN-based interventions can 
address the limitations of fixed reward strategies, 
ensuring that the feedback provided aligns closely 
with each individual's learning trajectory. 

4.2 Application of Policy Gradient 
Methods in Personalized Rewards 

Policy gradient methods, such as PPO and A3C, offer 
significant advantages for real-time adaptive 
interventions in NF training by optimizing the agent’s 
policy directly through gradient ascent (Schulman et 
al., 2017). Unlike value-based methods like DQN, 
policy gradient methods allow for continuous action 
spaces and are particularly well-suited for 
environments where high adaptability is needed to 
accommodate individual differences (Mnih et al., 

2016). 
PPO and A3C have been used effectively in NF 

to adjust training tasks in real-time based on 
individual performance metrics. For example, PPO 
has been applied to optimize task difficulty and 
feedback parameters during NF sessions, ensuring 
that each participant receives a training experience 
tailored to their cognitive state (Watanabe et al., 2018). 
A3C, with its capability to use multiple agents 
concurrently, enables rapid learning and adaptation, 
making it ideal for adjusting personalized rewards in 
NF settings (Schulman et al., 2017). This capability 
ensures that users remain engaged and that the 
intervention remains effective over time, even as their 
performance fluctuates. 

Moreover, policy gradient methods offer the 
flexibility to incorporate more complex reward 
structures, such as those involving physiological 
signals (e.g., heart rate variability), to provide a more 
comprehensive and individualized NF experience 
(Silver et al., 2018; Kothgassne et al., 2022). This 
flexibility allows for a holistic approach to cognitive 
training, where various bio-signals are considered in 
reward computation to enhance the efficacy of the 
training. 

5 EXPERIMENTAL VALIDATION  

5.1 Experimental Design and Results 

Recent research has validated the effectiveness of 
personalized reward mechanisms in cognitive 
training, both in laboratory and clinical settings. For 
example, Enriquez-Geppert, Huster, and Herrmann 
(2019) conducted a randomized controlled trial (RCT) 
examining EEG-based NF for individuals with 
ADHD. In the experimental group, participants 
received personalized rewards based on their ability 
to regulate brain activity, specifically focusing on the 
TBR. The control group received fixed rewards. The 
personalized reward group demonstrated significant 
improvements in attention and executive functioning 
compared to the control group, highlighting the 
importance of real-time, individualized feedback for 
cognitive enhancement. 

Watanabe, Sasaki, Shibata, and Kawato (2017) 
explored the use of personalized rewards in fMRI-
based neurofeedback interventions for anxiety 
disorder patients. Using DRL algorithms, the reward 
structure was dynamically adapted based on the 
participants' ability to modulate brain activity in 
anxiety-related regions. The experimental group, 
which received personalized feedback, showed 
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greater neural regulation and reduced anxiety 
symptoms compared to the control group, which 
received non-adaptive feedback. 

A study by Bhargava, O'Shaughnessy, and Mann 
(2020) introduced a novel approach using RL in EEG-
based NF. The authors designed a DQN system that 
modulated audio feedback in real-time based on 
brainwave activity, aiming to enhance participants' 
meditative states. Their results demonstrated that the 
personalized reward system led to significant 
improvements in participants' brain states compared 
to conventional NF systems, with faster convergence 
toward optimal outcomes. This further supports the 
utility of personalized feedback in improving the 
effectiveness of NF interventions. 

Additionally, Tripathy et al. (2024) investigated 
the use of RL to optimize real-time interventions and 
personalized feedback using wearable sensors. The 
study demonstrated how the system used RL to 
dynamically adjust interventions based on real-time 
physiological data from wearable sensors, providing 
personalized feedback that was more responsive to 
the user’s needs. This approach led to improved 
cognitive outcomes and greater user engagement in 
self-monitoring and health management tasks, further 
highlighting the benefits of personalized reward 
mechanisms. 

These studies collectively demonstrate that 
personalized reward mechanisms provide significant 
benefits across various cognitive training applications, 
from ADHD treatment to meditation and real-time 
health management, by tailoring feedback to the 
individual’s needs, leading to superior cognitive 
outcomes compared to fixed rewards. 

5.2 Comparison with Fixed Reward 
Mechanisms 

Personalized reward mechanisms have consistently 
proven to be more effective than fixed reward 
mechanisms in enhancing cognitive performance. 
Traditional RL, which uses fixed rewards, provides 
identical reinforcement regardless of individual 
performance, leading to reduced engagement and 
motivation over time (Sutton & Barto, 2018). By 
contrast, personalized rewards adapt dynamically to 
the learner's progress, offering feedback that is more 
meaningful and aligned with their specific abilities, 
which results in improved cognitive outcomes (Silver 
et al., 2018). 

Tripathy et al. (2024) conducted a study 
comparing personalized and fixed reward 
mechanisms using wearable sensors in real-time 
intervention systems. The findings revealed that 

participants receiving personalized feedback 
exhibited significantly greater improvements in 
cognitive function and engagement levels compared 
to those receiving fixed rewards. The authors 
emphasized that personalized rewards, which adjust 
dynamically based on physiological and performance 
data, created a more engaging and effective learning 
environment. 

In the context of DRL, Mnih et al. (2015) 
demonstrated that personalized rewards facilitated 
faster convergence to optimal policies. Their study 
used DQN to compare personalized and fixed rewards 
in simulated environments. The personalized reward 
group achieved higher performance levels in complex 
tasks as the feedback was more closely aligned with 
their learning trajectory. This adaptability allowed 
agents to learn more efficiently, reinforcing the 
advantages of personalized rewards for optimizing 
training outcomes. 

In NF applications, personalized rewards have 
been found to promote greater neural plasticity and 
behavioral improvements compared to fixed rewards. 
Enriquez-Geppert, Huster, and Herrmann (2017) 
reported that participants who received personalized 
NF exhibited enhanced neuroplastic changes, such as 
increased connectivity between targeted brain regions. 
These neural changes were not observed in the group 
receiving fixed rewards, highlighting the superiority 
of personalized feedback in promoting adaptive 
changes in brain function. 

6 CHALLENGES 

6.1 Complexity of Data Processing and 
Model Design 

The complexity of real-time EEG data processing and 
the computational demands of deep learning models 
pose significant challenges in implementing 
personalized reward mechanisms in cognitive 
training. Processing EEG signals in real-time requires 
precise temporal analysis and advanced algorithms to 
extract meaningful features, which can be 
computationally intensive. Sharma and Meena (2024) 
highlight emerging trends in EEG signal processing, 
particularly in noise reduction, artifact removal, and 
feature extraction, which are critical for enhancing 
data quality in real-time systems. These processes 
must handle various sources of noise and artifacts, 
such as eye movements and muscle contractions, 
which complicate the accurate detection of neural 
signals (Sharma & Meena, 2024). Advanced filtering 
techniques and robust preprocessing steps are 
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essential to maintain signal integrity, but they also 
increase the computational load. 

Additionally, DRL models used for personalized 
NF require substantial computational power due to 
their multi-layered architectures. The use of 
convolutional and recurrent neural networks in these 
models adds to the computational burden, making 
real-time adaptation challenging, particularly in 
resource-constrained environments (Mnih et al., 
2015). Optimization techniques, such as model 
pruning or quantization, may help reduce latency, but 
achieving real-time performance remains a 
significant hurdle (Schulman et al., 2017). 

6.2 Adaptability 

Personalized reward mechanisms are designed to 
address individual differences in neural functioning, 
but their adaptability has limitations when applied to 
diverse populations. While personalized rewards can 
tailor cognitive training to an individual’s neural 
activity, their effectiveness may vary across different 
demographic groups, such as varying ages, cultural 
backgrounds, and cognitive abilities. Enriquez- 
Geppert et al. (2019) demonstrated that personalized 
rewards enhance cognitive training outcomes, but 
noted that their adaptability is constrained by the 
variability in neural responses across individuals. 
This variability becomes particularly challenging in 
populations with distinct neurological conditions, 
such as ADHD or autism spectrum disorders, where 
standard personalization techniques may not be 
effective for everyone (Watanabe et al., 2018). 

Furthermore, the process of calibrating 
personalized NF systems often requires extensive 
data collection and adaptation, limiting the scalability 
of these interventions. The trade-off between 
personalization and generalization remains an area of 
concern, particularly when attempting to develop 
systems that can cater to larger, more diverse 
populations (Silver et al., 2018). Future research 
should explore how these reward systems can be 
made more adaptive and inclusive while maintaining 
their personalized approach. 

6.3 Future Research Directions 

Future research should focus on integrating additional 
physiological signals, such as heart rate, skin 
conductance, and respiration, into personalized 
reward systems to provide a more comprehensive 
assessment of an individual's physiological state. 
Incorporating multimodal data sources alongside 
EEG could improve the robustness of the system and 

enable more accurate feedback mechanisms (Ros et 
al., 2013). For instance, combining EEG data with 
other bio-signals may allow for a more nuanced 
interpretation of an individual's cognitive and 
emotional states, thereby enhancing the effectiveness 
of personalized NF interventions. 

Additionally, the rise of wearable technology 
provides opportunities for real-time monitoring in 
non-clinical settings, as highlighted by Tripathy et al. 
(2024). Wearables equipped with sensors that can 
capture various physiological parameters offer a way 
to extend personalized NF systems beyond clinical 
environments, potentially increasing accessibility and 
usability. 

Advanced DRL techniques, such as meta-RL, 
could also play a crucial role in enhancing the 
adaptability of personalized reward systems. Meta-
RL enables models to learn more quickly from fewer 
data points, which could reduce the calibration time 
required for personalized NF (Schulman et al., 2017). 
This approach may also facilitate the development of 
systems that are more responsive to individual 
differences, improving both the scalability and 
effectiveness of personalized interventions. 

In addition to technical advancements, ethical 
considerations related to the use of personalized 
reward mechanisms must be addressed. Issues such 
as data privacy, the potential for unintended 
psychological effects, and the broader implications of 
highly personalized interventions should be carefully 
examined to ensure these systems are safe and 
ethically sound. 

7 CONCLUSION 

Personalized reward mechanisms play a pivotal role 
in enhancing the effectiveness of DRL-driven 
cognitive training. By dynamically adjusting rewards 
based on real-time user performance and 
physiological signals, personalized rewards provide 
more tailored and engaging feedback, significantly 
improving the efficacy of cognitive training 
interventions compared to traditional fixed reward 
systems (Silver et al., 2018; Tripathy et al., 2024). 
Personalized rewards ensure that tasks are optimally 
challenging for each participant, promoting sustained 
engagement, continuous learning, and overall 
cognitive improvement (Sutton & Barto, 2018). 

In NF applications, personalized rewards have 
been shown to enhance attention, memory, and 
executive functions, while also helping to alleviate 
symptoms of ADHD and anxiety (Enriquez-Geppert 
et al., 2019; Watanabe et al., 2017). The integration of 
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DRL algorithms allows for real-time adaptation, 
adjusting training tasks based on a user’s 
physiological and behavioral responses. This 
approach enhances the overall effectiveness of the 
intervention by providing individualized and 
contextually relevant feedback (Mnih et al., 2015; 
Bhargava et al., 2020). 

However, there are challenges in implementing 
personalized reward mechanisms, such as the 
complexity of processing real-time EEG data and the 
computational demands of DRL models (Sharma & 
Meena, 2024). Advanced signal processing 
techniques are required to manage noise and 
variability in EEG signals, while DL models need 
optimization to reduce computational latency in real-
time applications. Additionally, making these systems 
adaptable across diverse populations with varying 
neurological conditions remains an ongoing 
challenge, with current approaches often requiring 
extensive calibration to achieve effective 
personalization (Watanabe et al., 2017). 

Future research should focus on integrating 
additional physiological signals, such as heart rate 
and skin conductance, into personalized NF systems 
to create more holistic feedback mechanisms (Ros et 
al., 2013). Advances in wearable technology could 
support real-time monitoring of multiple 
physiological parameters, broadening the scope of 
personalized cognitive training outside clinical 
settings (Tripathy et al., 2024). Moreover, exploring 
advanced DRL techniques, such as Meta-RL, could 
further enhance adaptability, enabling systems to 
learn from fewer data points and reduce calibration 
time (Schulman et al., 2017). 

The potential of personalized reward 
mechanisms in cognitive training is immense. As the 
field progresses, addressing the challenges of model 
complexity, data processing, and adaptability will be 
crucial to fully realizing the benefits of personalized 
cognitive training. Ultimately, the integration of 
personalized rewards in DRL-driven interventions 
holds the promise of transforming cognitive 
enhancement and mental health treatments, making 
them more effective, individualized, and engaging for 
a wide range of user. 
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