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Abstract: With the increasing complexity of internet data, expanding model parameters and fine-tuning entire models 
have become inefficient, particularly under limited computational resources. This paper proposes a novel 
model, Prompt-enhanced Bidirectional Encoder Representation from Transformers (BERT) with Denoising 
Disentangled Attention Layer (PE-BERT-DDAL), and introduces an efficient fine-tuning strategy to address 
these challenges. The approach enhances BERT's robustness in handling complex data while reducing 
computational costs. Specifically, the study introduces a dynamic deep prompt tuning technique within BERT 
and incorporates a Denoising Disentangled Attention Layer (DDAL) to improve the model’s ability to denoise 
and manage content-position interaction information. The implementation of deep prompt tuning facilitates 
the model's rapid adaptation to downstream tasks, while DDAL strengthens content comprehension. 
Comparative experiments are conducted using three datasets: Twitter entity sentiment analysis, fake news 
detection, and email spam detection. The results demonstrate that PE-BERT-DDAL outperforms baseline 
models in terms of accuracy and loss reduction, achieving an average peak accuracy of 0.9059. PE-BERT-
DDAL also improves accuracy by 6.75%, 5.93%, and 8.97%, respectively, over baseline models. These 
findings validate PE-BERT-DDAL's effectiveness, showcasing its capacity for rapid task adaptation and 
robustness in complex data environments. 

1 INTRODUCTION 

Natural language processing (NLP) is a key research 
direction in artificial intelligence. It is an 
interdisciplinary field that interacts between 
computer science and linguistics. In recent years, with 
the explosive growth of text data on social media and 
the rising demand for conversational artificial 
intelligence (AI), the NLP field has developed 
rapidly. In 2017, Vaswani et al. put forward a novel 
neural network architecture, which was named 
Transformer (Vaswani, 2017). The Transformer has 
promptly become a core technology in the NLP field, 
offering a unified framework for the design and 
implementation of models across various tasks. 

The introduction of the self-attention mechanism 
marks a remarkable innovation in the Transformer, 
enabling the model to evaluate the importance of 
different tokens within a sequence. This mechanism 
has progressed into the multi-head self-attention 
variant, which greatly enhances the model's 
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efficiency in parallel processing and ability to learn 
diverse features. The Transformer first projects the 
input queries, keys, and values into different 
subspaces through linear projections. During this 
process, these projected queries, keys, and values are 
fed into attention pooling in parallel, where each of 
the attention pooling outputs is referred to as a head. 
The multi-head self-attention mechanism empowers 
the Transformer to effectively extract features from 
various dimensions of the sequence. Subsequently, 
language pre-training models such as Generative Pre-
trained Transformer (GPT) and Bidirectional 
Encoder Representations from Transformers (BERT)  
were proposed based on the Transformer. Here, this 
paper briefly explains the working mechanism of 
BERT, as all subsequent models mentioned in this 
research are developed from BERT. BERT was 
proposed by Devlin et al. in 2018 (Devlin, 2018), and 
its main structure is constructed by stacking the 
Transformer Encoder parts. In the pre-training phase, 
BERT has the following tasks: Masked Language 
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Modeling (MLM) and Next Sentence Prediction 
(NSP). Leveraging large-scale natural language 
datasets, BERT can learn rich semantic relations 
between contexts from these two tasks. BERT 
exhibits excellent performance in domains such as 
natural language inference, named entity recognition, 
and machine translation. Consequently, fine-tuning 
BERT for downstream tasks has emerged as a popular 
method.  

To further enhance the performance of pre-trained 
language models in various NLP tasks, researchers 
have proposed diverse methods based on the BERT 
architecture. Robustly Optimized BERT Pretraining 
Approach (RoBERTa) optimizes the training strategy 
of BERT by removing the NSP task (Liu, 2019). To 
overcome the limitations of BERT in capturing global 
bidirectional context, XLNet introduces a 
permutation language modeling with a bidirectional 
autoregressive framework (Yang, 2019). ALBERT 
improves the model performance by implementing 
parameter decomposition and cross-layer parameter 
sharing. Additionally, ALBERT replaces the NSP 
task with Sentence Order Prediction (SOP), 
considerably enhancing the model's ability to capture 
sentence coherence (Lan, 2019). ELECTRA no 
longer uses the [MASK] token for training. Instead, it 
performs Replaced Token Detection (RTD) tasks and 
trains a discriminator to predict whether each token in 
the corrupted input has been replaced by a generator 
sample (Clark, 2020). Decoding-enhanced-BERT-
with-disentangled attention (DeBERTa) incorporates 
a disentangled attention mechanism and an enhanced 
masked decoder, further refining the model's 
understanding of content and positional information 
(He, 2020). All of the aforementioned models aim to 
improve performance by modifying the operational 
mechanisms of BERT. Furthermore, researchers have 
carried out numerous lightweight enhancements to 
BERT. Stacked DeBERT adds a Denoising 
Transformer Layer on top of the BERT architecture, 
improving the model's robustness to incomplete data 
(Sergio et. al., 2021). Adapter tuning introduces two 
Adapter modules into each Transformer layer, 
allowing the model to be significantly more adaptable 
to downstream tasks by simply updating only the 
parameters within the Adapter modules. This 
approach greatly reduces the cost of fine-tuning 
(Houlsby et. al., 2019). Similarly, P-tuning introduces 
learnable prompt tokens into the input, resulting in 
cost savings and improved efficiency (Liu et. al., 
2021). 

The focus of this research is on enhancing BERT's 
performance by integrating advanced attention 
mechanisms with efficient fine-tuning strategies. The 

proposed architecture, Prompt-enhanced BERT with 
Denoising Disentangled Attention Layer (PE-BERT-
DDAL), introduces two key innovations. First, deep 
prompt tuning is incorporated within the BERT layers 
based on P-tuning v2, where learnable prompt tokens 
are prefixed to the input sequence. This deep prompt 
tuning allows for a more nuanced adaptation of the 
model across multiple layers, leading to improved 
context understanding. Second, the Disentangled 
Attention mechanism from DeBERTa is integrated 
into the model as part of a new Denoising 
Transformer Layer, referred to as the DDAL. This 
layer addresses the positioning bias and content 
distortion that may arise from prompt tuning, as well 
as noise from incomplete data. By enhancing the 
robustness of BERT’s output, DDAL refines the 
model's capacity to handle both noisy and clean data 
inputs. Experimental results show that fine-tuning 
only the final layer of BERT yields competitive 
performance, significantly reducing computational 
costs. Unlike DeBERTa, which applies disentangled 
attention across all layers, PE-BERT-DDAL requires 
fewer parameters, making it a more resource-efficient 
alternative while maintaining strong classification 
capabilities. 

2 METHODOLOGIES 

2.1 Dataset Description and 
Preprocessing  

This study utilizes three Kaggle datasets for different 
classification tasks: sentiment classification, fake 
news detection, and spam detection. The Twitter 
Entity Sentiment Analysis Dataset includes tweets 
with sentiment labels (positive, negative, or neutral). 
Tweets are often unstructured and contain noise such 
as emojis, spelling errors, and slang, which renders 
this dataset appropriate for testing the model’s 
capability to handle complex and noisy text. The Fake 
News Detection Dataset consists of textual content 
labeled as real or fake, where fake news is 
characterized by ambiguous wording and misleading 
information. The model is required to comprehend 
semantics and identify deceptive reasoning in this 
task. The Email Spam Detection Dataset contains 
email bodies labeled as spam or non-spam, testing the 
model's robustness in handling distracting features 
and promotional language common in spam emails 
(jp797498e, 2024; iamrahulthorat, 2024; 
nitishabharathi, 2024). 

During data preprocessing, Hyper Text Markup 
Language (HTML) tags, special characters, and 
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illegal symbols were removed from the text. The data 
was then tokenized and transformed into word 
embedding vectors for BERT input. To maintain 
consistency, short texts were padded and long texts 
were truncated to unify sequence lengths. 

2.2 Proposed Model  

To enhance BERT's performance in text classification 
tasks, this paper introduces the PE-BERT-DDAL 
model, as illustrated in Figure 1. The core innovation 
lies in incorporating a deep Prompt Tuning 
mechanism within BERT to dynamically inject 
prompt information across different layers. This 
approach allows the model to better adapt to diverse 
downstream tasks by integrating task-specific 
information directly into the model’s architecture. 
Additionally, the Disentangled Attention Mechanism, 
inspired by the DeBERTa model, is applied to 
improve the denoising Transformer layer, leading to 
the development of a novel DDAL. The DDAL is 
designed to enhance the model's robustness by 
correcting content distortions and addressing position 
biases introduced during prompt tuning, especially 
when handling incomplete or noisy data. In the 
classification tasks, PE-BERT-DDAL employs a 
lightweight single-layer fine-tuning strategy, which 
optimizes only the final layer of the model. This 
reduces the need for extensive computational 
resources while maintaining strong classification 
performance, making it both efficient and effective 
for real-world applications. 

 
Figure 1: The architecture and workflow of the PE-BERT-
DDAL model (Picture credit:  Original). 

This research employs the conventional 
embedding layer of BERT to convert each token in 
the input text into a word embedding vector 
applicable to the BERT model. Specifically, the 
embeddings of the BERT input sequence consist of 
the sum of token embeddings, segment embeddings, 
and positional embeddings. Token embeddings 
encapsulate the semantic characteristics of each 
token, segment embeddings serve to distinguish 
between sentences, while positional embeddings 
encode the positional information of tokens within the 
sequence. The input text tokens in this paper are 
represented as follows: 

 
 {[𝐶𝐿𝑆], 𝑇𝑜𝑘଴, . . . , 𝑇𝑜𝑘௠, [𝑆𝐸𝑃]} (1) 

 
where    𝑇𝑜𝑘௜ (𝑖 = 1,2, . . . , 𝑚)   represents each token 
in the text, and m is the maximum length of the input 
sequence. Each  𝑇𝑜𝑘௜  is transformed into an 
embedding vector after passing through the 
embedding layer: 

 
 𝐸௜ = 𝐸௧௢௞௘௡(𝑇𝑜𝑘௜) + 𝐸௦௘௚௠௘௡௧(𝑇𝑜𝑘௜) +𝐸௣௢௦௜௧௜௢௡(𝑇𝑜𝑘௜)                                                       (2) 

 𝐸௧௢௞௘௡(𝑇𝑜𝑘௜)  represents the token embedding, 𝐸௦௘௚௠௘௡௧(𝑇𝑜𝑘௜) represents the segment embedding 
of the token, and  𝐸௣௢௦௜௧௜௢௡(𝑇𝑜𝑘௜)  represents the 
positional embedding of the token. The embeddings 
of the input text sequence are represented as follows: 

 
 {𝐸|஼௅ௌ|, 𝐸଴, . . . , 𝐸௠, 𝐸|ௌா௉|} (3) 

 
The model employs conventional multi-layer 

bidirectional transformers to extract and learn 
contextual semantics from the embedding vectors of 
the input text. This study introduces the deep prompt 
tuning technique while freezing most of the layers. 
Specifically, after the input sequence is converted 
into embedding vectors, this study initially adds 
learnable prefix prompts at the front, namely global 
prompts. In each layer of the Transformer, the input 
embedding sequence is generated into the hidden 
state vector through the self-attention mechanism and 
feed-forward neural network. In this paper, the output 
hidden state vectors of a given layer are represented 
as follows: 

 
 ℎ௝ = {𝐻௝|஼௅ௌ|, 𝐻௝଴, . . . , 𝐻௝௠, 𝐻௝|ௌா௉|} (4) 

 
where 𝐻௝௜   represents the hidden state of the ith token 
in the jth layer, with n being the number of 
Transformer layers. 𝐻௝[஼௅ௌ]  and  𝐻௝[ௌா௉] represent 
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the hidden states of the [CLS] token and the [SEP] 
token, respectively. This study also adds learnable 
prefix prompts to the hidden state before each layer, 
forming a new hidden state ℎ௝ᇱ  , namely layer prompts. 
Then, ℎ௝ᇱ  is fed into the next Transformer layer to 
further learn contextual features. The hidden states of 
the input sequence after being processed by multiple 
Transformer layers are represented as follows: 

 
 {𝑇|஼௅ௌ|, 𝑇଴, . . . , 𝑇௠, 𝑇|ௌா௉|} (5) 

 
The sequence is then input into the DDAL to 

eliminate noise, correct positioning information bias, 
and further strengthen the connection between 
content and positioning information. A detailed 
explanation of the specific operational mechanism 
will be provided in the subsequent sections. 

After DDAL processes the sequence, the content 
information at different positions has varying degrees 
of importance. Even though the conventional BERT 
model uses the [CLS] token as a feature vector for 
classification tasks, this paper argues that relying 
solely on the information in the [CLS] token is limited. 
Therefore, this study adopts attention pooling to 
perform a weighted average on the entire sequence 
and calculate a global feature vector that represents 
the entire sequence, thus compensating for the 
information that the [CLS] token fails to capture. The 
formula of attention pooling is shown as follows: 

 
 𝑣 = ∑ 𝛼௜𝑇௜௠௜ୀଵ  (6) 

 
where 𝑣  is the final global feature representation, 𝑇௜  is the hidden state of the 𝑖𝑡ℎ token in the sequence, 
and α୧  represents the attention weight of the token.  

Ultimately, 𝑇[௖௟௦]   and  v are concatenated along 
the feature dimension. The resulting concatenated 
feature vector is subsequently processed through the 
GELU activation function, followed by a linear layer 
and a SoftMax layer to yield the final output. 

2.2.1 Deep Prompt Tuning 

This study utilizes the deep prompt tuning technique 
to minimize the number of parameters required for 
fine-tuning, thereby reducing computational resource 
expenditures. This approach facilitates the efficient 
fine-tuning of BERT models for downstream tasks, 
even under constrained computational resources. The 
P-tuning v2 findings indicate that deep prompt tuning 
can achieve the performance of conventional fine-
tuning by adjusting only 0.1% to 3% of the 
parameters in billion-parameter models (Liu et. al., 
2021). Notably, deep prompt tuning can guide pre-

trained models to extract features from sequences 
through the leverage of learnable prompts, without 
greatly altering the original parameters. Given that 
the embedding vectors corresponding to the input 
sequence are as follows: 
 
 {𝐸|஼௅ௌ|, 𝐸଴, . . . , 𝐸௠, 𝐸|ௌா௉|} (7) 
 

In this study, global prompts are added at the 
beginning of the embedding sequence, forming a new 
sequence   𝑋’: 

 
 𝑋 ′ = {𝐺𝑃ଵ, . . . , 𝐺𝑃௞, 𝐸|஼௅ௌ|, 𝐸଴, . . . , 𝐸௠, 𝐸|ௌா௉|}} (8) 

 
where  𝐺𝑃௜  represents the 𝑖𝑡ℎ  global prompt 
information, and 𝑘  represents the length of the 
prompts. Afterward, this new sequence is fed into the 
multi-layer Transformer for contextual feature 
extraction. The layer prompts introduced in each 
layer of the Transformer are specifically represented 
as follows: 

 
ℎ௝′ = {𝐿𝑃௝଴, . . . , 𝐿𝑃௝௞, 𝐻|஼௅ௌ|, 𝐻௝଴, . . . , 𝐻௝௠, 𝐻௝|ௌா௉|}} (9) 

 
These prompts enhance the model's dynamic 

adjustment of feature representations across multiple 
layers, thereby improving the model's adaptability. 

2.2.2 DDAL 

This paper integrates the denoising Transformer layer 
with a disentangled attention mechanism to propose 
DDAL, with the objective of augmenting the model's 
capability to manage noise and address incomplete 
data. Meanwhile, the integration of a disentangled 
attention mechanism significantly bolsters the 
model’s proficiency in handling and interpreting 
positional information. Specifically, the disentangled 
attention mechanism can redress the positional 
information bias brought about by deep prompt 
tuning and mitigate the loss of positional information 
in sequences after the sequence is reconstructed by 
the denoising Transformer layer. Furthermore, it can 
enhance the Transformer's comprehension of the 
interaction between content and position information, 
thereby mitigating biases arising from the coupling 
between content and position information. The 
architecture of DDAL is shown in the Figure 2. 
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Figure 2: DDAL architecture (Picture credit:  Original). 

In DDAL, the input sequence is initially processed 
by a two-stack three-layer MLP, which compresses 
and reconstructs the sequence information. 
Specifically, given an incomplete embedding 
representation with noise, t୧୬ୡ , the MLP will first 
compress it into a low-dimensional representation z, 
and then reconstruct it into a complete embedding 
representation t୰ୣୡ . Here, Wଵ, Wଶ, . . . , W଺ are weight 
matrices, bଵ, bଶ, . . . , b଺   are bias terms. Similarly, Wଵᇱ, Wଶᇱ, . . . , W଺ᇱ are weight matrices, bଵᇱ , bଶᇱ , . . . , b଺ᇱ    
are bias terms. 

Building upon the reconstructed embedding 
vectors, this study introduces the disentangled 
attention mechanism to individually handle content 
and positional information. Prior to a formal 
explanation of the disentangled attention mechanism, 
it is essential to first introduce the concept of relative 
position embedding. Suppose any two tokens in the 
given sequence, denoted as  𝑡𝑜𝑘𝑒𝑛௜  and 𝑡𝑜𝑘𝑒𝑛௝ , 
their relative distance ω(i,j) is obtained by the 
following formula: 
 

 𝜔(𝑖, 𝑗) = ൝ 02𝑙 − 1𝑖 − 𝑗 + 1 − − 𝑓𝑜𝑟 𝑖 − 𝑗 ≤ −𝑙− − 𝑓𝑜𝑟 𝑖 − 𝑗 ≥ 𝑙− − 𝑜𝑡ℎ𝑒𝑟𝑠  (10) 

where  𝑙 represents the maximum relative distance, 
which is a hyperparameter. 

Subsequently, the relative position 
embeddings  𝑃௜  and  𝑃௝  can be generated by the 
relative distance ω(i,j), typically utilizing a learnable 
embedding layer, which is adapted by the model 
according to the specific task. The details are shown 
as follows: 

 
 𝑃ఠ(௜,௝) = 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝜔(𝑖, 𝑗)) (11) 

 
Relative position embedding enhances the 

model's ability to capture local features within the 
sequence. This paper will explain the operation of the 
disentangled attention mechanism grounded in 
relative position embedding. The calculation formula 
for the disentangled attention mechanism is shown as 
follows: 

 
 𝐴௜,௝ = 𝑡௥௘௖೔𝑡௥௘௖ೕ் + 𝑡௥௘௖೔𝑃௝் + 𝑃௜𝑡௥௘௖ೕ்  (12) 

 𝑡௥௘௖೔  and  𝑡௥௘௖ೕ represent the reconstructed 
embeddings of  𝑡𝑜𝑘𝑒𝑛௜  and  𝑡𝑜𝑘𝑒𝑛௝ , respectively. 𝑡௥௘௖೔𝑡௥௘௖ೕ் T represents the content interaction between 
two tokens. 𝑡௥௘௖೔𝑃௝்   represents the content-to-
position interaction, and  𝑃௜𝑡௥௘௖ೕ்   represents the 
position-to-content interaction. After the relative 
position embedding, the absolute position embedding 
is continuously added to the embedding vectors of the 
sequence. Finally, the sequence passes through the 
enhanced mask decoder to generate the output  𝑡௢௨௧. 

Learnable prompt embeddings can guide models 
to achieve higher performance, without having 
natural language semantics like input sequences, 
resulting in a certain degree of semantic confusion 
and information bias. In addition, the dispersed 
attention mechanism effectively solves the problem 
of positional information loss within the sequence 
during the compression and reconstruction process of 
MLP by independently processing content 
information and positional data. 

2.2.3 Loss Function 

The main objective of this study is text classification, 
which involves the prediction of category labels for 
given textual data. The cross-entropy loss function 
provides an efficient means to assess how closely the 
model's predicted probability distribution aligns with 
the true labels. Given that this study involves a multi-
class classification task, the cross-entropy loss 
function is a highly suitable choice. It is defined as 
follows: 

 

DAML 2024 - International Conference on Data Analysis and Machine Learning

442



 𝐿௖௟௔௦௦ = − ∑ 𝑦௜𝑙𝑜𝑔𝑦పෝ௏௜ୀଵ  (13) 
 

where 𝑉 represents the number of samples, 𝑦௜     is the 
true label of the ith sample, ŷ௜ is the predicted label of 
the  ith  sample. 

To avoid the situation where the model assigns 
unequal weights to content information and location 
information, this study introduces a regularization 
term to balance the attention weights of the 
interaction information in the disentangled attention 
mechanism. The loss function can be further 
improved in the following form: 

 
 𝐿 = − ∑ 𝑦௜𝑙𝑜𝑔𝑦పෝ௏௜ୀଵ + 𝜆 ∑ ฮ𝐴௜,௝ฮ௜,௝  (14) 

 
where  λ  is the regularization coefficient, and  𝐴௜,௝  is 
the weight matrix in the disentangled attention 
mechanism. The introduction of this regularization 
term ensures that the model will not excessively favor 
any particular interaction during training, thus 
avoiding overfitting and further enhancing the 
model's generalization ability. 

2.3 Implementation Details   

BERT mainly has two application approaches: fine-
tuning and feature extraction. Full fine-tuning adapts 
well to downstream tasks but is highly resource-
intensive. On the other hand, using BERT solely as a 
fixed encoder for feature extraction may not yield 
optimal results. To strike a balance between the two, 
this study implements a fine-tuning strategy that 
involves unfreezing part of the encoder layers. This 
study only unfreezes the last Transformer layer of 
BERT, while keeping the other layers frozen. The 
total number of trainable parameters in the model is 
approximately 14.7 million. In addition, this paper 
selects three baseline models: BERTbase, 
DeBERTabase, RoBERTabase. To ensure the fairness of 
the comparative experiments as much as possible, it 
is necessary for the scale of the learnable parameters 
in the baseline models to be similar to that of PE-
BERT-DDAL. Therefore, The BERTbase unfreezes 

the last two layers, with 14.1 million trainable 
parameters. DeBERTabase unfreezes the last two 
layers and has 16.6 million trainable parameters. 
RoBERTabase unfreezes the last two layers and has 
14.1 million trainable parameters. 

The optimization function used in this study is 
AdamW. For the unfrozen last Transformer layer, the 
learning rate is set to 1e-5. The learning rate of the 
deep prompt tuning module is set to 1e-3, and the 
learning rate of the compression and reconstruction 
MLP is set to 1e-4. 

3 RESULT AND DISCUSSION 

In this section, this study conducts a comparative 
analysis of the performance of the proposed PE-
BERT-DDAL model against three baseline models: 
BERT, DeBERTa, and RoBERTa. Specifically, this 
study trains the four models on the three datasets of 
tweet sentiment analysis, fake news detection, and 
spam classification with a fixed number of epochs, 
and records the test set accuracy and loss function 
values of each model during the training process. 
Subsequently, this study will deeply analyze the 
performance of each model from perspectives 
including the training process and the highest 
performance of models. It is worth noting that the 
following figures from left to right correspond to 
Twitter sentiment analysis, fake news detection, and 
spam classification. 

3.1 Analysis of Accuracy Variations 
During Training   

As shown in Figure 3, after 10 epochs of training, the 
test accuracy of PE-BERT-DDAL significantly 
outperforms the other three baseline models. In the 
early stages of training, the test set accuracy of PE-
BERT-DDAL exhibits a rapid increase and then 
stabilizes, indicating that PE-BERT-DDAL 
demonstrates strong adaptability in text classification 
tasks. 

 
Figure 3: Accuracy variations (Picture credit:  Original). 
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In the Twitter sentiment analysis task, PE-BERT-
DDAL begins to converge at the 7th epoch, reaching 
a test accuracy of approximately 0.95. The BERT and 
DeBERTa models exhibit similar performance on this 
task, with their test accuracy approaching 0.90 by the 
end of the training. In contrast, RoBERTa performed 
worse, with a maximum test accuracy of only 0.80.  
In the fake news detection task, the test set accuracy 
of PE-BERT-DDAL is generally higher than that of 
the other three models throughout the training 
process. The test accuracy of PE-BERT-DDAL 
rapidly increases in the early stages of training, nearly 
reaching peak accuracy by the 4th epoch. Afterward, 
its test accuracy begins to fluctuate. The test set 
accuracy of the DeBERTa and RoBERTa models 
rises at a relatively slow pace in the early stages of 
training, while the test set accuracy of the BERT 
model increases more slowly. The baseline models 
only reach their optimal accuracy after the 6th epoch.  
In the spam detection task, the PE-BERT-DDAL 
model achieves a very high accuracy early in the 
training and significantly outperforms the other three 
models. Its test accuracy then gradually improves. 
However, the other three models show no significant 
upward trend in the early stages of training, only 
beginning to rise rapidly from the 4th epoch. After the 
6th epoch, the rate of increase in test set accuracy 
slows down. 

3.2 Analysis of Loss Variations During 
Training   

Figure 4 illustrates the loss variations of each model 
during the training process. The loss reduction of PE-
BERT-DDAL is consistently faster than that of the 
baseline models. 

In the Twitter sentiment analysis task, the loss 
value of PE-BERT-DDAL decreases rapidly. By the 
end of the 10th epoch of training, its loss value was 
below 0.2, while the loss values of the other models 

were all above 0.5. In the fake news detection task, 
the loss reduction trends of all four models are 
basically consistent, However, the loss value of PE-
BERT-DDAL is lower than that of the other three 
models. 

In the spam detection task, the loss of PE-BERT-
DDAL starts at a low level in the early stages of 
training and gradually decreases toward zero. The 
other three models gradually decrease throughout the 
training process, with DeBERTa and RoBERTa's loss 
approaching 0.2 at the end of the training, while 
BERT's loss is between 0.3 and 0.4. The low loss 
values and high-test accuracy of PE-BERT-DDAL 
indicate that its dynamic deep prompt tuning and 
disentangled attention mechanism allow it to not only 
converge more quickly in noisy and complex data 
environments but also learn more effective features 
from the datasets. 

3.3 Analysis of Peak Accuracy   

To display the generalization ability of each model, 
this study computes the average highest accuracy 
across different datasets (see in Table 1). PE-BERT-
DDAL performs the best across all tasks with an 
average accuracy of 0.9059. The average accuracy of 
the BERT model amounts to 0.8486, that of 
DeBERTa is 0.8551, and that of RoBERTa is 0.8313. 
Using the accuracy of the baseline models as a 
reference, PE-BERT-DDAL improves performance 
by approximately 6.75%, 5.93%, and 8.97% 
compared to BERT, DeBERTa, and RoBERTa, 
respectively. 

The experimental results show that PE-BERT-
DDAL outperforms the baseline models. During the 
training, whether the swift increase in test set 
accuracy or the rapid decrease in loss indicates that 
deep prompt tuning can guide the model to quickly 
adapt to downstream tasks. The highest average 
accuracy indicates that DDAL effectively enhances  

 
Figure 4: Loss variations (Picture credit:  Original). 
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Table 1: Summary of peak accuracy across datasets. 

Model Tweet (%) Fake news (%) Spam (%) Average Accuracy (%) 

PE-BERT-DDAL 0.9489 0.7915 0.9774 0.9059 
BERT 0.8858 0.7635 0.8965 0.8486 

DeBERTa 0.8928 0.7515 0.9211 0.8551 
RoBERTa 0.7987 0.7595 0.9356 0.8313 

the model's robustness and competence to capture 
valuable features. Based on these experimental 
outcomes, the prediction capability and training 
efficiency of PA-BERT-DDAL in classification tasks 
have been thoroughly validated. 

4 CONCLUSIONS 

This paper presents PE-BERT-DDAL, a novel 
BERT-based model designed to improve 
performance under limited computational resources 
and complex data environments. By integrating deep 
prompt tuning and the DDAL, the model enhances 
adaptability to downstream tasks and robustness in 
processing complex data. Global prompts are added 
at the input sequence's start, with layer-specific 
prompts introduced in each Transformer layer. The 
model then passes through a denoising Transformer 
layer equipped with a disentangled attention 
mechanism. Comparative experiments using BERT, 
DeBERTa, and RoBERTa as baselines were 
conducted on three datasets: Twitter Entity Sentiment 
Analysis, Fake News Detection, and Email Spam 
Detection. Results show that PE-BERT-DDAL 
outperforms baseline models in accuracy and loss 
reduction, achieving an average peak accuracy of 
0.9059 across datasets. The dynamic deep prompt 
tuning contributes to faster convergence in early 
training. This research highlights the model’s strong 
robustness and generalization capabilities. Future 
work will focus on expanding the model’s application 
to more complex NLP tasks, such as natural language 
inference and text generation, and exploring 
advanced fine-tuning techniques and attention 
mechanisms to further improve its performance. 
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