
 Blockchain Security Analysis with Multi-Factor Authentication and
Multi-Signature Mechanisms

Weifeng Li a
School of Informatics, Xiamen University, Xiamen, China

Keywords: Blockchain Security, Multi-Factor Authentication, Multi-Signature Mechanisms, Smart Contract.

Abstract: Blockchain technology is renowned for its decentralization and transparency but faces significant security
challenges, particularly in large-scale deployments where encryption and consensus mechanisms are
vulnerable to attacks. This study aims to bolster blockchain security by employing advanced techniques,
specifically focusing on multi-factor authentication (MFA) and multi-signature mechanisms. The research
adopts a comprehensive approach that integrates Mythril's static code analysis, JUnit's dynamic testing, and
Echidna's fuzz testing to identify and address vulnerabilities in smart contracts. Static code analysis is used to
detect common vulnerabilities, dynamic testing ensures module functionality, and fuzz testing uncovers edge-
case issues. The study demonstrates the effectiveness of MFA in mitigating risks associated with password
leakage through static and one-time passwords, while the multi-signature mechanism enhances security by
requiring multiple approvals for transactions. Experimental results on a publicly available smart contract
dataset reveal that these security enhancements substantially reduce security incidents and improve system
stability. These findings offer practical solutions for optimizing blockchain security and provide a solid
foundation for future research on safeguarding blockchain applications in complex scenarios.

1 INTRODUCTION

Blockchain technology, with its decentralization,
immutability, and transparency, has shown great
potential in finance, healthcare, and other fields.
However, security and privacy issues in large-scale
applications are gradually emerging. Vulnerabilities
in cryptographic algorithms and consensus
mechanisms on which blockchain relies may lead to
security threats such as double payments and
transaction tampering. Therefore, systematically
analyzing the security issues of blockchain
technology, identifying potential threats, and
exploring effective countermeasure strategies are of
great significance in safeguarding the security of
blockchain systems and promoting their wide
application (Zhang et.al, 2019).

In recent years, extensive research on blockchain
security has been conducted in academia and
industry, focusing on improving the system's
resistance to attacks through cryptographic
techniques, consensus algorithms, and security
protocols. Many studies have focused on improving

a https://orcid.org/0009-0002-2306-4130

consensus mechanisms, enhancing the security of
smart contracts, and cryptographic security. For
example, the evolution of consensus algorithms such
as Proof of Work (PoW) and Proof of Stake (PoS)
(Ferdous et.al, 2021), as well as the introduction of
technologies such as non-interactive zero-knowledge
proofs and hash-chain storage, have significantly
improved the security and scalability of blockchains.
Joseph Bonneau et al. provided the first systematic
exposition of Bitcoin and other cryptocurrencies,
analyzed the anonymity problem, and reviewed the
privacy enhancement methods (Bonneau et.al, 2015).
Ghassan Karame systematically outlined and
analyzed the security provisioning of the blockchain
in Bitcoin, including risks and attacks in Bitcoin-like
digital currency systems (Karam, 2016). They also
described and evaluated mitigation strategies to
eliminate some of the risks. Mauro Conti et al
reviewed the security and privacy of Bitcoin,
including existing vulnerabilities that lead to various
security risks during the implementation of the
Bitcoin system (Conti et.al, 2018). Li et al.
investigated the security risks of popular blockchain

390
Li and W.
Blockchain Security Analysis with Multi-Factor Authentication and Multi-Signature Mechanisms.
DOI: 10.5220/0013524600004619
In Proceedings of the 2nd International Conference on Data Analysis and Machine Learning (DAML 2024), pages 390-394
ISBN: 978-989-758-754-2
Copyright © 2025 by Paper published under CC license (CC BY-NC-ND 4.0)

systems, reviewed cases of attacks on blockchains,
and analyzed the vulnerabilities exploited in these
cases(Li et.al, 2020). Dasgupta et al provide a detailed
categorization of blockchain security issues, covering
everything from vulnerabilities in cryptographic
operations to possible threats posed by quantum
computing (Dasgupta et.al, 2019). In addition, some
studies propose specific ways to counter these threats,
such as using more secure elliptic curve algorithms to
defend against cryptographic attacks (Zhang et.al,
2022). Other studies focus on security issues at the
blockchain network level, such as encryption of inter-
node communication and measures to prevent
Distributed Denial of Service (DDoS) attacks (Sousa
and Monteiro, 2018). As the application scenarios of
blockchain technology continue to expand, especially
in the fields of finance and the Internet of Things
(IoT), the requirements for its security are getting
higher and higher. Therefore, in-depth understanding
and solving the security problems of blockchain
technology in different application scenarios has
become an important direction of current research.
Therefore, addressing blockchain security in various
application scenarios has become a key research
direction.

The primary objective of this research is to
systematically analyze the security challenges
associated with blockchain technology and propose
effective methods to address these issues. This study
provides a comprehensive overview of security
threats, classified based on existing literature, and
emphasizes a comparative analysis of various
cryptographic algorithms and consensus
mechanisms. It further explores the security
assessment of smart contracts through methods such
as static code analysis, dynamic testing, and fuzz
testing. Additionally, the research highlights the
implementation of multi-signature and multi-factor
authentication (MFA) to bolster the security of
critical operations. The findings of this study reveal
that the choice of cryptographic algorithms, the
robustness of consensus mechanisms, and network-
level protection measures are crucial for enhancing
overall blockchain security. By focusing on these
areas, the study offers substantial security
improvements for practical blockchain applications
and serves as a valuable reference for future research
in blockchain security, particularly in complex
application scenarios.

2 METHODOLOGIES

2.1 Dataset Description and
Preprocessing

The dataset used in this study is mainly derived from
publicly available smart contract platforms, such as
Etherscan and smart contract repositories on GitHub
(Etherscan, 2015). The dataset contains multiple
types of smart contracts, such as token contracts,
decentralized financial protocols, and governance
system contracts. To ensure smooth experiments, the
data preprocessing is done by removing extraneous
data, standardizing the format of the contract code,
and ensuring its compatibility with security testing
tools such as Mythril and Echidna. In addition,
duplicate or deprecated contracts in the dataset are
filtered out to improve the accuracy of the
experiments.

2.2 The Proposed Methodology

The objective of this research is to enhance the
security and stability of blockchain smart contracts
through advanced technological tools. This study
integrates static code analysis, dynamic testing, and
fuzz testing, while also incorporating multi-signature
mechanisms and multi-factor authentication to
bolster security. The research methodology, outlined
in Figure 1, involves several key stages: identifying
security vulnerabilities, conducting code testing and
verification, and implementing security
enhancements. The process begins with static code
analysis to detect potential vulnerabilities. This is
followed by dynamic testing to assess contract
behavior under various conditions. Next, fuzz testing
is employed to verify the robustness of the contracts
by exposing them to a range of inputs. Finally, the
integration of multi-signature mechanisms and multi-
factor authentication is applied to further secure the
system.

Figure 1: Flowchart of the study for this model (Picture
credit: Original).

Blockchain Security Analysis with Multi-Factor Authentication and Multi-Signature Mechanisms

391

2.2.1 Static Code Analysis

Mythril is a powerful static analysis tool specifically
designed to analyze the security of smart contract
codes. Its main features include code syntax
checking, pattern matching, and symbolic execution
to effectively identify common vulnerabilities in
contracts, such as reentry attacks and integer
overflows. This study uses Mythril to perform an in-
depth security analysis of the contract, generate a
detailed vulnerability report, and fix the
vulnerabilities according to the recommendations in
the report. The advantage of Mythril lies in its ability
to identify potential vulnerabilities before the
execution of the contract, avoiding losses caused by
exposing the problems after the code goes live.
During the implementation process, this study first
inputs the contract into Mythril for static analysis, and
the generated vulnerability report provides a
reference for subsequent dynamic testing.

2.2.2 Dynamic Testing

Dynamic testing is critical to ensure that the code
behaves properly at runtime. This study adopted the
JUnit framework to conduct unit tests for different
modules of the smart contract. The advantage of JUnit
is that it can automatically run pre-written test cases
every time the code is changed so that new
vulnerabilities in the code can be captured promptly.
This paper wrote detailed test cases for each contract
module to ensure that each module works properly in
an independent environment and effectively reduces
the testing bias caused by external dependencies.
During the testing process, JUnit can help researcher
verify the boundary conditions and exception
handling of the contract to ensure its stability in real
applications.

2.2.3 Fuzz Testing

Fuzz testing is a random input testing method for
verifying the robustness of smart contracts. This
study uses the Echidna tool to generate a large
number of random inputs to test whether a smart
contract can satisfy predefined security properties.
The advantage of Echidna is that it can generate a
wide range of different random test cases, which
helps researcher to discover potential vulnerabilities
that cannot be covered by regular tests. This study
uses Echidna to perform fuzzing tests on several
smart contracts, and by analyzing the generated test
reports, this study has promptly identified and fixed
several boundary case vulnerabilities. The failure

cases provided by Echidna also provide valuable
references for further optimizing the contract design.

2.2.4 Security Enhancement

To further enhance the security of the system, this
study introduces multiple signature mechanisms and
MFA in the smart contract. The multi-signature
mechanism requires multiple authorized signers to
participate in the transaction or operation together,
and the transaction can only be executed after the set
signature threshold is reached. This study sets up a
signer manager class in the system to collect and
verify the public and private keys of the signers, thus
ensuring the security of the transaction. Multi-factor
authentication, on the other hand, provides users with
double protection by combining static passwords and
one-time passwords (TOTP). Especially when
performing sensitive operations, MFA effectively
prevents the security risks associated with a single
password leakage.

2.3 Implementation Details

In the implementation of the system, this study used
Java environment for development. To improve the
accuracy of the model, this study performed data
enhancement operations and used the TOTP
algorithm to generate one-time passwords. In the
experiments, the following hyper-parameter settings
were used: the depth of static analysis was 3 layers,
the number of inputs for fuzz testing was 1000
random samples, and the timeout for MFA was 60
seconds.

3 RESULT AND DISCUSSION

This chapter will summaries and analyze the
experimental results, mainly discussing the results of
static code analysis, dynamic testing, and fuzz testing,
as well as analyzing the system security enhancement
after the introduction of the multi-signature
mechanism and multi-factor authentication.

3.1 Static Code Analysis Results

As shown in Figure 2, the static code analysis of the
smart contract was conducted using Mythril, and the
results show that the original smart contract has
several security vulnerabilities, mainly including
reentry attacks and integer overflow problems. These
vulnerabilities were detected before the contract went
live, thus avoiding potential financial losses. Figure 2

DAML 2024 - International Conference on Data Analysis and Machine Learning

392

Figure 2: Distribution of different types of vulnerabilities in static code analysis (Picture credit: Original).

Figure 3: JUnit dynamic test results show (Picture credit: Original).

shows the detection results of different types of
vulnerabilities, with reentry attacks accounting for
40%, integer overflow for 34%, and the rest being
other types of vulnerabilities. With these vulnerability
reports, the code was further modified to significantly
reduce the potential attack surface.

3.2 Dynamic Test Results

Figure 3 shows the results of dynamic testing using
JUnit after fixing the vulnerabilities found in the
static analysis. The test covers all the modules of the
contract and simulates a variety of operating
environments to ensure the stability and correctness
of each module when it is executed independently.
The tests show that the repaired smart contract
performs well under all boundary conditions and
exception-handling situations, and no new

vulnerabilities were found. This result shows that
JUnit automated testing can detect potential problems
introduced by code changes promptly.

3.3 Fuzz Test Results

Fuzz testing was conducted using Echidna, by
generating a large number of random inputs, Echidna
detected 3 boundary case security vulnerabilities out
of 1000 test samples. These vulnerabilities, although
difficult to catch in normal testing, were exposed and
fixed by fuzz testing. This test result verifies the
effectiveness of fuzz testing in identifying potential
boundary vulnerabilities and further improves the
security of smart contracts.

Blockchain Security Analysis with Multi-Factor Authentication and Multi-Signature Mechanisms

393

Table 1: Comparison of security before and after introducing multi-signature and multi-factor authentication.

Metric Before Introduction After Introduction
Number of Security Incidents 20 incidents 5 incidents

Authentication Strength Medium High
Transaction Risk High Low

Single Password Attack Risk High Very Low
Overall System Stability Fair Significantly Improved

3.4 Effectiveness of Security
Enhancement Measures

After adding multi-signature and multi-factor
authentication, the overall security of the system is
significantly improved. Table 1 shows the security
comparison before and after the introduction of these
mechanisms. After adding multi-signature, important
operations such as fund transfers must be co-signed
by multiple authorized persons, effectively
preventing the risks caused by the failure of a single
signature. Meanwhile, multi-factor authentication
prevents account risks caused by password leakage
through the combination of static and one-time
passwords. Overall, this chapter comprehensively
improves the security of the smart contract system
through static analysis, dynamic testing, fuzz testing,
and the introduction of security mechanisms to ensure
the robustness and security of the system in various
scenarios.

4 CONCLUSIONS

The primary objective of this study is to analyze and
enhance the security of blockchain smart contracts.
The proposed methodology integrates static code
analysis, dynamic testing, and fuzz testing, while also
introducing multi-signature mechanisms and multi-
factor authentication to strengthen system security.
The effectiveness of this approach was evaluated
through extensive experiments. The results
demonstrate that static code analysis effectively
identifies common security vulnerabilities, dynamic
testing ensures code stability during execution, and
fuzz testing uncovers potential vulnerabilities at the
boundaries. Additionally, the incorporation of
security enhancements significantly mitigates the
risks associated with high-risk operations. Future
research will focus on addressing the security
challenges of blockchain systems in diverse
application scenarios, particularly in IoT and
financial sectors, to further refine and improve smart
contract protection mechanisms. Additionally,
exploring the potential impact of quantum computing

on blockchain cryptographic algorithms will be a
crucial area of investigation.

REFERENCES

Bonneau, J., Miller, A., Clark, J., et al. 2015. Sok: Research
perspectives and challenges for bitcoin and
cryptocurrencies. IEEE symposium on security and
privacy, 104-121.

Conti, M., Kumar, E.S., Lal, C., et al. 2018. A survey on
security and privacy issues of bitcoin. IEEE
communications surveys & tutorials, 20(4), 3416-3452.

Dasgupta, D., Shrein, J.M., & Gupta, K.D., 2019. A survey
of blockchain from a security perspective. Journal of
Banking and Financial Technology, 3(1), 1-17.

Etherscan, 2015. Etherscan API Documentation. Retried
from: https://docs.etherscan.io/.

Ferdous, M.S., Chowdhury, M.J.M., Hoque, M.A.A, 2021.
survey of consensus algorithms in public blockchain
systems for crypto-currencies. Journal of Network and
Computer Applications, 182, 103035.

Karame, G., 2016. On the security and scalability of
bitcoin's blockchain. Proceedings of the ACM SIGSAC
conference on computer and communications security,
1861-1862.

Li, X., Jiang, P., Chen, T., et al. 2020. A survey on the
security of blockchain systems. Future generation
computer systems, 107, 841-853.

Sousa, A.D., & Monteiro, E.B., 2018. Blockchain from the
analysis of cases of use in the corporate environment:
A systematic review. Journal of Information Systems
and Technology Management, 15(2), 1-18.

Zhang, K., Manzoor, A., Chang, V., Rodrigues, J.J.P.C., &
Mazurczyk, W., 2022. A survey on blockchain
technology and its applications: Research issues and
challenges. Blockchain: Research and Applications,
3(2), 100012.

Zhang, R., Xue, R., Liu, L., 2019. Security and privacy on
blockchain. ACM Computing Surveys, 52(3), 1-34.

DAML 2024 - International Conference on Data Analysis and Machine Learning

394

