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Abstract: This paper focuses on the challenges in Byzantine Fault Tolerance (BFT) systems, particularly focusing on 
the inefficiencies in traditional protocols such as Practical Byzantine Fault Tolerance (PBFT) and the 
shortcomings of HotStuff's single-pipeline design. This study introduces a new model called Raft-Multiple 
Pipeline HotStuff (Raft-MPH) with Elliptic Curve Cryptography (ECC) to deal with BFT. Additionally, the 
Raft-MPH protocol is designed to improve HotStuff's existing framework by leveraging ECC to make 
cryptographic operations more efficient. The research shows that this approach significantly decreases 
communication overhead while maintaining high throughput and low latency, even in different network 
conditions. The Raft-MPH protocol processed up to 160K transactions per second (TPS) on a Local Area 
Network (LAN) with latency similar to traditional HotStuff, and it scaled well as the number of replicas 
increased. Overall, this work lays a solid foundation for future research on adaptive consensus protocols and 
may lead to practical applications in blockchain platforms. 

1 INTRODUCTION 

Byzantine Fault Tolerance (BFT) has captured 
significant attention in distributed systems, 
particularly as blockchain technology demands 
robust safety and reliability, even when dealing with 
malicious nodes. Facing these challenges, researchers 
utilize these BFT protocols to ensure smart contract 
execution and secure consistent state machine 
replication in these networks, maintaining system 
integrity even when malicious behaviors are detected. 
However, traditional BFT approaches, such as 
Practical Byzantine Fault Tolerance (PBFT), struggle 
in the large-scale distributed environment due to their 
costly view-change processes and high 
communication complexity (Bogdanov et.al, 2023). 
Introducing more sophisticated protocol, like 
HotStuff, handles these challenges by optimizing 
consensus phases to reduce forks and achieve linear 
communication complexity (Yin et.al, 2018; Niu et.al, 
2021). Despite these enhancements, HotStuff’s 
single-pipeline architecture introduces new research 
gaps, necessitating further exploration. This paper 
proposes the Raft-Multiple Pipeline HotStuff (Raft-
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MPH) model, which combines Raft’s simplicity with 
HotStuff’s multiple-pipeline architecture and Elliptic 
Curve Cryptography (ECC) to improve performance, 
scalability, and fault tolerance. 

The field of Byzantine Fault Tolerance has 
achieved significant results, with diverse protocols 
developed to deal with the inherent issues of 
maintaining consensus in distributed systems. PBFT, 
one of the most well-known and earliest BFT 
protocols, has strong fault tolerance management 
capabilities but suffers from quadratic 
communication complexity O (n2), making it less 
feasible in large-scale distributed systems. The cost 
of view changes in PBFT, which grows cubically O 
(n3), further undermines its capabilities to handle 
scalability issues (Bogdanov et.al, 2023). In response, 
HotStuff has been introduced to simplify the 
consensus process by decreasing the number of 
phases required and achieving linear communication 
complexity in steady-state operations. HotStuff’s 
approach, which utilizes threshold signatures, has 
played a crucial role in minimizing latency and 
improving performance (Yin et.al, 2018; Niu et.al, 
2021). However, the inherent drawbacks of a single-
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pipeline mechanism limit throughput during heavy 
transaction demands. MPH was developed to address 
these challenges by allowing concurrent proposal and 
voting processes, thereby significantly improving 
throughput without introducing delay (Cheng et.al, 
2022). 

Moreover, integrating Raft with ECC has been 
explored to improve encryption efficiency and ease 
operational tasks (Lahraoui et.al, 2024; Lara-Nino 
et.al, 2018). However, existing solutions still struggle 
with single-thread limitations and communication 
overhead, particularly in Byzantine fault-prone 
environments. This research builds upon these 
previous achievements by introducing a hybrid model 
that dynamically changes between Raft and MPH 
modes, further improving performance and resilience 
in distributed systems.  

This research aims to develop the Raft-MPH 
protocol with ECC to tackle major challenges in BFT 
systems, including reducing communication 
overhead, enhancing fault tolerance, and improving 
scalability. It combines Raft's leader-based system 
with MPH's multi-threaded processing to (1) lower 
communication complexity and (2) integrate their 
advantages for high throughput and fault tolerance (3) 
This protocol dynamically adapts based on network 
settings and uses ECC for cryptographic efficiency. 
This research improves scalability and security in 
distributed systems, especially in blockchain, and 
paves the way for future work on practical 
implementation and optimization of adaptive 
consensus protocols. 

2 METHODOLOGIES 

2.1 Threat Models 

The Raft-PBFT model with ECC aims to tackle issues 
related to Byzantine fault tolerance and improve 
cryptographic efficiency in distributed systems. 
However, this model has several vulnerabilities that 
could compromise its effectiveness (Figure 1): (1) 
Byzantine failures remain a critical concern due to 
Raft's leader-based election process combined with 
PBFT's view-change mechanism. Malicious nodes 
can disrupt the consensus process, which leads to 
increased latency and undermines the system's 
reliability. (2) Crash-stop failure is another issue 
because the model relies on a single pipeline. The 
entire system's performance will be severely 
impacted if a node fails. This will lead to system-wide 
delays. (3) The attackers could exploit a timing 
vulnerability caused by dynamic mode switching 

between Raft and PBFT modes. This will lead to 
instability and compromised consensus (Bogdanov 
et.al, 2023). 

 
Figure 1: The pipeline of security issues (Picture credit:  
Original). 

Based on the threat models of the current 
approach, this research proposes the Raft-MPH 
consensus protocol with ECC, which combines the 
principles of Raft and ECC with the Multiple pipeline 
approach in HotStuff to improve system performance, 
safety, and liveness.  

2.2 Methods 

2.2.1 Raft  

Raft is a consensus algorithm designed for its 
simplicity and reliability in managing a replicated log 
across a cluster of nodes. It divides the consensus 
problem into three components: leader election 
(Figure 2), log replication, and safety (Ongaro and 
Ousterhout, 2014; Zhan and Huang, 2023). (1) Raft 
elects a single server as the leader to manage the log 
replication process. If the leader fails, the followers 
start an election to elect a new leader. Randomized 
election timeouts prevent split votes, which secure 
smooth leadership transitions. (2) The leader takes 
log entries from clients and broadcasts them to the 
followers. Once most followers have received an 
entry, it is considered committed and is applied to the 
state machine. (3) Raft ensures that all nodes utilize 
the same log entries in order, even during failure. The 
leader is responsible for dealing with inconsistencies 
by correcting the followers' logs. Thus, Raft's strong 
leadership, log replication, and consistent consensus 
model effectively handle Byzantine failures, crash-
stop failures, and vulnerabilities related to dynamic 
mode switching. 
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Figure 2: Raft election role replacement process (Picture 

credit:  Original). 

2.2.2 MPH  

The MPH is designed to improve performance and 
scalability in distributed systems, especially those 
vulnerable to Byzantine failures. Unlike the 
sequential nature of HotStuff, MPH optimizes the 
process by enabling simultaneous proposing and 
voting. This optimization decreases the bottleneck 
related to single-pipeline methods. MPH can adapt to 
real-time network conditions by operating under a 
partially synchronous communication model. A 
major benefit of MPH is its ability to maintain linear 
communication complexity during the normal 
operation phase while achieving quadratic 
complexity during view changes due to its multi-
pipeline approach. This design enables more blocks 
to be proposed and committed in each round, 
significantly enhancing throughput without 
increasing end-to-end latency. Moreover, MPH's 
optimistic responsiveness allows a correct leader to 
reach a consensus quickly (Cheng et.al, 2022). This 
will improve the protocol's resilience against 
Byzantine failures, reduce the impact of node failures, 
and simplify leader election processes to prevent 
vulnerabilities during mode transitions. 

2.2.3 ECC  

Compared to traditional algorithms like RSA, ECC 
has smaller key sizes. It further secures the system by 
offering secure encryption, Digital signatures, and 
key exchange. Three characteristics offer more robust 
security with lower computational costs: (1) ECC 
depends on the elliptic curve equation over a finite 
prime field, where security is based on the difficulty 
of solving the elliptic curve discrete logarithm 
problem (ECDLP). (2) The Elliptic Curve Diffie-
Hellman (ECDH) protocol ensures secure key 
exchange over insecure channels. (3) ECC supports 
digital signatures via protocols like the Elliptic Curve 
Digital Signature Algorithm (ECDSA), securing 
message integrity and authenticity (Lahraoui et.al, 
2024). Therefore, ECC plays an important role in 

mitigating Byzantine failures and reducing delays 
from crash-stop failures due to its lightweight design. 
It also ensures smooth transitions between Raft and 
PBFT modes, which keeps the system stable and 
secure. 

2.2.4 Raft-MPH with ECC  

The Raft-MPH consensus protocol with ECC 
operates within a partially synchronous network. The 
nodes use a consensus protocol in this system to agree 
on the transaction sequence. The system assumes up 
to f faulty nodes out of 𝑛, where 𝑛 ൐ 3𝑓 ൅ 1 (Cheng 
et.al, 2022). The protocol has two phases: Normal 
Case Operation and View-Change Operation (Cheng 
et.al, 2022). An honest leader is assumed to work 
within a synchronous network during Normal Case 
Operations. The protocol uses a multi-pipeline 
scheme to ensure simultaneous proposals and voting. 
ECC improves cryptographic efficiency, making the 
system process more transactions smoothly. 
However, View-Change Operation is triggered 
through timeouts if the system detects a malicious 
leader or encounters network asynchrony. This allows 
the system to elect a new leader and update the new 
view number. Additionally, Raft-MPH supports 
parallel proposals and voting across different views, 
significantly enhancing throughput. The protocol also 
applies a 3-chain commit rule (Figure 3) for safety, 
allowing blocks to be committed only as part of a 
chain of three consecutive certified blocks with valid 
quorum certificates (Cheng et.al, 2022). Combined 
with the view-change process, this mechanism 
maintains system consistency and progress, even 
under hostile conditions. 

 
Figure 3: 3-Chain predicate of MPH (Picture credit:  
Original). 

The correctness of Raft-MPH with ECC is proven 
through eight lemmas that ensure the safety and 
liveness of the protocol. (1) Lemma 1 claims that no 
two Quorum Certificates (QCs) can have the same 
view number, preventing conflicting votes. (2) 
Lemma 2 asserts that if two certified blocks share the 
same view number, they must be the same. This 
prevents conflicting commitments. (3) Lemma 3 
secures that a block is committed only if it extends 
from a chain of three consecutive certified blocks. (4) 
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Lemma 4 states that only one block can be certified 
in view. (5) Lemma 5 indicates nodes will move to 
the next view upon receiving a correct leader's 
proposal. (6) Lemma 6 states that all correct nodes 
will push opinions monotonically after the Global 
Stabilization Time (GST). (7) Lemma 7 ensures 
correct leader proposals will be received and voted 
on, even in malicious conditions. (8) Lemma 8 
guarantees a block will be certified and committed, 
preserving liveness and enabling transaction 
processing (Yin et.al, 2018; Niu et.al, 2021; Cheng 
et.al, 2022).  

2.3 Implementation Details  

In this project, Java implements the Raft-MPH 
protocol. It manages concurrency across multiple 
pipelines using Java's built-in concurrency utilities. 
This process enables parallel execution of proposals 
and votes. Java.net libraries handle networking with 
Netty for efficient communication. Implemented 
through Bouncy Castle, ECC uses the secp256k1 
curve for secure key exchanges and digital signatures. 
This protocol also assumes up to f malicious nodes 
out of n total nodes (𝑛 ൐ 3𝑓 ൅ 1). Java's collections 
manage logs and QC, and exception handling and 
retry mechanisms secure resilience during Byzantine 
and crash-stop failures. Finally, Java's testing 
frameworks validate protocol safety and liveness. 

3 RESULT AND DISCUSSION 

In this chapter, the author evaluates the results of the 
Raft-MPH protocol integrated with ECC in a BFT 
system. This evaluation focused on three major areas: 
(1) throughput and latency performance, (2) 
scalability, and (3) fault tolerance under different 
network conditions. Research demonstrates how the 
proposed Raft-MPH with ECC protocol effectively 
reduces communication overhead, improves fault 
tolerance, and enhances scalability in distributed 
systems. 

3.1 Throughput and Latency Analysis  

As indicated in Figure 4 and Table 1, the throughput 
and latency of Raft-MPH with ECC were tested under 
two network settings: Local Area Network (LAN) 
and Wide Area Network (WAN). This study used a 
block size of 800 transactions, each with a payload of 
1024 bytes. The mempool dissemination batch size 
was set to 512 KB to ensure efficient transmission. 

 
Figure 4: Throughput (TPS) vs. Latency (ms) for Raft-MPH 
with ECC on LAN and WAN (Picture credit:  Original). 

The results showed that this proposed protocol 
maintains low latency while achieving high 
throughput under both network conditions. 
Specifically, Raft-MPH can process up to 160k 
transactions per second (TPS) on a LAN while 
maintaining latency similar to HotStuff. However, 
due to restricted bandwidth and the challenges of 
long-distance transactions, the maximum TPS on a 
WAN was limited to 30k, with an increased latency. 
The multi-threaded processing in Raft-MPH with 
ECC enables efficient bandwidth utilization, resulting 
in a substantial enhancement in throughput compared 
to traditional protocols like HotStuff and PBFT. 
Deploying ECC for cryptographic operations helped 
reduce communication overhead, as ECC’s smaller 
key sizes and faster computation times enabled more 
transactions to be processed within the same time slot. 
Thus, with the integration of Raft’s leader-driven 
election process with MPH’s multi-threaded 
approach, this protocol keeps throughput consistently 
high, even as the network scales.  

Table 1: Summary of throughput and latency performance metrics. 

Network 
Environment 

Block 
Size

Payload Size 
(Bytes) 

Mempool Dissemination 
Batch Size (KB)

Throughput 
(TPS)

Latency (ms) 

LAN 800 1024 512 Up to 160k Comparable to 
HotStuff (~2s)

WAN 800 1024 512 Up to 30k Higher than LAN 
(~3.5s) 
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Table 2: Scalability metrics for Raft-MPH with ECC. 

Number of 
Replicas 

Maximum Throughput 
(TPS) on LAN 

Maximum Latency 
(ms) on LAN

Maximum Throughput 
(TPS) on WAN

Maximum Latency 
(ms) on WAN

4 160k ~1.5 30k ~3 
10 150k ~2 28k ~3.2 
22 50k ~2 20k ~3.3 
58 40k ~2 10k ~3.5 

Table 3: Fault tolerance performance metrics for Raft-MPH with ECC. 

Number of Faulty 
Replicas 

Throughput (TPS) on 
LAN 

Latency (ms) on 
LAN

Throughput (TPS) on 
WAN

Latency (ms) on 
WAN 

0 50k ~1.5 20k ~3 
1 48k ~1.8 18k ~3.2 
2 40k ~2 15k ~3.4 
3 30k ~2 10k ~3.5 

3.2 Scalability  

Figure 5 and Table 2 describe the scalability results 
of Raft-MPH with ECC when the number of replicas 
increases from 4 to 58. The protocol was tested under 
the same network environments to maximize 
throughput and latency at various scales. 

 
Figure 5: Throughput (TPS) vs. Number of Replicas for 
Raft-MPH with ECC (Picture credit:  Original). 

Research revealed that as more replicas were 
added, the throughput of Raft-MPH with ECC scaled 
smoothly, achieving 40k TPS on a LAN with 58 
replicas while keeping the average latency at 2 
milliseconds. This performance is about 60% better 
than HotStuff achieves at every scale. Due to Raft-
MPH’s linear communication cost, O(n), with ECC’s 
efficient cryptographic operations. Research has 
managed to keep latency growth to a minimum as the 
system expands. This gives this protocol a clear 
advantage over protocols like PBFT, which struggle 
with quadratic communication costs, O(𝑛ଶ).  

 
 
 
 

3.3 Fault Tolerance and View-Change 
Performance  

Figure 6 and Table 3 present the performance of Raft-
MPH with ECC under fault-tolerant scenarios. This 
research tested the protocol with up to 3 faulty 
replicas in a 22 replicas setup on a LAN, where the 
system dealt with leader failures by performing view-
change operations. 

 
Figure 6: Throughput (TPS) and Latency (ms) vs. Number 
of Faulty Replicas for Raft-MPH with ECC (Picture credit:  
Original). 

The results indicated that Raft-MPH with ECC 
outperformed both HotStuff and PBFT, even when 
the number of faulty replicas increased. Additionally, 
the multi-pipeline mechanism enables the protocol to 
maintain higher throughput and lower latency, even 
when handling view-change operations. ECC 
improves fault tolerance by securing the 
communication between replicas, so even if some 
replicas fail, the system can quickly elect a new leader 
and resume normal operations. Even with 3 faulty 
replicas, the maximum latency was measured at 2 
milliseconds, and throughput remained at around 30k 
TPS. The combination of ECC ensures that the 
protocol maintains cryptographic security, preventing 
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unauthorized access and manipulation of the system, 
even during view-change processes.  

3.4 Takeaways  

The research results reveal that the Raft-MPH 
protocol with ECC efficiently handles the major 
changes in the BFT system, including decreasing 
communication overhead, improving fault tolerance, 
and enhancing scalability. This protocol’s ability to 
adjust to changing network conditions, along with the 
efficiency of ECC, makes it a reliable solution for 
modern distributed systems, particularly in 
blockchain applications. This research proves that 
Raft-MPH with ECC provides enhancement over 
traditional consensus protocols. It builds a solid 
foundation for further research and practical 
implementation in high-performance, secured 
distributed systems. 

4 CONCLUSIONS 

In this research, the author proposed Raft-MPH with 
ECC to handle the challenges of performance, 
scalability, and BPT consensus mechanisms. This 
approach integrates Raft's simplicity with HotStuff's 
multi-pipeline architecture and ECC's cryptographic 
efficiency. Additionally, research results 
demonstrated that Raft-MPH with ECC significantly 
reduces communication overhead, enhances 
throughput, and improves cryptographic operations 
compared to traditional BFT protocols like PBFT and 
HotStuff. Future work will translate Raft-MPH with 
ECC from theory into practice by developing a robust 
implementation framework and integrating it into 
blockchain platforms. This includes continuous 
improvements in adaptive consensus mechanisms, 
applying advanced machine learning models such as 
the Adaptive Weighted Attribute Propagation 
(AWAP) model, which can dynamically switch 
between Raft and MPH modes based on real-time 
network environments (Xue et.al, 2021). Moreover, 
exploring advanced cryptographic techniques will 
ensure the protocol’s reliability and security in 
tandem with technological advancements (Salam 
et.al, 2024). These efforts will pave the way for Raft-
MPH with ECC to become a practical and efficient 
solution for modern distributed systems. 
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