
 Enhanced Byzantine Fault Tolerance with Raft and Multi-Pipeline
HotStuff Using ECC

Shen Li a
School of Information Systems Engineering and Management, Harrisburg University of Science and Technology,

Harrisburg, U.S.A.

Keywords: Byzantine Fault Tolerance, Raft-MPH, Elliptic Curve Cryptography, HotStuff.

Abstract: This paper focuses on the challenges in Byzantine Fault Tolerance (BFT) systems, particularly focusing on
the inefficiencies in traditional protocols such as Practical Byzantine Fault Tolerance (PBFT) and the
shortcomings of HotStuff's single-pipeline design. This study introduces a new model called Raft-Multiple
Pipeline HotStuff (Raft-MPH) with Elliptic Curve Cryptography (ECC) to deal with BFT. Additionally, the
Raft-MPH protocol is designed to improve HotStuff's existing framework by leveraging ECC to make
cryptographic operations more efficient. The research shows that this approach significantly decreases
communication overhead while maintaining high throughput and low latency, even in different network
conditions. The Raft-MPH protocol processed up to 160K transactions per second (TPS) on a Local Area
Network (LAN) with latency similar to traditional HotStuff, and it scaled well as the number of replicas
increased. Overall, this work lays a solid foundation for future research on adaptive consensus protocols and
may lead to practical applications in blockchain platforms.

1 INTRODUCTION

Byzantine Fault Tolerance (BFT) has captured
significant attention in distributed systems,
particularly as blockchain technology demands
robust safety and reliability, even when dealing with
malicious nodes. Facing these challenges, researchers
utilize these BFT protocols to ensure smart contract
execution and secure consistent state machine
replication in these networks, maintaining system
integrity even when malicious behaviors are detected.
However, traditional BFT approaches, such as
Practical Byzantine Fault Tolerance (PBFT), struggle
in the large-scale distributed environment due to their
costly view-change processes and high
communication complexity (Bogdanov et.al, 2023).
Introducing more sophisticated protocol, like
HotStuff, handles these challenges by optimizing
consensus phases to reduce forks and achieve linear
communication complexity (Yin et.al, 2018; Niu et.al,
2021). Despite these enhancements, HotStuff’s
single-pipeline architecture introduces new research
gaps, necessitating further exploration. This paper
proposes the Raft-Multiple Pipeline HotStuff (Raft-

a https://orcid.org/0009-0008-2726-2728

MPH) model, which combines Raft’s simplicity with
HotStuff’s multiple-pipeline architecture and Elliptic
Curve Cryptography (ECC) to improve performance,
scalability, and fault tolerance.

The field of Byzantine Fault Tolerance has
achieved significant results, with diverse protocols
developed to deal with the inherent issues of
maintaining consensus in distributed systems. PBFT,
one of the most well-known and earliest BFT
protocols, has strong fault tolerance management
capabilities but suffers from quadratic
communication complexity O (n2), making it less
feasible in large-scale distributed systems. The cost
of view changes in PBFT, which grows cubically O
(n3), further undermines its capabilities to handle
scalability issues (Bogdanov et.al, 2023). In response,
HotStuff has been introduced to simplify the
consensus process by decreasing the number of
phases required and achieving linear communication
complexity in steady-state operations. HotStuff’s
approach, which utilizes threshold signatures, has
played a crucial role in minimizing latency and
improving performance (Yin et.al, 2018; Niu et.al,
2021). However, the inherent drawbacks of a single-

Li and S.
Enhanced Byzantine Fault Tolerance with Raft and Multi-Pipeline HotStuff Using ECC.
DOI: 10.5220/0013524400004619
In Proceedings of the 2nd International Conference on Data Analysis and Machine Learning (DAML 2024), pages 379-384
ISBN: 978-989-758-754-2
Copyright © 2025 by Paper published under CC license (CC BY-NC-ND 4.0)

379

pipeline mechanism limit throughput during heavy
transaction demands. MPH was developed to address
these challenges by allowing concurrent proposal and
voting processes, thereby significantly improving
throughput without introducing delay (Cheng et.al,
2022).

Moreover, integrating Raft with ECC has been
explored to improve encryption efficiency and ease
operational tasks (Lahraoui et.al, 2024; Lara-Nino
et.al, 2018). However, existing solutions still struggle
with single-thread limitations and communication
overhead, particularly in Byzantine fault-prone
environments. This research builds upon these
previous achievements by introducing a hybrid model
that dynamically changes between Raft and MPH
modes, further improving performance and resilience
in distributed systems.

This research aims to develop the Raft-MPH
protocol with ECC to tackle major challenges in BFT
systems, including reducing communication
overhead, enhancing fault tolerance, and improving
scalability. It combines Raft's leader-based system
with MPH's multi-threaded processing to (1) lower
communication complexity and (2) integrate their
advantages for high throughput and fault tolerance (3)
This protocol dynamically adapts based on network
settings and uses ECC for cryptographic efficiency.
This research improves scalability and security in
distributed systems, especially in blockchain, and
paves the way for future work on practical
implementation and optimization of adaptive
consensus protocols.

2 METHODOLOGIES

2.1 Threat Models

The Raft-PBFT model with ECC aims to tackle issues
related to Byzantine fault tolerance and improve
cryptographic efficiency in distributed systems.
However, this model has several vulnerabilities that
could compromise its effectiveness (Figure 1): (1)
Byzantine failures remain a critical concern due to
Raft's leader-based election process combined with
PBFT's view-change mechanism. Malicious nodes
can disrupt the consensus process, which leads to
increased latency and undermines the system's
reliability. (2) Crash-stop failure is another issue
because the model relies on a single pipeline. The
entire system's performance will be severely
impacted if a node fails. This will lead to system-wide
delays. (3) The attackers could exploit a timing
vulnerability caused by dynamic mode switching

between Raft and PBFT modes. This will lead to
instability and compromised consensus (Bogdanov
et.al, 2023).

Figure 1: The pipeline of security issues (Picture credit:
Original).

Based on the threat models of the current
approach, this research proposes the Raft-MPH
consensus protocol with ECC, which combines the
principles of Raft and ECC with the Multiple pipeline
approach in HotStuff to improve system performance,
safety, and liveness.

2.2 Methods

2.2.1 Raft

Raft is a consensus algorithm designed for its
simplicity and reliability in managing a replicated log
across a cluster of nodes. It divides the consensus
problem into three components: leader election
(Figure 2), log replication, and safety (Ongaro and
Ousterhout, 2014; Zhan and Huang, 2023). (1) Raft
elects a single server as the leader to manage the log
replication process. If the leader fails, the followers
start an election to elect a new leader. Randomized
election timeouts prevent split votes, which secure
smooth leadership transitions. (2) The leader takes
log entries from clients and broadcasts them to the
followers. Once most followers have received an
entry, it is considered committed and is applied to the
state machine. (3) Raft ensures that all nodes utilize
the same log entries in order, even during failure. The
leader is responsible for dealing with inconsistencies
by correcting the followers' logs. Thus, Raft's strong
leadership, log replication, and consistent consensus
model effectively handle Byzantine failures, crash-
stop failures, and vulnerabilities related to dynamic
mode switching.

DAML 2024 - International Conference on Data Analysis and Machine Learning

380

Figure 2: Raft election role replacement process (Picture

credit: Original).

2.2.2 MPH

The MPH is designed to improve performance and
scalability in distributed systems, especially those
vulnerable to Byzantine failures. Unlike the
sequential nature of HotStuff, MPH optimizes the
process by enabling simultaneous proposing and
voting. This optimization decreases the bottleneck
related to single-pipeline methods. MPH can adapt to
real-time network conditions by operating under a
partially synchronous communication model. A
major benefit of MPH is its ability to maintain linear
communication complexity during the normal
operation phase while achieving quadratic
complexity during view changes due to its multi-
pipeline approach. This design enables more blocks
to be proposed and committed in each round,
significantly enhancing throughput without
increasing end-to-end latency. Moreover, MPH's
optimistic responsiveness allows a correct leader to
reach a consensus quickly (Cheng et.al, 2022). This
will improve the protocol's resilience against
Byzantine failures, reduce the impact of node failures,
and simplify leader election processes to prevent
vulnerabilities during mode transitions.

2.2.3 ECC

Compared to traditional algorithms like RSA, ECC
has smaller key sizes. It further secures the system by
offering secure encryption, Digital signatures, and
key exchange. Three characteristics offer more robust
security with lower computational costs: (1) ECC
depends on the elliptic curve equation over a finite
prime field, where security is based on the difficulty
of solving the elliptic curve discrete logarithm
problem (ECDLP). (2) The Elliptic Curve Diffie-
Hellman (ECDH) protocol ensures secure key
exchange over insecure channels. (3) ECC supports
digital signatures via protocols like the Elliptic Curve
Digital Signature Algorithm (ECDSA), securing
message integrity and authenticity (Lahraoui et.al,
2024). Therefore, ECC plays an important role in

mitigating Byzantine failures and reducing delays
from crash-stop failures due to its lightweight design.
It also ensures smooth transitions between Raft and
PBFT modes, which keeps the system stable and
secure.

2.2.4 Raft-MPH with ECC

The Raft-MPH consensus protocol with ECC
operates within a partially synchronous network. The
nodes use a consensus protocol in this system to agree
on the transaction sequence. The system assumes up
to f faulty nodes out of 𝑛, where 𝑛 ൐ 3𝑓 ൅ 1 (Cheng
et.al, 2022). The protocol has two phases: Normal
Case Operation and View-Change Operation (Cheng
et.al, 2022). An honest leader is assumed to work
within a synchronous network during Normal Case
Operations. The protocol uses a multi-pipeline
scheme to ensure simultaneous proposals and voting.
ECC improves cryptographic efficiency, making the
system process more transactions smoothly.
However, View-Change Operation is triggered
through timeouts if the system detects a malicious
leader or encounters network asynchrony. This allows
the system to elect a new leader and update the new
view number. Additionally, Raft-MPH supports
parallel proposals and voting across different views,
significantly enhancing throughput. The protocol also
applies a 3-chain commit rule (Figure 3) for safety,
allowing blocks to be committed only as part of a
chain of three consecutive certified blocks with valid
quorum certificates (Cheng et.al, 2022). Combined
with the view-change process, this mechanism
maintains system consistency and progress, even
under hostile conditions.

Figure 3: 3-Chain predicate of MPH (Picture credit:
Original).

The correctness of Raft-MPH with ECC is proven
through eight lemmas that ensure the safety and
liveness of the protocol. (1) Lemma 1 claims that no
two Quorum Certificates (QCs) can have the same
view number, preventing conflicting votes. (2)
Lemma 2 asserts that if two certified blocks share the
same view number, they must be the same. This
prevents conflicting commitments. (3) Lemma 3
secures that a block is committed only if it extends
from a chain of three consecutive certified blocks. (4)

Enhanced Byzantine Fault Tolerance with Raft and Multi-Pipeline HotStuff Using ECC

381

Lemma 4 states that only one block can be certified
in view. (5) Lemma 5 indicates nodes will move to
the next view upon receiving a correct leader's
proposal. (6) Lemma 6 states that all correct nodes
will push opinions monotonically after the Global
Stabilization Time (GST). (7) Lemma 7 ensures
correct leader proposals will be received and voted
on, even in malicious conditions. (8) Lemma 8
guarantees a block will be certified and committed,
preserving liveness and enabling transaction
processing (Yin et.al, 2018; Niu et.al, 2021; Cheng
et.al, 2022).

2.3 Implementation Details

In this project, Java implements the Raft-MPH
protocol. It manages concurrency across multiple
pipelines using Java's built-in concurrency utilities.
This process enables parallel execution of proposals
and votes. Java.net libraries handle networking with
Netty for efficient communication. Implemented
through Bouncy Castle, ECC uses the secp256k1
curve for secure key exchanges and digital signatures.
This protocol also assumes up to f malicious nodes
out of n total nodes (𝑛 ൐ 3𝑓 ൅ 1). Java's collections
manage logs and QC, and exception handling and
retry mechanisms secure resilience during Byzantine
and crash-stop failures. Finally, Java's testing
frameworks validate protocol safety and liveness.

3 RESULT AND DISCUSSION

In this chapter, the author evaluates the results of the
Raft-MPH protocol integrated with ECC in a BFT
system. This evaluation focused on three major areas:
(1) throughput and latency performance, (2)
scalability, and (3) fault tolerance under different
network conditions. Research demonstrates how the
proposed Raft-MPH with ECC protocol effectively
reduces communication overhead, improves fault
tolerance, and enhances scalability in distributed
systems.

3.1 Throughput and Latency Analysis

As indicated in Figure 4 and Table 1, the throughput
and latency of Raft-MPH with ECC were tested under
two network settings: Local Area Network (LAN)
and Wide Area Network (WAN). This study used a
block size of 800 transactions, each with a payload of
1024 bytes. The mempool dissemination batch size
was set to 512 KB to ensure efficient transmission.

Figure 4: Throughput (TPS) vs. Latency (ms) for Raft-MPH
with ECC on LAN and WAN (Picture credit: Original).

The results showed that this proposed protocol
maintains low latency while achieving high
throughput under both network conditions.
Specifically, Raft-MPH can process up to 160k
transactions per second (TPS) on a LAN while
maintaining latency similar to HotStuff. However,
due to restricted bandwidth and the challenges of
long-distance transactions, the maximum TPS on a
WAN was limited to 30k, with an increased latency.
The multi-threaded processing in Raft-MPH with
ECC enables efficient bandwidth utilization, resulting
in a substantial enhancement in throughput compared
to traditional protocols like HotStuff and PBFT.
Deploying ECC for cryptographic operations helped
reduce communication overhead, as ECC’s smaller
key sizes and faster computation times enabled more
transactions to be processed within the same time slot.
Thus, with the integration of Raft’s leader-driven
election process with MPH’s multi-threaded
approach, this protocol keeps throughput consistently
high, even as the network scales.

Table 1: Summary of throughput and latency performance metrics.

Network
Environment

Block
Size

Payload Size
(Bytes)

Mempool Dissemination
Batch Size (KB)

Throughput
(TPS)

Latency (ms)

LAN 800 1024 512 Up to 160k Comparable to
HotStuff (~2s)

WAN 800 1024 512 Up to 30k Higher than LAN
(~3.5s)

DAML 2024 - International Conference on Data Analysis and Machine Learning

382

Table 2: Scalability metrics for Raft-MPH with ECC.

Number of
Replicas

Maximum Throughput
(TPS) on LAN

Maximum Latency
(ms) on LAN

Maximum Throughput
(TPS) on WAN

Maximum Latency
(ms) on WAN

4 160k ~1.5 30k ~3
10 150k ~2 28k ~3.2
22 50k ~2 20k ~3.3
58 40k ~2 10k ~3.5

Table 3: Fault tolerance performance metrics for Raft-MPH with ECC.

Number of Faulty
Replicas

Throughput (TPS) on
LAN

Latency (ms) on
LAN

Throughput (TPS) on
WAN

Latency (ms) on
WAN

0 50k ~1.5 20k ~3
1 48k ~1.8 18k ~3.2
2 40k ~2 15k ~3.4
3 30k ~2 10k ~3.5

3.2 Scalability

Figure 5 and Table 2 describe the scalability results
of Raft-MPH with ECC when the number of replicas
increases from 4 to 58. The protocol was tested under
the same network environments to maximize
throughput and latency at various scales.

Figure 5: Throughput (TPS) vs. Number of Replicas for
Raft-MPH with ECC (Picture credit: Original).

Research revealed that as more replicas were
added, the throughput of Raft-MPH with ECC scaled
smoothly, achieving 40k TPS on a LAN with 58
replicas while keeping the average latency at 2
milliseconds. This performance is about 60% better
than HotStuff achieves at every scale. Due to Raft-
MPH’s linear communication cost, O(n), with ECC’s
efficient cryptographic operations. Research has
managed to keep latency growth to a minimum as the
system expands. This gives this protocol a clear
advantage over protocols like PBFT, which struggle
with quadratic communication costs, O(𝑛ଶ).

3.3 Fault Tolerance and View-Change
Performance

Figure 6 and Table 3 present the performance of Raft-
MPH with ECC under fault-tolerant scenarios. This
research tested the protocol with up to 3 faulty
replicas in a 22 replicas setup on a LAN, where the
system dealt with leader failures by performing view-
change operations.

Figure 6: Throughput (TPS) and Latency (ms) vs. Number
of Faulty Replicas for Raft-MPH with ECC (Picture credit:
Original).

The results indicated that Raft-MPH with ECC
outperformed both HotStuff and PBFT, even when
the number of faulty replicas increased. Additionally,
the multi-pipeline mechanism enables the protocol to
maintain higher throughput and lower latency, even
when handling view-change operations. ECC
improves fault tolerance by securing the
communication between replicas, so even if some
replicas fail, the system can quickly elect a new leader
and resume normal operations. Even with 3 faulty
replicas, the maximum latency was measured at 2
milliseconds, and throughput remained at around 30k
TPS. The combination of ECC ensures that the
protocol maintains cryptographic security, preventing

Enhanced Byzantine Fault Tolerance with Raft and Multi-Pipeline HotStuff Using ECC

383

unauthorized access and manipulation of the system,
even during view-change processes.

3.4 Takeaways

The research results reveal that the Raft-MPH
protocol with ECC efficiently handles the major
changes in the BFT system, including decreasing
communication overhead, improving fault tolerance,
and enhancing scalability. This protocol’s ability to
adjust to changing network conditions, along with the
efficiency of ECC, makes it a reliable solution for
modern distributed systems, particularly in
blockchain applications. This research proves that
Raft-MPH with ECC provides enhancement over
traditional consensus protocols. It builds a solid
foundation for further research and practical
implementation in high-performance, secured
distributed systems.

4 CONCLUSIONS

In this research, the author proposed Raft-MPH with
ECC to handle the challenges of performance,
scalability, and BPT consensus mechanisms. This
approach integrates Raft's simplicity with HotStuff's
multi-pipeline architecture and ECC's cryptographic
efficiency. Additionally, research results
demonstrated that Raft-MPH with ECC significantly
reduces communication overhead, enhances
throughput, and improves cryptographic operations
compared to traditional BFT protocols like PBFT and
HotStuff. Future work will translate Raft-MPH with
ECC from theory into practice by developing a robust
implementation framework and integrating it into
blockchain platforms. This includes continuous
improvements in adaptive consensus mechanisms,
applying advanced machine learning models such as
the Adaptive Weighted Attribute Propagation
(AWAP) model, which can dynamically switch
between Raft and MPH modes based on real-time
network environments (Xue et.al, 2021). Moreover,
exploring advanced cryptographic techniques will
ensure the protocol’s reliability and security in
tandem with technological advancements (Salam
et.al, 2024). These efforts will pave the way for Raft-
MPH with ECC to become a practical and efficient
solution for modern distributed systems.

REFERENCES

Bogdanov, A., Shchegoleva, N., Khvatov, V., et al. 2023.
The Combination of P-BFT and RAFT: A New
Approach to Building Networks that Provide
Reliability and Security. International Conference on
Computational Science and Its Applications. Cham:
Springer Nature Switzerland, 2023: 572-583.

Cheng, T., Zhou, W., Yao, S., et al. 2022. Multi-pipeline
HotStuff: A High Performance Consensus for
Permissioned Blockchain. IEEE International
Conference on Trust, Security and Privacy in
Computing and Communications, 1008-1019.

Lahraoui, Y., Lazaar, S., Amal, Y., et al. 2024. Securing
Data Exchange with Elliptic Curve Cryptography: A
Novel Hash-Based Method for Message Mapping and
Integrity Assurance. Cryptography, 8(2), 23.

Lara-Nino, C. A., Diaz-Perez, A., & Morales-Sandoval, M.
(2018). Elliptic curve lightweight cryptography: A
survey. IEEE Access, 6, 72514-72550.

Niu, J., Gai, F., Jalalzai, M.M., et al. 2021. On the
performance of pipelined hotstuff. Conference on
Computer Communications, 1-10.

Ongaro, D., Ousterhout, J., 2014. In search of an
understandable consensus algorithm. USENIX annual
technical conference, 305-319.

Salam, A., Abrar, M., Amin, F., et al. 2024. Securing smart
manufacturing by integrating anomaly detection with
zero-knowledge proofs. IEEE Access.

Xue. S.X., Ji, M.W., Jun, Y.Y., et al. 2021. AWAP:
Adaptive weighted attribute propagation enhanced
community detection model for bitcoin de-
anonymization. Applied Soft Computing, 109, 107507.

Yin, M., Malkhi, D., Reiter, M.K., et al. 2018. HotStuff:
BFT consensus in the lens of blockchain. arXiv preprint:
1803.05069.

Zhan, Z., Huang, R., 2023. Improvement of Hierarchical
Byzantine Fault Tolerance Algorithm in RAFT
Consensus Algorithm Election. Applied Sciences,
13(16), 9125.

DAML 2024 - International Conference on Data Analysis and Machine Learning

384

