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Abstract: Alzheimer's Disease (AD) is a neurodegenerative condition that presents major obstacles to early diagnosis 
and classification. This study proposes a new deep learning-based method to classify preprocessed brain MRI 
scans, incorporating techniques for transfer learning and data augmentation. Three Convolutional Neural 
Network (CNN) models were utilized: the 16-layer Visual Geometry Group network (VGG16), Inception 
version 4 (Inception_v4), and the 50-layer Residual Network (ResNet50). The dataset used in this research, 
sourced from Kaggle, contains around 6,400 MRI scans, categorized into four classes: mild dementia, 
moderate dementia, non-demented, and very mild dementia. A tailored data augmentation pipeline was 
developed, utilizing techniques such as rotation, flipping, and intensity modifications. This was combined 
with transfer learning by employing pre-trained models from large-scale image datasets, which were then 
fine-tuned for AD classification. The performance of the VGG16, Inception_v4, and ResNet50 models was 
tested under four experimental scenarios: baseline (without augmentation or transfer learning), data 
augmentation alone, transfer learning alone, and a combination of data augmentation and transfer learning. 
The findings demonstrated that the integration of transfer learning and data augmentation substantially 
enhanced classification accuracy, with the top-performing model achieving an accuracy of 98.49%. This 
method can enhance the accuracy and reliability of AD diagnosis, contributing to more timely intervention 
and treatment. 

1 INTRODUCTION 

Alzheimer's disease is a neurological condition that 
gradually deteriorates cognitive and memory 
functions., ultimately affecting the completion of 
simple daily tasks. Currently, it is the seventh leading 
cause of death in the United States, making early 
diagnosis and intervention crucial (Smithsonian 
Magazine, 2023). 

Imaging techniques like Computed Tomography 
(CT), Magnetic Resonance Imaging (MRI), and 
Positron Emission Tomography (PET) are employed 
in traditional diagnostic methods to diagnose 
Alzheimer's disease (AD). While these methods assist 
in diagnosis, they have limitations in accuracy and 
cost. CT can detect obvious changes like brain 
atrophy but has limited utility in early AD detection 
(Adduru et al., 2020). MRI reveals detailed brain 
structures, such as atrophy and hippocampal volume 
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reduction, but cannot directly identify amyloid 
plaques and neurofibrillary tangles (Clark, 2003). 
PET can image β-amyloid plaques and tau tangles but 
is expensive, poses radiation risks, is primarily used 
for research, and has limited long-term sensitivity 
(Trudeau, 2018). 

Deep learning and artificial intelligence have 
made great progress in Alzheimer's disease diagnosis. 
Convolutional Neural Networks (CNNs) can identify 
brain atrophy patterns, particularly changes in the 
hippocampus and entorhinal cortex (Subramoniam, 
2022), which are important early features of AD. By 
training on large datasets of labeled MRI images, 
simplified CNN models can effectively differentiate 
between healthy and diseased brains. El-Assy et al. 
suggest that CNN models with simple structures can 
achieve 95% accuracy in a five-classification task 
(El-Assy, 2024). 
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By assessing model performance across four 
cognitive states, this study seeks to increase the 
accuracy of early Alzheimer's disease detection by 
offering a comprehensive overview of the model's 
diagnostic skills at various phases. This research will 
provide important evidence for developing early 
intervention and treatment strategies for Alzheimer's 
disease, thereby improving patients' quality of life. 

2 METHODOLOGY  

2.1 Dataset 

The Alzheimer's Disease MRI dataset that is freely 
accessible on the Kaggle platform was used in this 
investigation. Images from four categories—Non-
Demented, Very Mild Demented, Mild Demented, 
and Moderate Demented—are included in this 
dataset. The dataset is compiled from multiple 
sources, including various websites, hospitals, and 
public databases. 

The collection provides approximately 6,400 2D 
image slices with an original resolution of 208 x 176 
pixels. These images represent patients across various 
age groups and genders, as illustrated in Figure 1. For 
uniformity and processing efficiency, all images have 
been resized to 128 x 128 pixels. 

 
Figure 1: Alzheimer's disease MRI dataset (Photo/Picture 
credit: Original). 

Figure 1 displays carefully selected slice planes 
from comprehensive 3D scan datasets, stored in PNG 
format to ensure superior image quality and retain 
fine details. All images have undergone extensive 
preprocessing to remove any identifiable information, 
ensuring strict adherence to ethical guidelines and 
protecting patient confidentiality. 

2.2 Experimental Setup 

The high-performance computer environment used 
for all of the study's experiments allowed for the most 
effective training and assessment of the deep learning 
models. Table 1 provides a summary of all the 
experimental setup's detailed specifications. 
 

Table 1: Experimental environment configuration 

Name Configuration Information
Operating System Ubuntu 22.04 

Programming 
Language

Python 3.10 

Framework PyTorch 2.1.0 
CUDA 12.1 
CPU Intel(R) Xeon(R) Platinum 8362
GPU RTX 3090(24GB) 

The integration of hardware and software 
configurations established an optimal computing 
environment for the experiments, enabling efficient 
model training, optimization, and evaluation. 
Moreover, it ensured the consistency and 
reproducibility of the experimental results. 

2.3 Data Preprocessing 

2.3.1 Dataset Partitioning 

The original dataset was split into training and 
validation sets using a random sample strategy to 
ensure the efficacy and generalizability of the models. 
The split ratio of 70:30, which is frequently utilized 
in deep learning and machine learning studies, was 
utilized. This ratio ensures an ample amount of 
training data while preserving a sufficient number of 
validation samples for model assessment. The 
detailed dataset distribution is as follows: 

Training set: 4,479 images (approximately 70%) 
Validation set: 1,919 images (approximately 

30%) 
The dataset comprises a total of 6,398 images. 

This splitting strategy ensures that the training set 
includes a sufficient number of samples to capture 
complex feature patterns, while the validation set 
remains large enough to accurately assess model 
performance and detect potential overfitting.A 
stratified random sampling technique was employed 
to preserve the original class distribution (Non-
Demented, Very Mild Demented, Mild Demented, 
and Moderate Demented) across both the training and 
validation sets. This method reduces sampling bias 
and enhances the model's stability across all 
categories. 

To evaluate the model's capacity for 
generalization further, an independent test set was 
reserved. This test set remained completely unused 
during the training and tuning processes and was 
exclusively applied for the final model evaluation. 
Detailed information about this test set will be 
provided in subsequent sections. 
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2.3.2 Data Augmentation 

Extensive data augmentation techniques were used on 
the training set to improve the model's generalization 
and lower the possibility of overfitting. These 
strategies were implemented using the argumentation 
library, as detailed in Table 2. For the training set, 
multiple augmentation methods were applied to 
diversify the data. 

In contrast, for the validation set, only center 
cropping and standardization to maintain the original 
characteristics of the data. This approach ensures that 
the validation process accurately reflects the model's 
output with unknown data, without the influence of 
additional data augmentation. This carefully designed 
data preparation and augmentation strategy, it aims to 
maximize the value of available data while ensuring 
the fairness and reliability of model evaluation. 

Table 2: Data augmentation techniques 
Feature Training set Validation set

Number of 
Images 

4479 1919 

Proportion 70% 30%
Center Cropping Yes (128x128) Yes (128x128)

Random 
Horizontal Flip 

Yes (50% 
probability) 

No 

Color Jitter Yes (±10%) No
Random Rotation Yes (-15° to 

15°) 
No 

Random 
Translation and 

Scaling 

Yes (max 5%) No 

Normalization Yes Yes

2.3.3 Data Normalization 

Using the mean values (0.485, 0.456, 0.406) and 
standard deviations (0.229, 0.224, 0.225) calculated 
from the ImageNet dataset, all images in this study 
were normalized. These values are widely used in the 
field of computer vision for transfer learning tasks. 
The normalization process helps the models in this 
experiment converge faster and improves their 
generalization ability, while also ensuring 
compatibility with pre-trained models. 

2.3.4 Class Balancing 

To ensure that every class is fairly represented in the 
training set, oversampling was applied to the minority 
classes, especially for the "Moderate Dementia" 
class, which was significantly oversampled. This 
ensured that the model could sufficiently learn the 
characteristics of each class during training, thus 
improving overall model performance and 
generalization ability. Specifically, the "Moderate 
Dementia" class was augmented 100 times, while the 
"Non-Demented" class was only augmented twice. 
Following the process of class balancing, the dataset 
comprised 8,960 photos categorized as Non-
Demented, 6,663 images classified as Very Mildly 
Demented, 8,778 images classified as Mildly 
Demented, and 8,800 images classified as Moderately 
Demented. 

2.4 Transfer Learning Strategy and 
Early Stopping Mechanism 

This study conducted comparative experiments on 
transfer learning and non-transfer learning using three 
deep learning models: ResNet50, VGG16, and 
Inception_v4. The training process was further 
optimized by incorporating an early stopping 
mechanism. The following is a comprehensive 
analysis of the experimental results. 

2.4.1 Advantages of Transfer Learning 

Transfer learning greatly sped up the training process 
and enhanced the model's performance on the 
validation set by using pre-trained model weights 
from massive datasets like ImageNet. Transfer 
learning showed definite benefits for all three models: 
ResNet50, VGG16, and Inception_v4. 
Specifically, the training loss and validation loss of 
the transfer learning models decreased rapidly, and 
the validation accuracy reached a high level within 
the early epochs (see Figures 2-3). This rapid 
convergence indicates that the pre-trained features 
provided by transfer learning effectively guided the 
model’s optimization direction early on, allowing the 
models to adapt to the target task more quickly and 
accurately. 
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(a) (b)

Figure 2: Inception_v4 - non-transfer learning loss and accuracy curves, (a) non-transfer learning loss results; (b) non-transfer 
learning accuracy curve results (Photo/Picture credit: Original). 

(a) (b)
Figure 3: Inception_v4 - transfer learning loss and accuracy curves, (a) Transfer learning loss results; (b) Transfer learning 
accuracy curve results.  (Photo/Picture credit: Original). 

Figure 2 shows the trends in loss and accuracy for 
the model without transfer learning (No Transfer 
Learning). In (a), the training loss gradually decreases 
with the increasing number of epochs and eventually 
stabilizes, indicating that the model's performance on 
the training set is progressively improving. However, 
the validation loss, after an initial decline, stabilizes 
and exhibits some fluctuations. This implies that the 
model can be overfitting if it exhibits strong 
performance on the training set but poor 
generalization on the validation set. 

The accuracy curves in (b) further confirm this. 
The training accuracy increases significantly with 
more epochs, eventually approaching 0.7, while the 
validation accuracy, after a rapid initial rise, 
fluctuates and ultimately settles around 0.6. This 
suggests that perhaps as a result of the model's poor 
generalization capacity, the model's performance on 
the validation set is not as strong as it was on the 
training set. 

In contrast, Figure 3 shows the training results of 
the model under transfer learning. In (a), the training 

loss rapidly decreases and eventually approaches zero, 
while the validation loss also exhibits a significant 
downward trend. Although there is slight fluctuation 
in the later stages, the overall validation loss remains 
at a relatively low level. This suggests that transfer 
learning improves the model's performance on the 
validation set and successfully addresses the 
overfitting problem. 

The accuracy curves in (b) further support this 
conclusion. In comparison to the non-transfer 
learning model, the training accuracy increases 
significantly under transfer learning and finally 
approaches 0.9, while the validation accuracy 
stabilizes around 0.8. This demonstrates that transfer 
learning greatly improves the model's generalization 
ability, enabling it to achieve higher accuracy on the 
validation set. 

Similarly, in the ResNet50 model, the validation 
accuracy of the model using transfer learning 
ultimately reached approximately 0.95, whereas the 
model without transfer learning exhibited greater 
fluctuations in validation accuracy and was unable to 
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achieve the same level. Both the VGG16 and 
Inception_v4 models showed similar trends, where 
the models with transfer learning demonstrated faster 
decreases in training and validation losses, along with 
significantly higher accuracy on the validation set. 

2.4.2 Early Stopping Mechanism 

The early stopping mechanism played a critical role 
in the training process of all models, especially when 
the performance on the validation set plateaued or 
began to deteriorate. By setting a patience parameter, 
the early stopping mechanism was able to terminate 
training when no further improvements were 
observed on the validation set, thus preserving the 
model with the highest performance on the validation 
set and preventing overfitting. 

During the training of all transfer learning models, 
the early stopping mechanism effectively reduced 
unnecessary training time, ensuring that training was 
halted once the model reached its optimal 
performance. This approach not only improved 
training efficiency but also sustained optimal model 
performance on the validation set. For example, the 
ResNet50 and Inception_v4 transfer learning models 
ceased training when validation accuracy reached 
approximately 0.95 and 0.85, respectively, while 
validation loss remained consistently low. 

2.4.3 Performance Comparison of Different 
Models 

While ResNet50, VGG16, and Inception_v4 have 
distinct architectures, all three models showed 
marked performance improvements when transfer 
learning was paired with the early stopping 
mechanism. However, differences in their 
performance on specific tasks became evident. For 
example, ResNet50 outperformed both VGG16 and 
Inception_v4 on the validation set, likely due to the 
strengths of its residual network in deep feature 
extraction. 

VGG16 displayed greater instability in non-
transfer learning conditions, resulting in lower 
validation accuracy. This indicates that deeper 
models may face challenges in learning effective 
features from small datasets without pre-trained 
weights. In contrast, Inception_v4 demonstrated 
greater adaptability, achieving high accuracy 
relatively quickly with transfer learning. 

The performance and training efficiency of deep 
learning models were significantly increased by the 
combination of early stopping and transfer learning. 
Models can quickly adjust to new tasks using transfer 
learning with little data, and early halting helps avoid 

overfitting. All models benefited from this approach, 
with ResNet50 achieving the highest validation 
accuracy. Future research could explore the 
performance of various architectures in transfer 
learning or further optimize the early stopping 
mechanism to better meet diverse task requirements. 

2.5 Comparison During the Training 
Process 

The experiment employed 4,479 training images and 
1,919 validation images. The models' performance 
was assessed by contrasting VGG16, Inception_v4, 
and ResNet50 under four distinct experimental 
conditions: baseline (no data augmentation or transfer 
learning), data augmentation only, transfer learning 
only, and a combination of both data augmentation 
and transfer learning. 

2.5.1 Validation Accuracy Under Different 
Experimental Conditions 

Table 3: Accuracy comparison of different models under 
various experimental conditions 

Experimental 
Condition

VGG16 Inception_v4 ResNet50 

Baseline (No 
Data 
Augmentation 
or Transfer 
Learning)

0.5020 0.5800 0.5690 

Data 
Augmentation 
Only

0.5477 0.6071 0.6154 

Transfer 
Learning Only

0.8800  0.8300  0.9050 

Data 
Augmentation 
+ Transfer 
Learning

0.9823 0.8551 0.9922 

Based on four experimental settings (Basis, Data 
Augmentation Only, Transfer Learning Only, and 
Data Augmentation + Transfer Learning), the 
validation accuracy of the VGG16, Inception_v4, and 
ResNet50 models was compared (Table 3). The 
results show that the integration of transfer learning 
and data augmentation yielded the maximum 
precision for all models, with ResNet50 performing 
best, achieving a validation accuracy of 0.9922. 
VGG16 also demonstrated significant improvement, 
reaching an accuracy of 0.9823 under this condition, 
largely attributed to the augmentation techniques. 
Inception_v4, though showing improvement, 
experienced a relatively smaller gain, reaching an 
accuracy of 0.8551 with the combined approach. 
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2.5.2 Comparison of Loss Values Under 
Different Experimental Conditions 

Table 4: Loss values under four experimental conditions 

Experimental 
Condition 

VGG16 Inception_v4 ResNet50 

Baseline (No 
Data 
Augmentation 
or Transfer 
Learning) 

1.0000 0.9500 0.9000 

Data 
Augmentation 
Only 

0.8804 0.8092 0.7841 

Transfer 
Learning Only 

0.5000 0.4500 0.3500 

Data 
Augmentation 
+ Transfer 
Learning 

0.1322 0.4073 0.0447 

The trend in the loss values is consistent with the 
validation accuracy results. When combining data 
augmentation and transfer learning, the loss values 
for all models decreased significantly, as shown in 
Table 4. ResNet50 achieved the lowest loss value 
under this condition, at 0.0447. VGG16's loss value 
also dropped considerably to 0.1322. In comparison, 
Inception_v4's loss value decreased to 0.4073, but the 
improvement was not as pronounced as in the other 
models.  

2.5.3 Comparison of Training Time Under 
Different Experimental Conditions 

Table 5: Training time under four experimental conditions 

Experimental 
Condition 

VGG16 Inception_v4 ResNet50 

Baseline (No 
Data 
Augmentation 
or Transfer 
Learning) 

10m 0s 12m 30s 6m 45s 

Data 
Augmentation 
Only 

12m 
23s 

15m 24s 8m 10s 

Transfer 
Learning Only 

20m 
15s 

22m 40s  5m 30s 

Data 
Augmentation 
+ Transfer 
Learning 

25m 1s 29m 17s 7m 2s 

In terms of training time, Table 5 illustrates how 
all models' training times rose with the introduction 
of data augmentation and transfer learning. ResNet50 
had the shortest training time under all conditions, 
particularly in the combined condition, where it took 

only 7 minutes and 2 seconds. VGG16 and 
Inception_v4 had relatively longer training times, 
with 25 minutes and 1 second and 29 minutes and 17 
seconds, respectively, under the combined condition. 

3 RESULT 

3.1 ROC Curve 

 

 

 
Figure 4: ROC curves for the three models (Photo/Picture 
credit: Original). 

Through the analysis of the multi-class ROC 
curves for the VGG16, Inception_v4, and ResNet50 
models, this study found that the integration of 
transfer learning with data augmentation significantly 
improved the classification performance of the 
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models, as shown in Figure 4. Both VGG16 and 
ResNet50 achieved an AUC of 1.00 across all 
categories, demonstrating extremely high 
classification accuracy and generalization ability, 
making them suitable for complex task scenarios. In 
contrast, Inception_v4 showed slight shortcomings in 
some categories. Although its performance was 
significantly enhanced by combining transfer 
learning with data augmentation, the AUC values for 
certain categories still did not reach the optimal level. 

3.2 Confusion Matrix 

 
Figure 5: Confusion matrix analysis of the three models  
(Photo/Picture credit: Original). 

Through the analysis of the confusion matrices, as 
shown in Figure 5, it is evident that both VGG16 and 
ResNet50 performed more consistently in the 
classification task, particularly in distinguishing 

between Class 2 and Class 3, where the 
misclassification rate was significantly lower than 
that of Inception_v4. Inception_v4 tended to struggle 
when dealing with small differences between classes, 
with a noticeable increase in misclassifications 
between Class 2 and Class 3. 

Overall, ResNet50 and VGG16 exhibited 
excellent generalization and accuracy by utilizing a 
blend of data enrichment and transfer instruction, 
making them very successful for complex multi-class 
classification tasks. By contrast, Inception_v4 
exhibited a higher misclassification rate in certain 
categories, revealing potential limitations in handling 
more challenging or nuanced tasks. 

3.3 Accuracy  

Table 6: Comparison of accuracy under four experimental 
conditions 

Experimental 
Condition 

VGG16 Inception_v4 ResNet50 

Baseline (No 
Data 
Augmentation 
or Transfer 
Learning)

0.5010 0.5504 0.6001 

Data 
Augmentation 
Only

0.5753 0.6326 0.6274 

Transfer 
Learning Only

0.8354 0.7185  0.9592 

Data 
Augmentation 
+ Transfer 
Learning

0.9781 0.7353 0.9849 

Table 6 compares the accuracy results of VGG16, 
Inception_v4, and ResNet50 across four experimental 
conditions. ResNet50 consistently outperformed the 
other models in all scenarios, especially when both 
transfer learning and data augmentation were applied, 
achieving an accuracy of 0.9849. VGG16 also 
showed notable improvement, reaching 0.9781 under 
the same conditions. In contrast, despite the 
enhancements from data augmentation, 
Inception_v4’s highest accuracy reached only 
0.7353, even when combined with transfer learning. 
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3.4 Cohen's Kappa Coefficient 

Table 7: Comparison of Cohen's kappa coefficients under 
four experimental conditions  

Experimental 
Condition 

VGG16 Inception_v4 ResNet50 

Baseline (No 
Data 
Augmentation 
or Transfer 
Learning) 

0.3507 0.3834 0.438 

Data 
Augmentation 
Only 

0.3034 0.4203 0.4169 

Transfer 
Learning Only 

0.5512 0.5816 0.696 

Data 
Augmentation 
+ Transfer 
Learning 

0.9639 0.5686 0.9752 

When combining data augmentation with transfer 
learning, ResNet50 achieved a precision of 0.9849 
and a coefficient of Cohen's Kappa of 0.9752, 
outperforming the other models (Table 7). This aligns 
with Hasanah et al.'s findings, which also highlighted 
the strong performance of ResNet in medical image 
classification (Hasanah, 2023). However, ResNet50’s 
longer training time, likely due to its deeper 
architecture, was noted compared to simpler models. 
VGG16 also showed notable improvement under 
similar conditions, reaching a precision of 0.9781 and 
a Cohen's Kappa coefficient of 0.9639, reflecting its 
robust feature extraction capabilities, particularly 
with transfer learning. However, the model's 
extended training time could limit its applicability in 
scenarios requiring rapid processing or real-time 
updates. 

Inception_v4, on the other hand, underperformed 
compared to ResNet50 and VGG16, both in accuracy 
and Cohen’s Kappa. Its highest accuracy was 0.7353, 
with a Cohen's Kappa of 0.5686, likely due to the 
complexity of its architecture, which made it less 
efficient for MRI image analysis. Neshat et al. 
similarly suggested that the Inception architecture 
may require additional fine-tuning for certain medical 
imaging tasks (Neshat, 2023). ResNet50 could 
benefit from the incorporation of attention 
mechanisms, which have been shown to enhance 
model focus in medical image classification (Zhou et 
al., 2022). For VGG16, knowledge distillation could 
be a potential solution to its longer training time. 
Hinton et al. demonstrated that this technique 
effectively transfers knowledge from larger models to 
smaller, faster ones, reducing training time while 
maintaining accuracy (Hinton, 2015). 

One limitation of this study is the diversity of the 
dataset. Although approximately 6,400 MRI images 
were included, this may not be enough to represent all 
possible cases and variations. Future studies should 
aim to expand both the diversity and size of the 
dataset to better assess model performance across 
various populations and Alzheimer's disease stages. 
Additionally, this study primarily focused on 2D MRI 
images, which may have overlooked crucial spatial 
information available in 3D MRI data, potentially 
impacting diagnostic accuracy. 

Based on these findings and limitations, several 
future research directions are recommended. First, 
expanding the dataset to include more diverse MRI 
data from patients of varying ethnicities, age groups, 
and disease stages would enhance the model’s 
generalizability. Second, the potential of 3D CNN 
models should be explored, as Folego’s research 
showed that 3D CNNs offer significant advantages in 
diagnosing brain diseases (Folego, 2020). 
Incorporating 3D MRI data could improve the 
precision of Alzheimer’s diagnosis. Lastly, exploring 
multimodal data fusion is essential. Song et al. found 
that combining data from PET scans, genetics, and 
other sources significantly improves diagnostic 
accuracy in neurodegenerative diseases (Song et al., 
2021). These advancements could enhance the 
reliability of models for deep learning in early 
Alzheimer’s detection and offer more robust support 
for clinical practice. 

4 CONCLUSIONS 

To identify and classify AD early on, this paper 
proposes a deep learning-based method based on 
brain MRI data. Through the combination of data 
augmentation and transfer learning, the study 
demonstrated considerable gains in classification 
accuracy by comparing three CNN architectures: 
ResNet50, Inception_v4, and VGG16. ResNet50, the 
best-performing model, achieved 98.85% accuracy, 
surpassing the baseline. These findings highlight the 
potential of this approach to improve AD 
classification accuracy with broad application 
potential. 
The innovation of this study lies in integrating 
customized data augmentation techniques with 
transfer learning to efficiently utilize small MRI 
datasets, excelling in neurodegenerative disease 
classification. This approach not only improves AD 
classification but also serves as a reference for other 
medical imaging tasks. 
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Future research will focus on enhancing model 
generalization and incorporating multimodal data 
fusion. To improve generalization, the study aims to 
collect multicenter data, standardize preprocessing 
workflows, and apply domain adaptation techniques 
to ensure robustness across clinical environments. For 
multimodal data fusion, future efforts will integrate 
biomarkers like MRI, PET scans, and cerebrospinal 
fluid analysis, while developing architectures to 
process heterogeneous data and explore optimal 
fusion strategies. These efforts are expected to further 
improve AD diagnosis and provide new insights into 
diagnosing other neurodegenerative diseases, leading 
to more accurate and comprehensive diagnostic 
systems. 
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