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Abstract: Physically Based Rendering (PBR), a high-quality method in 3D model rendering, is widely used in modern 
games and 3D short films. However, generating corresponding PBR textures is relatively complex and 
challenging. This paper proposes a new task called PBR texture translation. The task involves generating 
corresponding texture maps such as height, normal, and roughness maps based on the base color image of a 
given PBR texture using an image-to-image translation model. Additionally, this paper improves the latest 
image translation model, pix2pix-turbo, by incorporating a classifier and expert models, and specifically 
adjusting the text-image alignment via a Text Prompt through experiments. After training on the MatSynth 
dataset, the model achieved a Minimum Mean Squared Error (MSE) of 1181.41 and a maximum  Structural 
Similarity Index (SSIM) of 0.614 on the height texture of the test set, reducing MSE by 1,443.53 and 
improving SSIM by 0.13 compared to the original model. The contributions of this research include proposing 
the PBR texture translation task and improving the pix2pix-turbo model to make it more suitable for texture 
translation tasks. 

1 INTRODUCTION 

In the field of 3D modeling and game development, 
the quality and effectiveness of textures are critical 
factors that determine the outcome of the work. 
Specifically, high-quality, realistic texture maps can 
provide users with a more immersive, authentic, and 
aesthetically pleasing experience. Therefore, creating 
high-quality texture maps and appropriately applying 
them in 3D modeling software to ensure accurate and 
suitable shading on models is a top priority in current 
research in this field. 

Physically Based Rendering (PBR) is an 
important technology for enhancing the realism and 
immersive experience of 3D modeling. This 
technology was introduced in 2004 by Matt Pharr 
(Pharr, Humphreys, 2004). At that time, computer 
rendering techniques were not very advanced, leading 
to "plastic-like" appearances for metallic objects in 
games and 3D short films. However, after over a 
decade of effort and collaboration from talents across 
various fields, modern 3D engines have seamlessly 
integrated PBR technology. This integration has 
eliminated the plastic-like appearance, bringing 
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objects closer to reality and sometimes achieving 
near-photorealism. In the field of offline rendering, 
the famous "Disney Principled Bidirectional 
Reflectance Distribution Function," introduced by 
Disney at SIGGRAPH 2012, significantly improved 
the usability of PBR. In the same year, Disney applied 
this technology to introduce the metallic workflow, 
which played a key role in the production of the 
critically acclaimed Wreck-It Ralph, marking a major 
leap in the depiction of metallic textures. In the realm 
of real-time rendering, various game developers 
shared their advancements in PBR technology at 
SIGGRAPH conferences. Notably, Brian Karis’ talk 
Real Shading in Unreal Engine 4 at SIGGRAPH 2013 
highlighted Unreal Engine 4 as the first game engine 
to use PBR technology, making it an indispensable 
tool in the game industry. 

PBR technology requires eight different texture 
maps that collectively determine how the material in 
a 3D engine interacts with light to simulate real-world 
physical laws. Currently, the creation of PBR textures 
relies on professional artists, who go through a 
complex and tedious process of handling image 
content. The final quality of the PBR textures is 
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highly dependent on the artist’s experience and 
judgment. Independent game and film developers 
also struggle to find suitable PBR textures at the 
initial stages of production, which significantly 
increases both time and learning costs. Therefore, a 
key research area is how to generate high-quality 
PBR textures quickly and accurately, aligned with the 
user's expectations. 

In the field of PBR texture generation, current 
research can generally be categorized into three main 
approaches. The first approach, such as the method 
proposed by Vecchio and Martin, focuses on 
automatically extracting corresponding textures from 
images. Vecchio and colleagues employed a diffusion 
model and introduced rolled diffusion and patched 
diffusion, achieving an SSIM of 0.729 and LPIPS of 
0.184 (Vecchio, Martin, Roullier, et al., 2023; Martin, 
Roullier, Rouffet, et al., 2022). The second approach, 
as proposed by Guo and Hu, involves generating PBR 
textures based on various conditions and rules. Guo 
and colleagues built a MaterialGAN model using 
StyleGAN2, optimizing latent space representations 
to better generate target textures under constrained 
conditions, achieving the lowest LPIPS of 0.071, 
significantly outperforming previous models (Guo, 
Smith, Hašan, et al., 2020; Hu, Hašan, Guerrero, et 
al., 2022). The third approach involves more 
convenient methods like text-to-texture, as recently 
proposed by Vecchio and Siddiqui. Siddiqui and 
colleagues' Meta 3D AssetGen model used multi-
view and symbolic distance functions to represent 3D 
shapes more reliably, improving Chamfer distance by 
17% and LPIPS by 40% (Vecchio, 2024; Siddiqui, 
Monnier, Kokkinos, et al., 2024). 

These methods have undoubtedly improved the 
convenience and speed of PBR material creation. 
However, since many of these models and 
applications rely on textual descriptions or various 
constraints to generate textures, the final results may 
not be as satisfactory to users as those created from 
handpicked or photographed textures. Additionally, 
since the results of these models are closely tied to the 
quality of the training dataset, previous models may 
struggle to generate high-quality PBR textures based 
on outdated training data. This paper will make 
corresponding adjustments and improvements to the 
pix2pix-turbo method, aiming to achieve PBR texture 
translation based on an improved pix2pix-turbo 
model. The goal is to enhance the quality of the 
generated images, enabling the rapid translation of 
consistent and high-quality PBR textures. 

2 METHOD 

2.1 MatSynth Dataset 

The MatSynth dataset (Vecchio, Deschaintre, 2024) 
is a high-definition PBR texture dataset containing 
over 4,000 ultra-high-resolution textures. Curated 
and published by Giuseppe Vecchio and Valentin 
Deschaintre, the dataset focuses on a variety of 
materials under the CC0 and CC-BY licensing 
frameworks, sourced from AmbientCG, 
CGBookCase, PolyHeaven, ShareTexture, 
TextureCan, and part of artist Julio Sillet's materials 
released under the CC-BY license. The dataset covers 
13 types of materials: ceramic, concrete, fabric, 
ground, leather, marble, metal, misc, plaster, plastic, 
stone, terracotta, and wood. Each material category 
contains over 200 sets of PBR textures, and each set 
includes Basecolor, Diffuse, Normal, Height, 
Roughness, Metallic, Specular, and Opacity maps. 

In addition, the dataset's publishers visually 
inspected and filtered out low-quality and low-
resolution PBR textures, and enhanced the original 
dataset using a method that blends semantic 
compatibility. The MatSynth dataset provides an 
important data source for the texture generation field, 
addressing the scarcity of high-quality datasets over 
the past six years, which were plagued by issues such 
as low resolution, copyright restrictions, and limited 
material variety. Figure 1 shows an example of a 
wood texture from the dataset, containing eight 
different texture maps. 

 
Figure 1: MatSynth dataset example (Photo/Picture credit: 
Original). 

2.2 Pix2pix Principle 

The pix2pix-turbo model is a successor to pix2pix 
(Isola, Zhu, Zhou, et al. 2017). Before the pix2pix 
method was introduced, image translation tasks were 
a significant and extensive branch of image 
processing. Many methods require different model 
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architectures and loss functions to adapt to the 
specific task at hand. Due to the diversity of tasks 
(e.g., facade reconstruction versus Monet-style 
translation), the resulting model architectures and loss 
functions varied greatly, making it difficult to 
standardize operations across tasks. 

However, just as in the field of Natural Language 
Processing (NLP), where all NLP tasks can be 
generalized as question-answer tasks, the pix2pix 
method introduced a unified approach for image 
translation tasks. This method uses Conditional 
Generative Adversarial Networks (CGANs) for 
image translation, but unlike traditional CGANs, the 
discriminator in pix2pix operates on image pairs 
rather than single images. The generator uses a U-Net 
architecture to retain more details from the original 
image, ensuring that the generated image contains 
both high-level features (e.g., textures) and low-level 
features (edges, corners, contours, colors). 

For instance, given an original image 𝑥 , noise 
input 𝑧, and corresponding target image 𝑦, with the 
U-Net generator represented as 𝐺  and the 
discriminator as 𝐷, the generated fake image would 
be 𝐺(𝑥). Instead of having the discriminator compare 𝐺(𝑥)  with 𝑦 , it distinguishes between the pairs (𝑥, 𝐺(𝑥))  and (𝑥, 𝑦) . The discriminator does not 
directly assess whether the generated image is real or 
fake but rather determines whether the generated or 
target image forms a valid image pair with the 
original image. This strengthens the model's ability to 
maintain correspondence between the original and 
target images. 

Based on this setup, the loss functions for the 
generator and discriminator are as follows: 

 minீ max஽ 𝑉(𝐷, 𝐺) = 𝔼௫,௬ሾlog𝐷(𝑥, 𝑦)ሿ +𝔼௫,௭ൣlog(1 − 𝐷൫𝑥, 𝐺(𝑥, 𝑧)൯)൧ (1) 
 
Nevertheless, at this stage, the generated image 

and the original image still do not have a pixel-level 
correspondence. Since the cGAN generator 
inevitably requires noise data, the generated image 
may have slight shifts at the edges. To deceive the 
discriminator D, the generator may produce blurry 
edges to minimize the loss. However, having blurry 
edges is not ideal for a high-quality generated image. 

To prevent the generator from producing blurry 
edges, an L1 loss is introduced, ensuring that the 
generated image closely matches the target image at 
the pixel level. L1 is chosen over L2 because L1 
represents the median, whereas L2 represents the 
mean, and L2 tends to produce more blurriness 
compared to L1. 

With the introduction of L1 loss, the final loss 
function is as follows: minீ max஽ 𝐿௖ீ஺ே(𝐷, 𝐺) = 𝔼௫,௬ሾlog𝐷(𝑥, 𝑦)ሿ +𝔼௫,௭ ቂlog ቀ1 − 𝐷൫𝑥, 𝐺(𝑥, 𝑧)൯ቁቃ (2) 

 
 𝐺∗ = minீ max஽ 𝐿௖ீ஺ே(𝐷, 𝐺) + 𝜆𝐿ଵ(𝐺) (3) 

2.3 Pix2pix-Turbo Principle 

Although pix2pix can achieve good results in image 
translation tasks, it struggles with tasks that require 
precise or complex image descriptions, as it cannot 
effectively learn intricate patterns. Additionally, the 
original pix2pix requires training the generator from 
scratch, which incurs significant time costs, and the 
model's inference speed is not optimal. 

To address these issues, Gaurav Parmar and 
colleagues (Parmar, Park, Narasimhan, et al., 2024). 
Introduced improvements by incorporating a Text 
Encoder and leveraging pre-trained diffusion models 
(such as SD-Turbo). Instead of training the generator 
from scratch, they fine-tuned it using LoRA (Low-
Rank Adaptation) through text prompts and input-
target image pairs. To align text with images, they 
used CLIP (Radford, 2021), a model for connecting 
natural language supervision with visual models. 

Additionally, skip connections were introduced 
between the encoder and decoder of the generator 
network to balance detail loss caused by generator 
changes. Consequently, the model's loss function 
includes not only the original pix2pix generator and 
discriminator losses but also CLIP similarity loss and 
reconstruction loss (including L2 loss and LPIPS loss 
to measure differences between the generated and 
target images). 

With these improvements, the pix2pix-turbo 
model allows fine-grained control over generated 
content using text prompts. It also achieves faster 
training and inference times compared to the original 
pix2pix, while producing images with superior 
overall quality and better detail retention. 

2.4 Model Improvement 

To apply the pix2pix-turbo method to the domain of 
PBR texture generation, several adjustments to the 
model are necessary. The original method was 
designed for one-to-one correspondence between an 
input image and a target image, whereas the task in 
this paper requires generating multiple texture 
maps—such as height, normal, and roughness—from 
a single base color image. This turns the task into a 
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one-to-many problem, necessitating a modification of 
the original model structure. 

Additionally, since different materials exhibit 
distinct properties, their corresponding texture maps 
may vary significantly. For example, the metallic map 
for the ceramic category is mostly black, as ceramics 
do not exhibit metallic properties. Conversely, metal 
textures often contain large white areas, representing 
the presence of metallic shine. Therefore, to 
distinguish between different material categories and 
generate appropriate texture maps for each, the model 
needs to incorporate a classifier that can identify the 
input material type. 

In this experiment, the yolov8m-cls model is 
employed for image classification, helping the system 
better recognize the material category of the input 
image. 

At the same time, due to the overlapping 
characteristics of different types of PBR materials in 
the training dataset (for example, Ground textures 
may include small amounts of stone as 
embellishments), even though the input image can 
largely be classified into a specific category for the 
texture translation task, there needs to be a fallback 
mechanism. To ensure that the expert model assigned 
by the classifier can successfully process the input 
image, the system provides a universal expert model 
as a secondary option. This fallback guarantees that, 
in cases where the classifier makes an error, the input 
image won’t be processed by an incorrect expert 
model and yield poor results. Instead, the universal 
expert model offers an alternative path, allowing the 
user to obtain a more reliable output. 

Next is the Text Prompt design. Unlike traditional 
image translation tasks, where features are easier to 
describe, the specific requirements for PBR texture 
maps are more abstract. For example, in a standard 

task, if you want to transform a daytime image into a 
nighttime one, the text prompt "night" suffices. 
Similarly, if you want a circle image to be filled with 
violet and have an orange background, a text prompt 
like "violet circle with orange background" would 
work. This is because CLIP, during training, has 
aligned abstract concepts like "night" and colors such 
as "violet" or "orange." However, when it comes to 
more technical terms like height map, it is uncertain 
whether CLIP can adequately align with these 
concepts. Experimental validation is needed to 
determine how well CLIP handles such specialized 
terms. 

Additionally, it is crucial to assess the quality of 
the generated texture maps. This study uses MSE to 
evaluate the overall similarity between the generated 
and target images, while SSIM measures the 
structural similarity. A subjective evaluation of the 
rendered textures after model inference is also 
employed to assess the practical performance of the 
generated images. 

Ultimately, the modified pix2pix-turbo 
architecture is shown in Figure 2. 

2.5 Experimental Procedure 

2.5.1 MatSynth Dataset Preprocessing 

The MatSynth dataset is provided for download in 
Parquet format, with a total size of over 400 GB. To 
ensure the training process is both efficient and 
manageable, the preprocessing steps involved 
downloading the dataset and cropping the material 
images from 4096x4096 to 512x512. The images 
were then categorized by type and stored accordingly, 
compressing the dataset from over 400 GB to 8 GB 
for easier data transfer and training. 

 
Figure 2: The architecture of the improved pix2pix-turbo model (Photo/Picture credit: Original).
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Additionally, the image formats within the dataset 
were converted for consistency. To standardize the 
input and output formats, all single-channel grayscale 
images were converted to RGB three-channel images. 
Similarly, RGBA four-channel images were also 
converted to RGB three-channel images to maintain 
format uniformity, facilitating the model’s processing 
of input and output. 

2.5.2 Text Prompt Design 

To select the best Text Prompt for fine-grained 
alignment of material representations, this study 
designed experiments focused on the Height map to 
investigate how different text prompts affect the 
generation results. For clarity, the experiment 
selected the most distinguishable height conditions 
from category 11, Terracotta. This category primarily 
consists of brick wall structures, making it suitable for 
evaluating the effectiveness of different prompts 
using both MSE and SSIM metrics, as well as 
subjective visual assessment. 

The results of the experiment were obtained by 
training the model multiple times with different text 
prompts and averaging the evaluation metrics. One 
prompt simply required converting the base color to 
height, while another provided a detailed description 
of the height map characteristics and conversion 
requirements. Each set of experiments was run three 
times, and the average values for MSE and SSIM 
were compared to determine the effectiveness of the 
text prompts. 

2.5.3 Model Training 

First, the image classification task was trained using 
the yolov8m-cls model. Although yolov8n-cls is 
faster and yolov8x-cls is more accurate, the yolov8m-
cls model was chosen for its balance between 
accuracy and time efficiency. The training dataset for 
the classification task is a subset of the training 
dataset for the texture conversion task, and it only 
includes base color images. The final training size 
was set to 512x512, with the number of epochs 
configured to 100. 

There are 13 material categories in the training 
set, with each category providing only three types of 
textures for training: Height, Normal, and Roughness. 
Diffuse textures were excluded because they are 
nearly identical to the base color in most categories, 
leaving insufficient training samples. Specular and 
Opacity textures were also excluded as they generally 
consist of solid colors with minimal variation, making 
them less valuable for training. Metallic textures were 
only available for metal material categories, so they 

were not used in training for every material type. 
Additionally, for categories with too few samples 
after splitting by type, a universal expert model was 
used as a substitute. 

After preparing the text prompts for each material 
type, the model was trained using an RTX 4090 24GB 
GPU. Each texture was 512x512 in size, with a 
maximum of 10,000 training steps. 

3 EXPERIMENTAL RESULTS 

To test the conversion generation capability of the 
model, the improved pix2pix-turbo model was 
evaluated using the Mean Squared Error (MSE) and 
Structural Similarity Index (SSIM) metrics across 13 
different material categories. MSE measures the 
mean squared error of the pixel differences between 
the target image and the converted image, while 
SSIM compares the images in higher-level 
dimensions such as brightness and contrast. 
Generally, for high-quality generated images, MSE 
should be lower and SSIM should be higher. 

The experiment first compared the effects of 
different prompts on the model's performance. Two 
types of prompts were used: one that directly 
requested conversion and another that provided a 
detailed description of the conversion rules and 
material characteristics. For the Terracotta category 
(category 11), each prompt was used to train the 
model three times, and the final conversion results 
were averaged based on their performance on the test 
set. The results showed that the model trained with 
the first prompt had an average MSE of 2868.36 and 
an average SSIM of 0.49, while the model trained 
with the second prompt achieved an average MSE of 
2672.22 and an average SSIM of 0.51. Both metrics 
were better for the second prompt, indicating that the 
quality of the generated images improved with more 
detailed and specific prompts. 

This difference is evident from the height maps 
generated, as shown in the images below. The first 
prompt did not specify that the height map should be 
black and white, which led to a lower penalty from 
the CLIP model for non-black-and-white colors in the 
generated images. This resulted in some parts of the 
generated images not being black and white, directly 
affecting the MSE and SSIM scores. The final 
generated material effects are shown in Figure 3. 
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Figure 3 Comparison of Training Results with Different 
Text Prompts: The left image shows the target image, the 
middle image shows the converted image generated after a 
detailed description of conversion rules and characteristics, 
and the right image shows the converted image generated 
after providing a simple conversion instruction 
(Photo/Picture credit: Original). 

In addition, the experiment was conducted on the 
unmodified pix2pix-turbo method to compare the 
image conversion results in the PBR material domain 
before and after the model improvement. In Figure 4, 
the upper image is a comparison of MSE metrics, 
with the x-axis representing material category 
numbers and the y-axis representing MSE. The blue 
line shows the MSE of the original model for Height, 
the orange line shows the MSE of the improved 
model for Height, and the green line shows the MSE 
of the improved model for Normal. Similarly, the 
lower image is a comparison of SSIM metrics, with 
the x-axis representing material category numbers 
and the y-axis representing SSIM. The blue line 
shows the SSIM of the original model for Height, the 
orange line shows the SSIM of the improved model 

for Height, and the green line shows the SSIM of the 
improved model for Normal. 

 
From Figure 4, the MSE comparison results for 

categories 5, 6, and 7 show that because the training 
set was divided by category, some categories did not 
have enough training data to effectively support the 
domain-specific expert models. As a result, the full-
domain expert model was used as an alternative, 
which led to some material types performing on par 
with the original model, while others, such as 
categories 1, 3, and 8, achieved better results. 

In some cases, the MSE for height maps is 
relatively poor while the SSIM is good. This is due to 
the fact that height information provides a relative 
estimate but cannot accurately determine the exact 
height difference, leading to larger pixel differences, 
while structural information can still be well 
transferred. 

Additionally, it's worth noting that for the normal 
map of category 5, marble, the MSE is lower and the 
SSIM is exceptionally high. This is because the 
marble surface has fewer protrusions, which leads to 
better results in the comparison. 

The subjective visual comparison is shown in 
Figure 5. Judging from the visual results, the details 
produced by the original pix2pix model are the 
poorest, with many artifacts and jagged edges, and the 
solid color areas are inadequately filled. The original 
pix2pix-turbo model, lacking expert and 
classification systems, failed to effectively represent 
the height variations, resulting in nearly grayscale 
outputs. In contrast, the improved pix2pix-turbo 
model generates clearer height maps. 

 
Figure 4: Comparison of MSE and SSIM Results between the Improved Model and the Original Model: The upper chart 
shows the MSE comparison and the lower chart shows the SSIM comparison. The blue line represents the original model, 
while the orange and green lines represent the improved model (Photo/Picture credit: Original). 
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Figure 5: Comparison of height maps generated by different 
models. The left image shows the conversion result using 
the pix2pix model, the middle image shows the result from 
the original pix2pix-turbo model, and the right image 
displays the result from the improved pix2pix-turbo model 
(Photo/Picture credit: Original). 

Additionally, the dataset includes many examples 
where the source and target images have weak 
correlations. For instance, in the Ceramic category, a 
significant portion of the materials are tiles. This 
means that even if the base color image has complex 
patterns, the height map might simply consist of 
straightforward square segments. These examples do 
not provide the model with meaningful variation 
patterns, which contributes to a decline in the final 
generated quality. 

4 CONCLUSIONS 

This paper improves the pix2pix-turbo model by 
incorporating multi-layer LoRA for material 
generation and introducing a classifier along with a 
combination of domain-specific expert models and a 
general expert model. The improved model achieved 
a minimum MSE of 1181.41 and a maximum SSIM 
of 0.614 on the MatSynth dataset's height maps, 
which represents a reduction in MSE by 1,443.53 and 
an increase in SSIM by 0.13 compared to the original 
model. The results demonstrate that the improved 
model has a strong capability for PBR material image 
conversion, allowing for the rapid generation of high-
quality PBR material images from input basecolor 
images. 

From the experimental results, it is evident that 
the modified pix2pix-turbo model for PBR material 
conversion performs better than the original model 
and the standard pix2pix model. Additionally, the 
CLIP text-image alignment tool shows that more 
precise input leads to better material generation 
results. However, CLIP may not fully understand 
certain terms. For example, the quality of images 
generated with the terms "rough" and "smooth" for 
roughness material does not match the quality 
achieved for height and normal maps. 

Future research could focus on the semantic 
aspects of images, using other models to evaluate 
height, normal, and roughness features in specific 
areas. Combining models like pix2pix-turbo with 
advanced image semantic understanding could 
enhance the realism and accuracy of PBR material 
conversion effects, addressing the model's current 
limitations in roughness material conversion. 
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