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Abstract: This paper proposes three distinct strategies to enhance the performance of the You Only Look Once version 
5 (YOLOv5) model in object detection tasks. The enhancements encompass the integration of a BiFormer 
attention mechanism, the addition of an Adaptive Feature Pyramid Network (AFPN), and the replacement of 
the Spatial Pyramid Pooling Module (SPPF) with the Multi-Task Spatial Pyramid Pooling (MTSPPF). The 
BiFormer attention mechanism aims to enhance the model's focus on target regions, leading to improved 
detection accuracy by capturing long-range dependencies and enhancing the understanding of spatial 
relationships within images. Integrating AFPN into the YOLOv5 model optimizes the feature pyramid 
network, enabling adaptive adjustments of feature representations across various scales, which improves the 
detection of objects with different sizes and complexities. Additionally, the replacement of SPPF with 
MTSPPF facilitates more effective aggregation of spatial information from multiple scales, thereby enhancing 
performance while reducing both parameter count and computational complexity. Experimental evaluations 
on standard datasets indicate significant improvements in object detection performance for all three 
approaches. Collectively, these enhancements tackle challenges related to complex scenes and varying object 
scales, providing a comprehensive solution for improving the YOLOv5 model's effectiveness in object 
detection tasks. 

1 INTRODUCTION 

As people's quality of life continues to improve, 
agriculture remains a vital component of human 
livelihood. However, the agricultural sector 
encounters challenges like pest and disease outbreaks, 
which can severely affect crop yields and quality 
(Donatelli, Magarey, Bregaglio, et al., 2017). This 
situation creates an increasing demand for efficient 
and accurate methods for detecting pests and diseases 
in crops. Timely detection is essential for ensuring 
food security and promoting sustainable agricultural 
development. 

The process of pest and disease detection in crops 
involves various steps, including identification, 
monitoring, and management. Traditionally, manual 
inspection by agricultural experts has been the 
primary method for pest and disease detection. Hothe 
paperver, manual inspection is labor-intensive, time-
consuming, and may not always be accurate, 
especially when dealing with large agricultural areas 
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(Wen, Chen, et al., 2022). Detection algorithms 
utilizing machine vision have proven to be a 
promising method for identifying pests and diseases 
in agricultural settings (Khalid, Oqaibi, et al., 2023). 
For example, Mukhopadhyay (Mukhopadhyay, Paul, 
Pal, et al., 2023) proposed an image-based automatic 
detection method for identifying crop diseases. Yang 
(Yang, Yuan, et al., 2019) developed a computer 
vision algorithm using infrared thermal imaging 
technology to detect crop disease areas and estimate 
disease severity. Karunasena (Karunasena, 
Priyankara, 2022) introduced a novel approach for 
pest detection in crops, utilizing a cascade classifier 
that effectively integrates a histogram of oriented 
gradient features with support vector machine 
techniques. This innovative method enhances the 
accuracy of pest identification by leveraging the 
strengths of both feature extraction and machine 
learning classification, thereby providing a more 
reliable solution for agricultural pest management. 
Additionally, an improved feature extraction method 
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based on the Shi-Tomasi algorithm was proposed by 
Zhang (Zhang, Zou, et al., 2021) to enhance pest 
detection in crops. 

Recently, there has been a marked increase in the 
application of deep learning-based object detection 
algorithms within the agricultural sector. These 
algorithms, such as You Only Look Once (YOLO) 
and Faster R-CNN (Region-based Convolutional 
Neural Network), have shown promising results in 
detecting pests and diseases in crops (Tang, Lu, et al., 
2023). Lawal (Lawal, Zhao, et al., 2021) proposed an 
improved YOLOv3 model for detecting pests and 
diseases in crops, achieving superior performance 
compared to other methods. Roy (Roy, Bose, et 
al.,2022) Roy developed a high-performance 
framework designed for real-time object detection, 
specifically aimed at identifying diseases in crops. 
This innovative approach enhances the efficiency of 
disease detection processes, allowing for timely 
interventions in agricultural practices, showcasing 
impressive accuracy and efficiency, the paper 
attempts to improve the YOLOv5 model using three 
novel approaches in an effort to achieve better 
detection performance. 

2 RELATED WORKS 

2.1 YOLOv5 Algorithm 

The YOLOv5 algorithm represents an advancement 
within the YOLO series of object detection models, 
recognized for its remarkable speed and precision. By 

building on the achievements of earlier versions, 
YOLOv5 introduces several enhancements in areas 
such as model architecture, training methodologies, 
and inference efficiency (Liu, Xu, et al., 2021). These 
improvements aim to optimize performance, making 
YOLOv5 a more effective tool for real-time object 
detection tasks. 

The YOLOv5 algorithm adopts a one-stage object 
detection approach, allowing for real-time processing 
of images with high accuracy. Its architecture 
comprises three key components—the backbone, neck, 
and detection head—each essential for the model's 
effectiveness in various detection tasks.  

The backbone network acts as a feature extractor, 
capturing semantic information from the input image. 
YOLOv5 employs a variant of CSPDarknet53 as a 
lightweight and efficient extractor. Positioned 
between the backbone and detection head, the neck 
network fuses feature across different scales to 
improve detection accuracy. Finally, the detection 
head of YOLOv5 outputs bounding box predictions 
and class probabilities, making it highly suitable for 
diverse applications, especially in agricultural object 
detection (Wang, Zheng, et al., 2021). 

Recently, researchers have explored several 
modifications and extensions to the YOLOv5 
algorithm to better address specific agricultural 
challenges, particularly in pest and disease detection 
in crops. These adaptations aim to enhance the 
algorithm's effectiveness in these applications. 
YOLOv5 retains the core components that define the 
YOLO architecture series, with its network structure 
illustrated in Figure 1. 

 
Figure 1: YOLOv5 network structure diagram. (Photo/Picture credit: Original) 
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2.2 Algorithm Optimization 

2.2.1 Replacement of YOLOv5 C2f Layer 

The standard architecture of the original YOLOv5 
model may not sufficiently meet the specific needs 
for accurately detecting small defects related to crop 
diseases and pests. The small target recognition layer 
is designed to improve the detection of minor defects 
in crops caused by diseases or pests. By integrating 
this layer into the YOLOv5 architecture, this paper 
aims to enhance the model's sensitivity to subtle 
features and overall performance in agricultural 
inspection tasks. By doing so, the research aims to 
enhance the model's ability to accurately detect and 
analyze critical details in agricultural contexts. To 
implement the proposed modification, the C3 layer in 
the YOLOv5 backbone is replaced with the newly 
introduced C2f layer, which is essential for improving 
the model's capacity to detect small defects related to 
crop diseases and pests. 

In the YOLOv5 architecture, the third 
convolutional layer, known as the C3 layer, is crucial 
for feature extraction from the input image. Its design 
significantly contributes to the model's ability to 
identify and interpret important characteristics, 
enhancing overall detection performance. It performs 
convolution operations on the feature maps obtained 
from earlier layers, capturing hierarchical 
representations of the input image. The output of the 
C3 layer serves as the input to subsequent layers, 
facilitating object detection and localization tasks. 

In the context of detecting small targets, such as 
pests or diseases on crops, the traditional C3 layer 
may not adequately capture spatial information 
essential for accurate detection. To address this 
limitation, the paper proposes replacing the C3 layer 
with a novel C2f (Convolutional to Fusion) layer. The 
C2f layer not only performs convolutional operations 
similar to the C3 layer but also incorporates fusion 

mechanisms to aggregate features from multiple 
scales effectively. 

The C2f layer effectively merges features from 
the second layer of the backbone network (C2 layer) 
with outputs from the preceding layer, allowing for a 
richer representation of the input data. By replacing 
the C3 layer with the C2f layer, this paper seeks to 
significantly enhance the model's capacity to detect 
small targets in agricultural images. This strategic 
modification aims to enhance the model's 
performance and reliability in agricultural inspection 
tasks, ultimately leading to more accurate 
assessments of crop health. Figure 2 shows the 
YOLOv5 C2f layer. 

2.2.2  MTSPPF Replacement 

The proposed method enhances feature fusion in the 
backbone network by improving convolutional 
operations, enabling the capture of detailed target 
information while minimizing irrelevant data. This 
paper suggests substituting the SPP layer with the 
Multi-scale Spatial Pyramid Pooling Fusion 
(MTSPPF) mechanism, as outlined by Dong (Dong, 
Sun, et al., 2024). The purpose of this replacement is 
to enhance the model's capability to effectively 
process multi-scale features, which is expected to 
result in improved overall performance. By 
optimizing this aspect, the model can better adapt to 
varying object sizes, ultimately leading to more 
accurate detections. 

This process facilitates the compression of the 
feature space, allowing for the extraction of critical 
information from each channel in a more efficient 
manner. Following this, the Excitation operation 
plays a crucial role by adjusting the significance of 
the features from each channel based on their 
relevance to the target of interest. This modulation 
enables the model to focus on the most salient 
features, effectively amplifying those that contribute 

 

 
Figure 2: YOLOv5 C2f Layer (Photo/Picture credit: Original) 
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to accurate detection while suppressing irrelevant 
information. As a result, the overall performance of 
the model in detection tasks is significantly enhanced, 
leading to improved accuracy and reliability in 
identifying key elements within the data. 

2.2.3 BiFormer 

BiFormer is a visual Transformer model that 
incorporates Bi-level Routing Attention (Zhu, Wang, 
et al., 2023), centered around the concept of dual-
level routing attention mechanisms. In this model, 
each image patch is assigned to a positional router 
that directs it to either upper-level or lower-level 
routers based on specific criteria. While the upper-
level routers are designed to capture global contextual 
information, the lower-level routers concentrate on 
detailed aspects within local regions. In the BiFormer 
architecture, the upper-level routers utilize global 
self-attention mechanisms to engage with all image 
patches, effectively generating a comprehensive 
global representation of the input. In contrast, the 
lower-level routers implement local self-attention 
mechanisms, allowing them to concentrate on 
neighboring patches and create more localized 
representations. This dual approach enhances the 
model's ability to capture both broad context and fine 
details. The structure of BiFormer is illustrated in the 
Figure 3. 

In the i-th stage, overlapping patch embedding is 
utilized when i=1, whereas patch merging is 
employed when i=2,3……to reduce input spatial 
resolution while increasing channel count. Following 
this, N_i-connected BiFormer blocks are utilized to 
perform transformer operations on the input features. 
By integrating the BiFormer structure into the 
YOLOv5 architecture, the model's feature 
representation capabilities are significantly enhanced. 
This integration improves the model's ability to 

capture intricate spatial relationships within the input 
image, thereby allowing for more nuanced 
understanding and detection of objects. 

2.2.4 AFPN 

The AFPN module is designed to address the 
challenge of feature resolution discrepancy across 
different levels of the feature pyramid. It achieves this 
by incorporating attention mechanisms to adaptively 
recalibrate feature maps at each pyramid level, 
ensuring that features from different scales are 
appropriately utilized for object detection. 
Meanwhile, the attention fusion mechanism 
selectively combines features from different pyramid 
levels based on their importance, leveraging attention 
mechanisms to assign higher the paperweights to 
more informative features. 

The integration of the AFPN module into the 
YOLOv5 architecture is intended to strengthen the 
model's resilience to scale variations and improve its 
ability to detect objects of different sizes. AFPN 
facilitates adaptive feature recalibration, allowing for 
the effective use of multi-scale information, which 
leads to more accurate and reliable object detection in 
various scenarios. The Generalized IoU (GIoU) Loss 
function for bounding box regression is defined as 
follows:   

 𝐿ீூ௢௎ = 1 − 𝐼𝑜𝑈 + |𝐶 − 𝐵 ∪ 𝐵௚௧||𝐶|  (1) 

 
When the predicted box perfectly overlaps with 

the ground-truth box and their dimensions are 
identical, distinguishing the relative positions of these 
two boxes becomes difficult. To tackle this challenge, 
the Complete IoU (CIoU) Loss is utilized instead of 
the Generalized IoU (GIoU) Loss. The CIoU Loss 
enhances the GIoU Loss by considering not only the 

 

Figure 3: The structure of BiFormer (Photo/Picture credit: Original) 
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area of overlap but also the distance between the 
centers of the predicted and ground-truth boxes. 
Additionally, it accounts for the consistency of the 
aspect ratios of the bounding boxes. The formulation 
of the loss function can be defined as follows: 𝑅஼ூ௢௎ = 𝜌ଶሺ𝑏, 𝑏௚௧ሻ𝑐ଶ + 𝛼𝑣 (2) 𝜐 = 4𝜋ଶ ቆ𝑎𝑟𝑐𝑡𝑎𝑛 𝑤௚௧

ℎ௚௧ − 𝑎𝑟𝑐𝑡𝑎𝑛 𝑤
ℎ

ቇଶ
 (3) 𝐿஼ூ௢௎ = 1 − 𝐼𝑜𝑈 + 𝑅஼ூ௢௎ (4) 

 
The penalty term is established by minimizing the 

normalized distance between the centers of the two 
bounding boxes (BBoxes). In this context, 'd' signifies 
the Euclidean distance between the predicted and 
ground-truth box centers, while 'c' represents the 
diagonal length of the smallest enclosing box that 
encompasses both bounding boxes. Additionally, 
'alpha' serves as a positive balancing parameter to 
evaluate aspect ratio consistency, defined as follows: 𝛼 = 𝑣ሺ1 − 𝐼𝑜𝑈ሻ + 𝑣 (5) 

2.3 Experimental Setup 

2.3.1 Dataset Production and Preprocessing  

From September 2021 to December 2021, a dataset of 
pests and diseases was randomly collected at 
Kunming Second Farm. Different types of pests and 
diseases exhibit variations in shape and size. To 
ensure effective training and enhance sample 
diversity, the collected image data underthe papernt 
screening prior to training. The image annotation 
software used for labeling was Labelimg. 

Ultimately, the paper obtained 3033 images, 
stored at a resolution of 640 pixels × 640 pixels. Of 
these images, a total of 3,033 were assigned to the 
training set, while 127 images were designated for the 
validation set, and 124 images were reserved for the 
test set. The dataset was labeled as nc=1 for pest 
detection. Additionally, the paper incorporated the 
COCO 2018 dataset into the study for further 
evaluation and comparison. The dataset is shown in 
Figure 4: 
 

 
Figure 4: A test case (Photo/Picture credit: Original) 

The paper devised two models in total, each 
leveraging multiple modules. The initial model 
integrates the previously discussed attention 
mechanism and transfigures the network backbone's 
C3 layer into C2f, while the SPP layer is transformed 
into MTSPPF. The second model incorporates APFN 
alongside other modifications. Both models under the 
papernt training and validation using the dataset 
outlined in the preceding section 

2.3.2 Experimental platform 

The experiment was carried out utilizing the PyTorch 
framework, which provides a flexible and efficient 
environment for deep learning tasks. The specific 
software and hardware configuration parameters used 
in this study are detailed in Table 1, outlining the 
essential components that contributed to the 
experimental setup. 

Table 1. Software and hardware platform configuration 
parameters 

Configuration Parameter 

(CPU) Intel i9-13900kf 

(GPU) NVIDIA GTX4090 

Operation system Windows11 

CUDA 10.2 
Opencv 3.2.2 

2.3.3 Model Evaluation Indicators 

This paper details the evaluation metrics used to 
assess the performance of the Kiwi flaw detection 
model, with a primary emphasis on precision (P) 
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alongside recall (R) and mean average precision 
(mAP). These metrics are crucial for gaining a 
comprehensive insight into the model's effectiveness 
in detecting flaws. The formulas for calculating 
precision and recall are provided below: 

 𝑃 = 𝑇𝑃𝑇𝑃 + 𝐹𝑃 (6) 𝑅 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁 (7) 

 
True positives (TP), false positives (FP), and false 

negatives (FN) are essential for evaluating model 
performance. True positives are correctly identified 
instances, while false positives are incorrectly labeled 
as positive, and false negatives are actual positives 
misclassified as negative. To measure model 
effectiveness, average precision (AP) is calculated by 
integrating precision values over their corresponding 
recall values, effectively determining the area under 
the precision-recall curve. This provides a 
comprehensive assessment of the model's ability to 
balance precision and recall across various thresholds.  

Mean average precision (mAP) is derived by 
averaging the average precision (AP) values across all 
categories, providing an overall precision measure. 
Mean Average Precision at IoU threshold 0.50 
(mAP50) is calculated by averaging the AP values for 
each class at the specified IoU threshold. The metrics 
are defined as follows: 
 𝐴𝑃 = ෍ 𝑃ሺ𝑘ሻே

௄ୀ௜ 𝛥𝑅ሺ𝑘ሻ (8) 

𝑚𝐴𝑃 = 1𝐶 ෍ 𝐴𝑃ሺ𝑐ሻ஼
௖ୀ௜  (9) 

Additionally, the size of the weights file 
(measured in megabytes, MB) plays a significant role 
in the practical deployment of the model. A larger 
weights size often indicates a more complex model 
with a greater number of parameters, which can 
impact both storage requirements and inference speed.  

3 RESULTS AND DISCUSSION 

The loss function curve offers a visual representation 
of the model's convergence during the training 
process, highlighting enhancements in stability as the 
number of iterations increases. Conversely, mean 
Average Precision (mAP) is a critical indicator of the 
defect detection model's efficacy; higher mAP values 
signify a greater average detection accuracy and 
enhanced overall performance. By analyzing these 
metrics, the paper can gain deeper insights into the 
model's strengths and areas for improvement. The 
results of the recognition process are shown in Figure 
5. 

The enhanced method is evaluated against the 
original YOLOv5 model and other prominent deep 
learning-based object detection algorithms. This 
comparison assesses the performance improvements 
resulting from the proposed modifications, providing 
a thorough evaluation of its effectiveness in various 
detection tasks. Specifically, the study contrasts the 
YOLOv5 variant integrating C2f with MTSPPF, the 
version optimized with FPN for the detection head, 
and the one enhanced by the attention mechanism 
with the original YOLOv5 and RCNN. Training was 
conducted using the pest dataset collected from 
Yunnan Farm. The results are shown in Figure 6. 

 

 

Figure 5: Identification diagram. (Photo/Picture credit: Original) 
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(a) loss curve                                  (b) recall curve 
Figure 6: Loss curves and recall curves. (Photo/Picture credit: Original) 

To ensure a robust and reliable validation process, 
this study implemented additional training using the 
COCO 2017 dataset while following the previously 
outlined methodologies. This strategic decision 
significantly enriched the training experience, 
enabling a more thorough evaluation of the enhanced 
detection model's performance across various 
datasets and scenarios. The research sought to 
improve the model's adaptability and generalization 
by capturing a wide range of object characteristics 
through the use of diverse training data. This 
comprehensive approach not only assesses the 
model's effectiveness in different contexts but also 
enhances its resilience to variations in object 
appearance and environmental conditions, ultimately 
leading to better real-world applicability. 

The results of this extensive evaluation are 
visually represented in Figure 7. A noteworthy aspect 
of the COCO 2017 dataset is that approximately 40% 
of its content consists of small objects, which are 
often challenging for detection algorithms. 
Addressing this challenge is crucial, as small objects 
significantly impact various real-world applications, 
especially in agriculture. By focusing on such a 
diverse dataset, the training regimen was designed to 
better accommodate the complexities of real-world 
scenarios, particularly in recognizing small-scale 
features that are vital for tasks such as crop health 
monitoring. 

Additionally, this approach provided a deeper 
insight into the model's capabilities, helping 
researchers pinpoint its strengths and areas needing 
improvement. The results shown in Figure 7 not only 
demonstrate the effectiveness of the proposed 
enhancements but also highlight the model's 
robustness in managing various object sizes and types. 

This ultimately underscores its potential for practical 
applications in crop inspection and pest detection. 

In the analysis of the agricultural pest dataset, the 
paper observed that the loss function tends to 
converge around the 100-epoch mark, indicating a 
stabilization in the model's learning process. This 
early convergence suggests that the model effectively 
captures the essential patterns and features present in 
this dataset, allowing it to adapt quickly to the 
underlying data distribution. Notably, the recall rate 
shows a quicker convergence, achieving stability 
after approximately 30 epochs. The swift 
enhancement in recall suggests that the model excels 
at early identification of true positives during the 
training process. This capability is especially 
advantageous in real-world applications, where 
timely detection of pests is crucial for effective 
management and intervention. Conversely, when 
examining the COCO 2017 dataset, the paper found 
that the loss function requires nearly 200 epochs for 
convergence, signifying a more complex learning 
landscape. The extended training duration reflects the 
dataset's intricate diversity and the challenge of 
accurately detecting objects across various scales and 
contexts. Moreover, the recall rate for this dataset 
begins to exhibit a converging trend only after 450 
epochs, underscoring the need for prolonged training 
to achieve reliable performance. This significant 
disparity between the two datasets highlights not only 
the varying complexities inherent in each but also the 
different responses of the models to these challenges. 
Such findings emphasize the importance of tailored 
training strategies that consider the unique 
characteristics of each dataset to optimize model 
performance. 
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Figure 7: Loss curves and recall curves of Coco. (Photo/Picture credit: Original) 

Through thorough analysis, the paper discovered 
that YOLOv5, particularly when augmented by the 
integration of the MTSPPF module and the BiFormer 
attention module, demonstrates a markedly faster 
convergence rate along with enhanced detection 
performance. The addition of these advanced 
modules appears to optimize the model's architecture, 
allowing it to more effectively utilize additional 
features and contextual information. This 
optimization not only improves the model's overall 
efficiency but also its ability to accurately identify 
objects in diverse scenarios. This suggests that the 
modifications not only expedite the training process 
but also enhance the model's overall efficiency in 
accurately identifying pests in agricultural settings. 
The faster convergence indicates that the model can 
learn the relevant patterns more quickly, leading to 
improved performance in a shorter amount of time. 
Furthermore, the detailed data comparisons 
supporting these findings are presented in Table 2, 

which provides a comprehensive view of the model's 
performance across different scenarios. This table 
highlights the effectiveness of the enhancements and 
offers valuable insights into how these modifications 
contribute to superior detection outcomes. 

Based on the provided Table 3 and Table 4, 
YOLOv5_BiFormer_MTSPPF stands out as the top-
performing model, achieving the highest mean 
Average Precision (mAP) along with exceptional 
precision and recall rates. This robust performance 
highlights its effectiveness in accurately detecting 
objects across various scenarios, making it 
particularly suitable for applications that require high 
reliability. Following closely is 
YOLOv5_C2F_MTSPPF, which excels in both mAP 
and recall, demonstrating a strong capability to 
capture essential features while effectively 
minimizing false negatives. Both YOLOv5_AFPN 
and YOLOv5_BiFormer also deliver competitive 
results, though they lag slightly behind  
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Table 2: Comparative experimental test results of tiny insect 

Algorithm P(%) R(%) mAP50(%) the weights size (MB)
RCNN 75.34 68.61 65.32 6 
YOLOv5 82.48 86.61 80.36 13 
YOLOv5_C2f_Mtsppf 88.12 91.46 93.42 48 
YOLOv5_AFPN 87.84 90.42 92.89 32 
YOLOv5_Bifomer 82.33 87.01 91.32 64 
YOLOv5_Bifomer_Mtsppf 88.50 90.22 93.22 84 

Table 3: Comparative experimental test results of Coco2017  

Algorithm P(%) R(%) mAP50(%) the weights size (MB)
RCNN 66.1 70.74 67.88 8 
YOLOv5 72.84 62.31 79.24 17 
YOLOv5_C2f_Mtsppf 88.12 91.46 88.33 52 
YOLOv5_AFPN 81.76 84.42 84.33 49 
YOLOv5_Bifomer 80.74 68.65 72.61 63 
YOLOv5_Bifomer_Mtsppf 86.67 90.48 95.67 135 

YOLOv5_BiFormer_MTSPPF. In comparisons with 
the RCNN model, YOLOv5 consistently outperforms 
RCNN across nearly all metrics, with the exception 
of precision, where RCNN shows relatively better 
results. Notably, RCNN exhibits the lowest mAP and 
recall rates among the evaluated models, 
underscoring the advancements achieved by the 
YOLOv5 variants in the domain of object detection. 

Table 4: Comparison results before and after adding 
different modules.  

Algorith
m 

C2
f 

mtspp
f 

Bi
f 

P(%
) 

Time(s
)

 
YOLOv5  
 

√   72.2 0.031
√ √  77.3 0.054
√ √ √ 65.3 0.067
 √ √ 85.7 0.074

4 CONCLUSIONS 

The study improved the YOLOv5 model for real-time 
detection of small-scale crop defects and pests by 
integrating modules such as C2f, MTSPPF, and 
BiFormer attention mechanisms. Among the 
enhanced models, YOLOv5_BiFormer_MTSPPF 
demonstrated the best performance, achieving the 
highest mean Average Precision (mAP), precision, 
and recall rates across various datasets. This indicates 
that the combination of BiFormer and MTSPPF 
effectively optimizes the model’s feature extraction 
and fusion capabilities, making it highly suitable for 
real-time agricultural applications. 

Although the improvements in detection 
performance were not universally significant 
compared to the original YOLOv5, the 
YOLOv5_BiFormer_MTSPPF model consistently 
outperformed other versions and traditional object 
detection methods such as RCNN in key metrics. 
However, the model's larger size and higher 
computational requirements suggest the need for 
hardware optimization in practical implementations. 

Future research will focus on enhancing the model’
s efficiency, including potential pruning strategies 
and extending its application to more crop types. 
These advancements are essential for improving real-
time agricultural monitoring systems, offering 
farmers more accurate and timely insights into crop 
health and pest management. 

REFERENCES 

Donatelli, M., Magarey, R.D., Bregaglio, S., Willocquet, L., 
Whish, J.P.M., Savary, S. 2017. Modelling the Impacts 
of Pests and Diseases on Agricultural Systems. 
Agricultural Systems, 155, pp. 213–224. Elsevier. 

Dong, Q., Sun, L., Han, T., Cai, M., Gao, C. 2024. PestLite: 
A Novel YOLO-Based Deep Learning Technique for 
Crop Pest Detection. Agriculture, 14(2), 228. MDPI. 

Khalid, S., Oqaibi, H.M., Aqib, M., Hafeez, Y. 2023. Small 
Pests Detection in Field Crops Using Deep Learning 
Object Detection. Sustainability, 15(8), 6815. MDPI. 

Karunasena, G.M.K.B., Priyankara, H.D.N.S. 2020. Tea 
Bud Leaf Identification by Using Machine Learning 
and Image Processing Techniques. International 
Journal of Scientific & Engineering Research, 11(8), pp. 
624–628. 

Pest YOLO: An Effective Insect Target Detection Algorithm for Small Targets

283



Lawal, O.M., Zhao, H. 2021. YOLOFig Detection Model 
Development Using Deep Learning. IET Image 
Processing, 15(13), pp. 3071 – 3079. Wiley Online 
Library. 

Liu, H., Xu, K. 2021. Densely End Face Detection Network 
for Counting Bundled Steel Bars Based on YoloV5. In: 
Pattern Recognition and Computer Vision: 4th Chinese 
Conference, PRCV 2021, Beijing, China, October 29–
November 1, 2021, Proceedings, Part I 4, pp. 293–303. 
Springer. 

Mukhopadhyay, S., Paul, M., Pal, R., De, D. 2021. Tea Leaf 
Disease Detection Using Multi-objective Image 
Segmentation. Multimedia Tools and Applications, 80, 
pp. 753–771. Springer. 

Roy, A.M., Bose, R., Bhaduri, J. 2022. A Fast Accurate 
Fine-Grain Object Detection Model Based on YOLOv4 
Deep Neural Network. Neural Computing and 
Applications, 34(5), pp. 3895–3921. Springer. 

Tang, Z., Lu, J., Chen, Z., Qi, F., Zhang, L. 2023. Improved 
Pest-YOLO: Real-time Pest Detection Based on 
Efficient Channel Attention Mechanism and 
Transformer Encoder. Ecological Informatics, 78, 
102340. Elsevier. 

Wang, Z., Zheng, Y., Li, X., Jiang, X., Yuan, Z., Li, L., 
Zhang, L. 2021. DP-YOLOv5: Computer Vision-Based 
Risk Behavior Detection in Pothe paperr Grids. In: 4th 
Chinese Conference on Pattern Recognition and 
Computer Vision, PRCV 2021, Proceedings, Part I, 
Beijing, China, October 29–November 1, pp. 318–328. 
Springer, Heidelberg. 

Wen, C., Chen, H., Ma, Z., Zhang, T., Yang, C., Su, H., 
Chen, H. 2022. Pest-YOLO: A Model for Large-Scale 
Multi-Class Dense and Tiny Pest Detection and 
Counting. Frontiers in Plant Science, 13, 973985. 
Frontiers Media SA. 

Yang, N., Yuan, M., Wang, P., Zhang, R., Sun, J., Mao, H. 
2019. Tea Diseases Detection Based on Fast Infrared 
Thermal Image Processing Technology. Journal of the 
Science of Food and Agriculture, 99(7), pp. 3459–3466. 
Wiley Online Library. 

Zhang, L., Zou, L., Wu, C., Chen, J., Chen, H. 2021. 
Locating Famous Tea's Picking Point Based on Shi-
Tomasi Algorithm. Computers, Materials & Continua, 
69(1). 

Zhu, L., Wang, X., Ke, Z., Zhang, W., Lau, R.W.H. 2023. 
Biformer: Vision Transformer with Bi-level Routing 
Attention. In: Proceedings of the IEEE/CVF 
Conference on Computer Vision and Pattern 
Recognition, pp. 10323–10333. IEEE. 

 

DAML 2024 - International Conference on Data Analysis and Machine Learning

284


