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Abstract: Traffic congestion is one of the most challenging and lasting problems that causes many government concerns. 
It would lead to many problems, such as economic losses, fuel consumption, environmental costs, and so on. 
An efficient traffic system can significantly reduce congestion, which can bring many beneficial impacts on 
daily life. Accurate traffic flow prediction is crucial for effective traffic management. This study uses three 
machine learning models: Random Forest (RF), Extreme Gradient Boosting (XGBoost), and Long Short-
Term Memory (LSTM) to predict vehicle counts at four different junctions of a city. Each of these models 
was evaluated based on key metrics – Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and 
R-squared (𝑅ଶ). The outcomes showed that XGBoost performed the best among the examined models in 
terms of precision and computational efficiency. This paper also discusses the limitations of the models and 
future implications, which can be helpful in better managing transportation systems. 

1 INTRODUCTION 

Traffic congestion is a chronic problem affecting 
urban environments globally, which may be caused 
by high population density, increased number of 
vehicles, and infrastructural development (Vencataya 
et al., 2018). Therefore, effectively managing the 
traffic system is one of the most significant issues 
faced by modern cities nowadays. Accurate traffic 
flow prediction is an essential component of an 
intelligent traffic system. However, predicting traffic 
is very complex due to its dynamic nature, as 
researchers must consider various factors, including 
peak hours, weather conditions and special events. 
These factors are not correlated linearly, so traffic 
prediction becomes a challenging problem that 
requires more advanced analytical methods/models 
(Hong et al., 2015; Joaquim et al., 2015). 

Over the years, many methods have been used to 
address the traffic prediction issue. In the last decade, 
researchers have commonly used statistical 
approaches, such as Autoregressive Integrated 
Moving Average (ARIMA) and Kalman filters, 
which have been the most studied techniques for time 
series forecasting. These methods are well-suited for 
simple linear relationship problems. However, traffic 
prediction is a complex spatial problem. Thus, they 
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presented difficulties in addressing such predictions 
(Medina-Salgado et al., 2022). Researchers have 
developed new methods to better manage traffic 
predictions and deal with new challenges. 

Several machine learning techniques have been 
developed for traffic prediction. For example, models 
like Support Vector Machine (SVM), K-nearest 
Neighbors (KNN) and Artificial Neural Networks 
(ANN) have achieved better results to a certain 
degree, as they can better capture the non-linear 
patterns in the traffic data, thus becoming more 
appropriate choices for this problem. For example, 
Hong et al. (2015) proposed a hybrid multi-metric 
KNN model for the forecast of traffic flow, which 
showed better accuracy in combining a set of metrics 
to capture different data patterns. 

Furthermore, many researchers have also used 
tree-based machine learning models such as Random 
Forest (RF) and Extreme Gradient Boosting 
(XGBoost) because they can bear more complex data 
entries. For instance, Wang and Fang (2024) 
combined XGBoost with wavelet analysis to improve 
short-term traffic flow prediction. They demonstrated 
the model’s efficiency and precision in capturing 
periodic patterns.  

Deep learning models, especially Long Short-
Term Memory (LSTM) networks, have recently been 
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trending in traffic prediction. As LSTM networks are 
designed to process sequential data and are capable of 
memorizing information for a long period of time, so 
this model is suitable for operating on time series 
data. LSTM models have been widely applied in 
various studies, especially in time series data 
forecasting, and their good performance has been 
proven accordingly. For instance, Ye et al. (2024) 
carried out a thorough analysis of traffic flow 
prediction by LSTM networks and outlined the 
capability for modelling complicated temporal 
dependencies in traffic data. While LSTM has many 
merits, its drawbacks might be long computational 
time and large sizes of datasets to achieve optimal 
performance.  

The main objective of this study is to identify a 
machine learning model that can accurately predict 
traffic flow at different junctions of a city. This study 
considers three kinds of machine learning models: 
LSTM Networks, RF, and XGBoost. These models 
have unique advantages regarding handling time 
series data, non-linear relationships, and feature 
importance, making them suitable for traffic 
prediction. The study evaluates the performance of 
these models by metrics such as Mean Absolute Error 
(MAE), Root Mean Squared Error (RMSE) and R-
squared (𝑅ଶ) to determine the most effective model 
for traffic prediction. 

The rest of the article is structured as follows: 
Section 2 discusses the methodology used in this 
paper, involves data preprocessing steps, model 
description, and the metric used to evaluate models’ 
performance. Section 3 presents the results of the 
model evaluations and compares their performances 
based on key metrics. Section 4 discusses the 
limitations of the study and the future works that 
could improve the models. Finally, the conclusions 
are drawn in Section 5. 

2 DATA PREPARATION AND 
MODEL OVERVIEW 

2.1 Dataset Overview 

Table 1: Dataset sample. 

Date Time Junction Vehicles ID

0 2015-11-01 
00:00:00 1 15 20151101001 

1 2015-11-01 
01:00:00 1 13 20151101011 

2 2015-11-01 
02:00:00 1 10 20151101021 

3 2015-11-01 
03:00:00 1 7 20151101031 

The dataset used in this project was sourced from 
Kaggle (Fedesoriano, 2021). It contains vehicle 
counts across four junctions over several years. The 
dataset contains 48120 rows of data, with each row 
representing an individual traffic observation. Each 
observation has features shown in Table 1, including 
DateTime: the exact time of the observation, which 
indicates the month, day, and hour; Junction: the 
junction number where the observation was recorded; 
Vehicles: the number of vehicles passing through the 
junction at the time; Unique ID: an identifier for the 
row data. The target variable was the number of 
vehicles for the next hour. 

2.2 Data Preprocessing 

 

Figure 1: Outliers of vehicle counts for each junction 
(Photo/Picture credit: Original). 

Data preprocessing is a critical step in machine 
learning model development, particularly for time 
series data such as traffic data, to enable models to 
learn and analyze the patterns in data effectively.  

Table 2: Dataset after feature engineering. 

DateTime Junction Vehicles Year Month Day Hour Day of week
2015-11-01 00:00:00 1 15 2015 11 1 0 6 
2015-11-01 01:00:00 1 13 2015 11 1 1 6 
2015-11-01 02:00:00 1 10 2015 11 1 2 6 
2015-11-01 03:00:00 1 7 2015 11 1 3 6 
2015-11-01 04:00:00 1 9 2015 11 1 4 6 
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Table 3: ADF test for vehicle count data. 

 ADF statistic p-value 1% critical value 5% critical value 10% critical value Stationarity
Junction 1 -7.366837 9.189060e-11 -3.430804 -2.861741 -2.566877 True
Junction 2 -9.151651 2.676498e-15 -3.430830 -2.861752 -2.566883 True
Junction 3 -6.614107 6.269937e-09 -3.430815 -2.861745 -2.566879 True
Junction 4 -6.378744 2.249640e-08 -3.431901 -2.862225 -2.567135 True

First, feature engineering was conducted. Temporal 
features such as year, month, day, hour, and day of 
the week were created to capture cyclical patterns in 
traffic, as shown in Table 2. Additionally, for 
preparing the data with the LSTM model, a sliding 
window approach was used to create sequences of 
historical data. This approach allows the model to 
capture more local patterns and learn efficiently. 

Second, data cleaning was performed by detecting 
and eliminating outlier data in the dataset to prevent 
the models from misinterpreting the dataset due to 
anomalous data points. Figure 1 depicts the detected 
outliers, which do not represent normal road 
conditions due to special events like accidents or road 
closures, as the number of vehicles at the specific 
time was typically large, showing congestion. When 
these anomalies are eliminated, the data can represent 
typical traffic patterns. 

After the creation of temporal features, the 
normalisation was performed to scale vehicle counts. 
This would keep all data ranges consistent for better 
and more stable model performance. Lastly, as seen 
in Table 3, the Augmented Dickey-Fuller (ADF) test 
was conducted to check for stationary in the vehicle 
count data. The stationarity of data is critical for time 
series models. It ensures that the data’s statistical 
properties, such as the mean and variance, do not 
change over time. If the stationary test showed that 
the data were stationary (ADF test result is True), 
then the data could be used for further modelling 
directly. However, if the data were non-stationary 
(ADF test result is False), differencing needs to be 
applied on the data to remove any trends, making the 
data stationary. 

2.3 Models 

This paper uses the following models to predict traffic 
flow: RF, XGBoost, and LSTM. 

RF is an ensemble learning method that builds 
many decision trees and merges their results to make 
predictions. This model is robust to overfitting and 
can demonstrate the importance of different features 
(Akhtar & Moridpour, 2021), which is vital for 
understanding the contribution of different features in 
the prediction.  

XGBoost is an advanced tree-based gradient 
boosting algorithm, which is well-known for its high 
efficiency. It can handle complex interactions in 
structured data and process data features in parallel. 
Additionally, XGBoost has been known for its high 
precision and accuracy. Supported by a gradient 
boosting framework, the model reduces the error by 
minimizing a loss function, such as MSE. This 
iterative approach improves the model’s precision at 
each iteration step, therefore, presents an enhanced 
prediction ability of the model (Dong et al., 2018; 
Wang & Fang, 2024). Thus, high computational 
efficiency and precision make XGBoost a strong 
choice for traffic flow prediction. 

LSTM is a recurrent neural network (RNN) class 
that works particularly well in time series prediction 
applications. LSTM is able to capture long-term 
dependencies and temporal features in time series 
data, which are crucial for the accurate prediction of 
traffic patterns in time series. Unlike typical RNN 
networks that may struggle with the problem of 
vanishing gradients, the LTSM can keep information 
over more extended periods thanks to the internal 
gating mechanisms. In addition, LSTM can learn the 
data patterns itself without extra feature engineering, 
which is often required for many machine learning 
models (Ye et al., 2024). Therefore, these properties 
of LSTM make it a powerful model for traffic 
forecasting. 

3 EXPERIMENT RESULTS 

Cross-validation and hyperparameter tuning 
techniques were applied prior to the performance 
evaluation of the model. Firstly, cross-validation test 
was performed to assess the models’ performance on 
various sets of data to ensure their robustness. 
Further, hyperparameter tuning was also conducted 
by using the Python built-in function GridSearchCV 
to fine-tune the hyperparameters of models for the 
best model predictive accuracy. 
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3.1 Experiment Evaluation 

It is necessary to establish some metrics in order to 
evaluate the performance of the models. For instance, 
RMSE, MAE, and R2 may be chosen. RMSE could 
present a general indicator, which is computed as the 
root of the average squared difference between 
predictions and actual values (Joaquim et al., 2015). 
MAE is a metric used to calculate the average 
absolute error/difference between predicted values 
and actual values. This value is less sensitive to large 
errors than the RMSE value (Joaquim et al., 2015). R2 
is a statistical measure that shows how well models 
explain variance in the target variable (Jiang, 2022). 
Collectively, these metrics offer a complete 
understanding of the models in the prediction of 
traffic patterns. 

3.2 Results of Random Forest 

Table 4: Performance Metrics of the Random Forest model. 

 RMSE MAE 𝑅ଶ
Junction 1 0.185797 0.136094 0.968583
Junction 2 0.099772 0.080631 0.854158
Junction 3 0.152084 0.114155 0.806105
Junction 4 0.096277 0.077159 0.550362

 
Table 4 shows the experiment result of the Random 
Forest model at four different junctions. Junction 4 
owns the smallest RMSE and MAE values, meaning 
that the RF model had the most accurate prediction at 
this junction. The highest 𝑅ଶ value was achieved at 
Junction 1, meaning that the model was able to 
explain approximately 96.9% of the variance in the 
target variable. Junction 4 has the lowest value of 
0.55, so the model was struggling to capture the 
variance. 
 

 

                                                             (a)                                                                                   (b)  

 

                                                            (c)                                                                                   (d) 

Figure 2: Actual vs. predicted values using Random Forest for 4 junctions. (a): Junction 1, (b): Junction 2, (c): Junction 3, 
(d): Junction 4. (Photo/Picture credit: Original).
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The visualizations demonstrate the numerical 
results in Figure 2. As suggested in Figure 2, Junction 
1 had the largest RMSE, so plot (a) has more 
unmatched patterns, and it captured the variance well. 
This aligns with the high 𝑅ଶ  value observed in the 
metrics table. Also, almost all predictions in the 
Junction 4 plot closely fall in the actual value line, so 
the RMSE for this junction is the lowest. However, 
the model had more difficulty capturing traffic 
patterns as the plot demonstrates an obvious 
difference in the variances. The table and plots clearly 
highlight where the model performed well while still 
needing improvement. Junctions 1 and 2 were 
accurately predicted, showing the model’s solid 
predictive performance. However, the big difference 
in variances for junction 4 suggests that the model 
could be improved through further tuning or 
additional feature engineering. 

3.3 Results of XGBoost 

Table 5: Performance of XGBoost model. 

 RMSE MAE 𝑹𝟐
Junction 1 0.160097 0.118387 0.976673
Junction 2 0.096931 0.078455 0.862345
Junction 3 0.148890 0.111268 0.814165
Junction 4 0.097115 0.077715 0.542502

 
Table 5 shows that the model performed well at 
junctions 1 and 2, with high 𝑅ଶ values and low errors. 
Similar to the RF model, the XGBoost model 
struggled with junction 4, with the lowest 𝑅ଶ value of 
0.54. This means that it was also difficult to capture 
the traffic patterns for the XGBoost model. 

 

                                                             (a)                                                                                   (b)  

 

                                                           (c)                                                                                    (d)  

Figure 3: Actual vs. predicted values using XGBoost for 4 junctions. (a): Junction 1, (b): Junction 2, (c): Junction 3, (d): 
Junction 4. (Photo/Picture credit: Original). 
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Figure 3 illustrates that the model functioned well 
at 1 and 2 junctions, as the predicted vehicle counts 
aligned well with the actual values. Junction 3 had 
slightly more deviations, suggesting a lower 𝑅ଶ 
value. The fourth junction showed an even more 
significant deviation, indicating that the model did 
not interpret the traffic forecasts well. Like the 
Random Forest model, this model also needs more 
analysis and adjustments to reduce the deviation for 
junction 4 and to enhance the overall performance. 

 
 
 
 
 
 
 

3.4 Results of LSTM 

Table 6: Performance of LSTM model. 

 RMSE MAE 𝑅ଶ
Junction 1 0.410605 0.320683 0.842318
Junction 2 0.176028 0.143766 0.453334
Junction 3 0.171220 0.131704 0.767415
Junction 4 0.116788 0.091637 0.425882

 
As shown in Table 6, junction 1 had large prediction 
errors compared to the other two models and a 
relatively high 𝑅ଶ value. Junctions 2 and 4 both have 
a meagre 𝑅ଶ value, suggesting the model did not fit 
well with the traffic data. For junction 3, the model 
performed relatively well with a moderate 𝑅ଶ value 
of 0.77 and relatively low RMSE and MAE. 

 

                                                             (a)                                                                                   (b)  

 

                                                             (c)                                                                                   (d)  

Figure 4: Actual vs. predicted values using LSTM for 4 junctions. (a): Junction 1, (b): Junction 2, (c): Junction 3, (d): Junction 
4. (Photo/Picture credit: Original). 
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The first and third plots in Figure 4 show that the 
predictions of these two junctions generally follow 
the trend of the actual values with an apparent 
deviation. The model had difficulty capturing the 
patterns at both junctions 2, 4, as great deviations 
were illustrated in the plots. The model was able to 
capture some temporal dependencies, but it is clearly 
not as competitive as the others, which may be due to 
the lack of data and information. 

3.5 Model Comparison 

Table 7: The average results of experiment models. 

 RMSE MAE 𝑅ଶ
RF 0.133482 0.102010 0.794802

XGBoost 0.125758 0.096456 0.798921
LSTM 0.218660 0.171947 0.622237

 
It can be noticed from Table 7 that XGBoost 
outperformed both LSTM and RF in terms of all three 
metrics. It had the lowest errors on average across all 
junctions - RMSE of 0.125758 and MAE of 
0.096456. Also, it yielded the highest 𝑅ଶ  value of 
0.798921, slightly higher compared to the Random 
Forest model. Therefore, from these results, it appears 
that the XGBoost model can accurately predict and 
explain the variance in traffic data across various 
junctions. 

The RF model also performed very well, with 
slightly lower values in all the key metrics. It 
achieved an average RMSE of 0.133482, MAE of 
0.096456 and 𝑅ଶ  of 0.794802. Additionally, the 
model could provide the interpretation of the 
importance of features, which is also an important 
indicator for model development. Thus, this model is 
also a powerful model for traffic prediction. 

Although LSTM is a robust neural network that is 
particularly suitable for time series prediction, it did 
not perform as well as the other two models. The 
LSTM had the lowest 𝑅ଶ  value of 0.622237, the 
highest RMSE of 0.21866 and MAE of 0.171947. In 
this context of traffic prediction, LSTM was less 
accurate in predicting traffic counts, especially in 
junctions 2 and 4, with shallow 𝑅ଶ values. Therefore, 
the model probably requires further tuning or 
additional features and information to compete with 
XGBoost and RF. 

In summary, XGBoost is the best-performing 
model overall. It has the most accurate prediction 
results and can capture the variance in the traffic data. 
These properties make this model the most reliable 
and suitable choice for traffic prediction in this study. 

4 LIMITATIONS 

This study demonstrated the use of machine learning 
models like XGBoost in predicting traffic. However, 
there are some limitations during the project that 
should be noted. First, there is a lack of information 
in the dataset used. The dataset only contained a few 
features: the datetime and target variable – vehicle 
count across various junctions, while more factors 
should be considered, such as weather conditions, 
road closures, public events, holiday. These might be 
the reasons that affect the models to explain variance 
in traffic data fully. Therefore, expanding the dataset 
and merging additional features could enhance the 
models’ performance. 

Another limitation is the performance shown by 
the LSTM model, which is a preferred choice when 
dealing with time series data. LSTM performed 
poorly in this context, which may be attributed to 
insufficient tuning or data analysis and preprocessing 
specific to the needs of LSTM. 

Additionally, the models were trained on data 
collected from a specific city. The generalizability of 
the findings to other cities, locations with different 
traffic patterns, and population numbers was not 
tested. Thus, including other locations in the dataset 
could help the models understand traffic data more 
comprehensively. 

Lastly, many Machine Learning models, such as 
XGBoost, are black-box models, which are inherently 
complex, so making it difficult to interpret the results 
and understand how the models obtain the 
predictions. This “black-box” nature can be a 
significant defect, especially in real-time traffic 
management systems, where interpretability is 
crucial. Adopting methods like SHAP (Shapley 
Additive exPlanations) values could help to address 
this issue, as they can provide a comprehensive 
understanding of feature importance, thus 
determining which factors contribute the most to the 
model’s decision-making process. 

5 CONCLUSIONS 

This paper primarily explored and analyzed the uses 
of machine learning models – LSTM, RF, and 
XGBoost in the prediction of traffic patterns at 
different junctions in a city. The results showed that 
XGBoost is the most effective and suitable model for 
this context since it held the minimum prediction 
errors and the maximum 𝑅ଶ  values among all the 
models studied. RF also excelled in this task, with 
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slightly lower values in the key metrics than 
XGBoost. At the same time, the LSTM model, 
despite its theoretical strength in handling time series 
data, was not as competitive as the other models. 
Hence, the LSTM model requires further tuning or 
other features to enhance its performance. These 
models’ ability to capture traffic patterns makes them 
feasible choices for real-time traffic management. 
The XGBoost model can achieve more accurate 
short-term forecasts, which will manage the traffic 
flow, help reduce traffic congestion and enhance 
public safety. However, several limitations were also 
identified within this study, such as insufficient 
features and geographical limitations. Future research 
could also involve fine-tuning the LSTM for 
improved performance and training models on larger 
datasets with a wider variety of features and regions. 
By tackling these problems, it would be feasible to 
create more reliable and broadly applicable models, 
which would offer additional insights into creating a 
more effective transportation system. 
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