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Abstract: Accurate forecasting of aircraft delays is imperative for minimizing financial losses and enhancing passenger 
satisfaction within the aviation industry. Precise delay predictions can substantially improve operational 
efficiency and foster greater passenger loyalty. This study investigates three advanced machine learning 
methodologies for flight delay forecasting using the Kaggle dataset: Neural Networks (NN), Wide & Deep 
Learning, and Categorical Boosting (CatBoost). NN leverages deep learning architectures to identify complex 
patterns in the data. Wide & Deep Learning is a classic model combining low-level and high-level features. 
CatBoost is a model for a gradient-boosting algorithm created specifically to manage category information. 
The conclusion is that NN achieves a 0.8103 accuracy rate, Wide&Deep achieves a 0.8117 accuracy rate, and 
CatBoost achieves a 0.8363 accuracy rate. This study shows that different machine-learning techniques are 
good for other types of samples. By meticulously comparing the performance of NN, Wide & Deep Learning, 
and CatBoost, our research enhances aviation operational efficiency and highlights the significance of tailored 
algorithms for handling categorical data in complex prediction tasks. 

1 INTRODUCTION 

Accurate forecasting of aircraft delays has become 
increasingly important because of the substantial 
financial losses that airlines and airports suffer and 
the decline in passenger loyalty. Reliable predictions 
of flight delays are essential for various stakeholders: 
passengers benefit from timely updates that facilitate 
better travel planning, airlines can pinpoint and 
resolve operational issues to enhance service quality, 
and insurance companies can optimize risk 
management and the profitability of delay-related 
products. This growing need for precision in delay 
forecasting has spurred the development of robust and 
effective prediction methods. 

Mamdouh used an attention-based bidirectional 
Long Short-Term Memory (LSTM) network and got 
an 88% accuracy rate in training data and an 82% 
accuracy rate in test data (Mamdouh et al., 2024). 
However, the complicated attention-based model 
costs more time than other models. Furthermore, the 
complex model is overfitting more easily. Waqar 
Ahmed Khan used a data-driven model and got an 
80.66% accuracy rate (Khan et al., 2024). Machine 
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learning has become a potent tool for tackling the 
complexities of flight delay prediction. This study 
evaluates three advanced machine learning 
techniques using the Kaggle dataset: Neural 
Networks (NN), which encompass various deep 
learning architectures; Wide & Deep Learning, which 
effectively manages both low-level feature 
interactions and high-dimensional categorical data by 
its wide linear models with deep learning (Cheng et 
al., 2016); and Categorical Boosting (CatBoost), 
which is specifically designed to handle categorical 
features with high efficacy, is one kind of gradient 
boosting algorithm (Dorogush et al., 2018). By 
evaluating the performance of these methods, this 
research seeks to identify the most effective approach 
for enhancing flight delay prediction accuracy. It 
provides valuable insights into forecasting techniques 
and their practical implications for the aviation sector. 
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2 DATASETS AND METHODS 

2.1 Data Collection and Description 

The training dataset comprises 100,000 records with 
nine features and a label indicating delay status. Table 
1 shows some samples. 

Table1: Samples of Dataset. 

Month c-11 c-10
DayofMonth c-25 c-7
DayOfWeek c-6 c-6

DepTime 1015 1828
UniqueCarrier OO WN

Origin DEN MDW
Dest MEM OMA

Distance 872 423
dep_delayed_15min N Y

 
The test dataset includes eight features but lacks 

the delay label.  
This study conducted a correlation analysis to 

investigate the relationship between related features 
and delay labels. The analysis leveraged Pearson 
correlation coefficients to quantify the linear 
associations between features and the target label. For 
visualization, this paper plotted histograms to 
illustrate the distribution of labels across different 

feature values, providing insights into their 
interdependence. Collectively, these approaches 
enabled us to comprehensively evaluate the 
significance of each feature in predicting the label. 

This study uses histograms to analyze features and 
the delay label. Figure 1 shows different months with 
different delay rates. Figure 2 shows different unique 
carriers with varying rates of delay. 

2.2 Neural Networks 

NN is a fundamental class of machine learning 
models inspired by the biological NN in the human 
brain (McCulloch & Pitts, 1943). This architecture 
enables NN to model complex patterns and 
relationships within data through learning from 
examples (Rumelhart et al., 1986). Initially 
conceptualized in the 1940s with the McCulloch-Pitts 
neuron model and further advanced by introducing 
the Perceptron in the 1950s (Rosenblatt, 1958), NN 
faced significant limitations until the 
backpropagation algorithm was developed in the 
1980s (Rumelhart et al., 1986) allowed for effective 
multi-layer network training. Efficient training of 
neural networks can be achieved through various 
techniques that optimize the backpropagation 
algorithm, significantly improving performance and 
convergence speed (LeCun et al., 2002). Deep 

Figure 1: Different delay rates for different months (Photo/Picture credit : Original). 

 

Figure 2: Different delay rates of different unique carriers (Photo/Picture credit : Original). 
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convolutional neural networks have shown 
remarkable performance in image classification tasks, 
particularly in the work (Krizhevsky et al., 2012). 
Deep learning has emerged as a powerful approach, 
enabling significant advancements in artificial 
intelligence by leveraging large amounts of data to 
learn complex patterns and representations (LeCun et 
al., 2015). The introduction of the attention 
mechanism has transformed natural language 
processing by allowing models to focus on relevant 
parts of the input sequence, leading to more effective 
and efficient learning (Vaswani, 2017). 

In this paper, the model contains 32 neurons as the 
input Layer, 32 neurons with ReLU activation as one 
hidden layer, and 1 neuron with sigmoid activation as 
the output layer. 

2.3 Wide&Deep Learning 

Wide & Deep Learning is a sophisticated machine 
learning approach designed to manage complex 
features and interactions, particularly effective for 
tasks involving both low-level and high-dimensional 
categorical data. This approach integrates two distinct 
models: a wide linear model that handles low-level 
features like Unique Carriers and DayOfWeek. A 
deep neural network is also used to utilise cross 
features. 

The wide component effectively handles feature 
interactions by directly modeling these interactions 
through linear transformations, which is beneficial for 
capturing explicit relationships between features. 
Conversely, the deep network benefits from advanced 
dropout and batch normalization techniques to 
improve training efficiency and model performance. 

Wide & Deep Learning’s versatility and 
effectiveness have led to its growing adoption across 
various domains, including recommendation systems, 
natural language processing, and computer vision. It 
is particularly suited for applications that require 
sophisticated handling of categorical features and 
large-scale datasets (Cheng et al., 2016). This 
approach enables the model to leverage the wide 
model's memorization capacity and the deep model's 
representation learning power, making it highly 
effective for complex predictive tasks. 

This paper refuses to use traditional 
nn.embedding in traditional deep components 
because that can cause serious overfitting when the 
number of distinct features is small. Instead, the 
conventional Wide&Deep model is updated as the 
Advanced Wide&Deep model in this paper: the wide 
component contains 1 unit with no activation function 
as a dense layer. The deep component includes 64 

units with ReLU activation as the first dense layer, 32 
units with ReLU activation as the second dense layer, 
and 16 units with ReLU activation as the last dense 
layer to fit samples with small numbers of sparse 
features. 

2.4 CatBoost 

CatBoost is a state-of-the-art machine learning 
algorithm for handling categorical features in 
supervised learning tasks, particularly in 
classification and regression problems (Dorogush et 
al., 2018). It implements gradient boosting, an 
ensemble technique that builds a model through a 
series of weak learners to improve predictive 
accuracy (Friedman, 2001). 

CatBoost distinguishes itself through several key 
innovations. Notably, it incorporates advanced 
techniques for encoding categorical variables, which 
helps mitigate biases and overfitting that often arise 
in categorical data (Dorogush et al., 2018). This is 
achieved through a method known as ordered 
boosting, which employs permutations of the training 
data to reduce the risk of target leakage and improve 
model robustness (Dorogush et al., 2018). 

Additionally, CatBoost employs symmetric trees 
and more efficient implementation of gradient 
boosting, contributing to faster training times and 
better generalization performance (Dorogush et al., 
2018). Its ability to handle categorical features 
natively, robustly handling missing values, and 
efficient computation make it particularly effective 
for complex datasets and real-world applications. 

The algorithm's effectiveness in diverse 
applications, from finance to healthcare, is a 
testament to its capability to deal with large-scale, 
high-dimensional datasets where categorical features 
play a significant role (Dorogush et al., 2018). Its 
prominence in competitive machine learning settings 
further underscores its robustness and versatility in 
classification and regression tasks. 

This paper uses 0.8 as the l2 leaf regularisation of 
the CatBoost model. 

3 EXPERIMENTAL 

3.1 Experimental Setup 

The dataset was partitioned into training and 
validation subsets, with 80% allocated for training 
and 20% reserved for validation. The models were 
trained over 100 epochs with a learning rate of 0.0001 
for the model. The evaluation metrics used for model 
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assessment were accuracy and Area Under the Curve 
(AUC). The optimizer is Adam. The loss function is 
Binary Crossentropy. 

3.2 Experimental Results 

Figures 3, 4, and 5 present the accuracy curves for the 
neural network, wide and deep, and CatBoost models, 
respectively. Analysis reveals that each model 
converges to stable performance but at different rates. 

Neural Network (Figure 3): The accuracy curves 
for the Neural Network model demonstrate 
convergence within approximately 10 epochs. Both 
training and test accuracy rates stabilize, indicating 

that the model quickly reaches a high level of 
performance. 

Wide & Deep (Figure 4): This model exhibits 
convergence within 3 epochs. The training and test 
accuracy curves plateau rapidly, suggesting that the 
Wide & Deep model achieves effective learning in a 
very short training period. 

CatBoost (Figure 5): The CatBoost model shows 
convergence after around 2000 epochs. Although 
stabilizing takes significantly longer than the other 
models, the training and test accuracy rates eventually 
decrease, reflecting a thorough learning process. 

In summary, while all three models ultimately 
converge to stable performance levels, they do so at 
different rates, with Wide & Deep converging the 
fastest and CatBoost requiring the most epochs.

 
Figure 3: NN Accuracy over Epochs (Photo/Picture credit : Original). 

 
Figure 4:  Wide & Deep Accuracy over Epochs (Photo/Picture credit : Original). 
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Figure 5: CatBoost Accuracy over Epochs (Photo/Picture credit : Original).

The experimental results presented in Table 2 
provide a comparative analysis of three advanced 
machine learning models - NN, Wide & Deep 
Learning, and CatBoost - based on their performance 
in predicting flight delays. 

Table 2: Performance Comparison of Models. 

 NN Wide&Deep CatBoost
train_acc 0.8079 0.8071 0.8886
train_auc 0.6855 0.6891 0.9247
test_acc 0.8103 0.8117 0.8363
test_auc 0.6814 0.6858 0.8142

 
Table 2 shows that CatBoost outperforms both the 

NN and Wide & Deep Learning models in terms of 
test accuracy and AUC. Specifically, CatBoost 
achieved the highest test accuracy of 0.8363 and an 
AUC of 0.8142. This surpasses the Wide & Deep 
Learning model, which recorded a test accuracy of 
0.8117 and an AUC of 0.6858, and the NN model, 
which reported a test accuracy of 0.8103 and an AUC 
of 0.6814. 

The NN model demonstrated a test accuracy of 
0.8103 and an AUC of 0.6814. While it performed 
reasonably well, its ability to capture complex 
patterns and interactions in the data was limited 
compared to more advanced models. The NN model’s 
performance reflects its capacity to model intricate 
relationships but highlights its challenges in 
effectively optimising categorical feature 
representations. The Wide & Deep model slightly 
improved over NN, with a test accuracy of 0.8117 and 
an AUC of 0.6858. Including wide and deep 
components allowed the model to handle low-level 
feature interactions and high-dimensional categorical 
data. However, despite these advantages, the Wide & 

Deep Learning model still fell short of CatBoost’s 
performance. This discrepancy may be attributed to 
the model’s handling of categorical features and 
ability to manage complex feature interactions. 
CatBoost demonstrated superior performance with a 
test accuracy of 0.8363 and an AUC of 0.8142. 
CatBoost’s advanced techniques for encoding 
categorical variables and robust gradient-boosting 
framework contributed to its high accuracy and AUC 
scores. The model’s effectiveness in managing 
categorical data and mitigating overfitting likely 
played a crucial role in its performance advantages. 
CatBoost’s higher AUC score indicates better 
performance in distinguishing between classes, which 
is essential to reliable flight delay prediction. 

The results suggest that CatBoost’s specialised 
handling of categorical features and its gradient 
boosting framework provide significant advantages 
over NN and Wide & Deep Learning models for this 
task. While Wide & Deep Learning models offer a 
balanced approach by combining wide linear models 
with deep learning, they did not outperform CatBoost 
in accuracy or AUC. The NN model, though 
effective, did not match the performance of the more 
specialised models. These findings underscore the 
importance of selecting appropriate models based on 
the data's nature and the forecasting task's specific 
requirements. Future work may further explore 
enhancements to feature engineering, parameter 
tuning, and hybrid models to improve predictive 
accuracy and robustness. 

The analysis highlights CatBoost’s robustness in 
handling complex datasets and emphasizes its 
superior performance in flight delay prediction. The 
insights derived from these results provide valuable 
guidance for choosing and refining predictive models 
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in the aviation sector and other domains requiring 
accurate forecasting. 

4 CONCLUSIONS 

Accurate forecasting of aircraft delays is pivotal for 
mitigating financial losses and enhancing passenger 
satisfaction within the aviation industry. This study 
addresses the critical need for reliable delay 
predictions by evaluating three advanced machine 
learning techniques: NN, Wide & Deep Learning, and 
CatBoost. These techniques were assessed using a 
comprehensive Kaggle dataset, with performance 
metrics including accuracy and AUC as key 
indicators of model efficacy. The study finds that 
CatBoost outperforms both NN and Wide & Deep 
Learning models, achieving the highest accuracy and 
AUC scores. This demonstrates CatBoost’s superior 
capability in managing categorical features and 
handling complex data interactions effectively. The 
NN model, while useful, showed limitations in its 
ability to capture intricate patterns compared to 
CatBoost. The Wide & Deep model, though 
beneficial in combining different learning 
approaches, did not surpass CatBoost’s performance 
in this context. Despite these valuable insights, the 
study has certain limitations. The evaluation was 
confined to a specific Kaggle dataset, and the models’ 
performance may vary with different datasets or 
problem domains. The study did not explore the 
potential benefits of further hyperparameter tuning, 
feature engineering, or the integration of additional 
machine-learning techniques. Future research should 
consider exploring additional datasets to validate the 
generalizability of the findings. Investigating 
advanced model variations, such as hybrid 
approaches combining CatBoost with other 
techniques and refining feature engineering practices, 
could yield further improvements. Additionally, 
incorporating real-time data and dynamic models 
may enhance forecasting accuracy and applicability 
in operational settings. In conclusion, this study 
underscores the importance of selecting and refining 
predictive models to enhance flight delay forecasting. 
CatBoost's superior performance in this study 
provides a valuable reference for future research and 
practical applications in the aviation industry. 
Continued advancements in machine learning 
techniques and their applications will improve the 
sector's operational efficiency and passenger 
experience. 
 

REFERENCES 

Cheng, H. T, et al., 2016. Wide & deep learning for 
recommender systems. In Proceedings of the first 
workshop on deep learning for recommender systems 
(pp. 7-10). 

Dorogush, A. V, Ershov, V, Gulin, A., 2018. CatBoost: 
gradient boosting with support for categorical features. 
arXiv preprint arXiv:1810.11363. 

Friedman, J. H., 2001. Greedy function approximation: a 
gradient boosting machine. Annals of statistics, 1189-
1232. 

Khan, W. A, Chung, S. H, Eltoukhy, A. E, Khurshid, F., 
2024. A novel parallel series data-driven model for 
IATA-coded flight delays prediction and features 
analysis. Journal of Air Transport Management, 114, 
102488. 

Krizhevsky, A, Sutskever, I, Hinton, G. E., 2012. Imagenet 
classification with deep convolutional neural networks. 
Advances in neural information processing systems, 25. 

LeCun, Y, Bengio, Y, Hinton, G., 2015. Deep learning. 
nature, 521(7553), 436-444. 

LeCun, Y, Bottou, L, Orr, G. B, Müller, K. R., 2002. 
Efficient backprop. In Neural networks: Tricks of the 
trade (pp. 9-50). Berlin, Heidelberg: Springer Berlin 
Heidelberg. 

Mamdouh, M, Ezzat, M, Hefny, H., 2024. Improving flight 
delays prediction by developing attention-based 
bidirectional LSTM network. Expert Systems with 
Applications, 238, 121747. 

McCulloch, W. S, Pitts, W., 1943. A logical calculus of the 
ideas immanent in nervous activity. The bulletin of 
mathematical biophysics, 5, 115-133. 

Rosenblatt, F., 1958. The perceptron: a probabilistic model 
for information storage and organization in the brain. 
Psychological review, 65(6), 386. 

Rumelhart, D. E, Hinton, G. E, Williams, R. J., 1986. 
Learning representations by back-propagating errors. 
nature, 323(6088), 533-536. 

Vaswani, A., 2017. Attention is all you need. Advances in 
Neural Information Processing Systems 

 

DAML 2024 - International Conference on Data Analysis and Machine Learning

266


