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Abstract: In this paper, an optimization method is proposed that relies on the no-new-Net (nnU Net) architecture to 
improve the performance of medical image segmentation tasks. Medical image segmentation is an important 
component of disease diagnosis, treatment planning, and surgical assistance. Since its launch in 2018, nnU 
Net has become a fundamental tool in this field by adapting its architecture, preprocessing, and training 
strategies. However, current models still have shortcomings in handling data imbalance and multimodal 
images. For this purpose, the paper optimized the loss function and data augmentation strategy of nnU Net. 
By increasing the Dice loss weight, the model can more effectively handle small structures and imbalanced 
data, improving segmentation accuracy.   Furthermore, by incorporating higher rotation probability, noise 
enhancement, and low-resolution simulation into the improved data augmentation technique, the model's 
robustness and capacity for generalization are greatly increased. The experimental results demonstrate that 
the upgraded nnU Net performs much better than TotalSegmentor in terms of segmentation accuracy and 
complicated boundary handling, especially when compared to metrics like Dice Score, IoU, and Hausdorff 
Distance. 

1 INTRODUCTION 

A basic task in medical image analysis, medical 
picture segmentation is essential for many 
applications, including disease diagnosis, therapy 
planning, and surgical support. One of the approaches 
that is most frequently utilized in this field is the U-
Net architecture and its variations. With its self-
configuring framework that automatically adjusts its 
architecture, preprocessing, and training algorithms 
to each dataset, no-new-Net (nnU-Net), which was 
introduced in 2018, revolutionized the domain. 
Despite its success, further improvements are 
necessary in areas such as data augmentation and loss 
function optimization, as specific adjustments could 
yield better performance, particularly when handling 
diverse datasets. 

By utilizing the most recent developments in nnU-
Net, TotalSegmentator expands its capabilities to 
multi-class segmentation in Magnetic resonance 
imaging (MRI) as well as Computed Tomography 
(CT) image modalities, producing impressive 
outcomes. Figure 1 illustrates an MRI and CT scan 
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example. However, there remains room for 
improvement, especially in balancing the loss 
function and enhancing training data through more 
sophisticated augmentation techniques. 

 
Figure 1: Example of CT and MRI (Kumar et al, 2021) 

In order to overcome the current obstacles in 
medical picture segmentation, this research optimizes 
two crucial nnU-Net model components: (1) 
Adjusting the loss function weights to better balance 
segmentation precision across different anatomical 
structures and improve performance on imbalanced 
datasets; (2) Enhancing the data augmentation 
strategy to improve the model's robustness to 
variations in medical imaging data, aiming to boost 
segmentation accuracy and generalization in real-
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world applications. These improvements strengthen 
the model’s resilience and ensure broader 
applicability in practical scenarios. 

Building upon the nnU-Net framework, the paper 
introduced targeted optimizations to further enhance 
its performance in segmentation tasks. Through 
extensive experimentation, the results show that these 
modifications significantly improve both accuracy 
and generalization compared to the original nnU-Net 
and TotalSegmentator models. The primary 
contributions of this paper are as follows: 

• The paper proposes a novel adjustment to the 
loss function in nnU-Net, optimizing the weight 
distribution to better handle class imbalance. 

• The model's generalization to new and unseen 
data is improved by the paper's use of more varied and 
realistic transformations in the data augmentation 
technique. 

• The experimental results validate the efficacy 
of the approach by showing that the upgraded nnU-
Net regularly outperforms TotalSegmentator across 
key assessment parameters. 

In the following sections, the paper will provide a 
detailed description of the methodology, 
experimental setup, and the results validating the 
proposed improvements. 

2 RELATED WORKS 

Medical image segmentation, a fundamental task in 
medical image analysis, plays an important role in 
various applications such as organ localization, lesion 
detection, and treatment planning. Early 
segmentation methods mainly relied on rule-based or 
feature-based techniques such as region growing, 
watershed, and level set methods (Fischl et al., 2004). 
With the rise of deep learning, convolutional neural 
networks (CNNs) emerged as the leading technology 
in medical image segmentation, particularly after the 
introduction of the U-Net model, which led to 
significant advancements (Ronneberger et al., 2015). 
The U-Net architecture, as depicted in Figure 2, is 
renowned for its U-shaped design, featuring skip 
connections between the encoder and decoder, which 
greatly enhance segmentation accuracy (Çiçek et al., 
2016). Introduced in 2018, NnU-Net is a self-
adapting version of U-Net that serves as a general 
baseline for medical image segmentation by 
automating architecture tweaks, preprocessing, and 
training procedures to suit various datasets (Isensee et 
al., 2021). This model has excelled in multiple 
international segmentation challenges, showcasing 
high versatility and adaptability. 

 
Figure 2: The architecture of U-Net (Çiçek et al., 2016) 

Despite nnU-Net’s success, recent studies suggest 
that its performance on specific tasks can be further 
optimized. Research shows that introducing adaptive 
weighting in loss functions and improving data 
augmentation strategies can enhance both robustness 

and precision (Roy et al., 2018). This study builds on 
nnU-Net’s framework, with a focus on improving 
performance in handling imbalanced data and highly 
diverse medical imaging datasets. 
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TotalSegmentator, an open-source model based 
on the nnU-Net framework, was initially developed 
for CT image segmentation and later extended to 
perform multi-structure segmentation in MRI images 
(Wasserthal et al., 2023). TotalSegmentator is a 
versatile tool for multi-modality segmentation tasks, 
thanks to its sequence-independent nature, enabling it 
to segment 59 anatomical structures, including 
organs, bones, muscles, and vessels (Akinci 
D'Antonoli et al., 2023). By integrating large clinical 
datasets, TotalSegmentator demonstrates robustness 
in various applications, especially in handling 
different MRI sequences. However, its performance 
is still challenged in the segmentation of fine 
structures, such as those in blurred or low-contrast 
regions (Hatamizadeh et al., 2021). This opens an 
opportunity to enhance segmentation performance by 
optimizing nnU-Net’s loss function and data 
augmentation strategies. 

In addition to TotalSegmentator, other U-Net-
based segmentation models have emerged in recent 
years. For example, 3D U-Net (Çiçek et al., 2016) 
extends U-Net to process 3D image data, while 
SwinUNETR (Hatamizadeh et al., 2021) combines 
Transformer architecture with U-Net to capture long-
range dependencies. However, these models often 
come with higher computational costs and fall short 
in multi-modality and sequence diversity tasks 
compared to TotalSegmentator. 

The design of loss functions plays a crucial role in 
deep learning-based segmentation tasks, particularly 
when dealing with class imbalance and small target 
segmentation. Traditional cross-entropy loss often 
favors large classes, leading to poor performance in 
smaller classes (Sudre et al., 2017). To address this 
issue, weighted loss functions such as Dice loss 
(Milletari et al., 2016) and Tversky loss (Salehi et al., 
2017) have been introduced to handle imbalanced 
data and multi-class segmentation tasks more 
effectively. By adjusting the weights of different 
classes, these methods improve segmentation 
accuracy for small classes and boundary regions. 

In terms of data augmentation, traditional 
techniques such as rotation, scaling, and translation 
are commonly used. However, recent studies have 
shown that more advanced augmentation techniques, 
such as random cropping, brightness and contrast 
adjustment, and elastic deformation, can significantly 
improve model robustness (DeVries & Taylor, 2017). 
These techniques generate more diverse training data, 
enabling models to better generalize to unseen 
clinical images. Moreover, adaptive data 
augmentation techniques based on deep learning are 
continuously evolving, allowing dynamic adjustment 

of augmentation strategies based on data 
characteristics, further enhancing model performance 
(Zhang et al., 2018). 

The innovation of this study lies in modifying 
nnU-Net’s loss function weights and optimizing its 
data augmentation strategy to further improve 
performance in medical image segmentation tasks. 
These modifications build on previous research 
findings and demonstrate superior performance 
compared to TotalSegmentator in practical 
applications. 

3 METHODOLOGIES 

3.1 Loss Function Adjustment 

The loss function plays a critical role in guiding the 
optimization of deep learning models, particularly in 
medical image segmentation, where it directly 
impacts model performance on complex and 
imbalanced datasets. Dice loss emphasizes improving 
segmentation accuracy for small structures, while 
cross-entropy loss focuses on the overall 
segmentation accuracy. Balancing the weights of 
these two losses is crucial for achieving optimal 
model accuracy. 

The paper increased the weight of the Dice loss 
from 1 to 1.5 and set the cross-entropy loss weight to 
0.5. This adjustment directs the model to focus more 
on small structures, prioritizing their segmentation 
during optimization while maintaining the overall 
accuracy of larger structures and global segmentation. 

These adjustments help the model perform better 
on imbalanced data, particularly for small targets, 
allowing for more precise segmentation. This is 
crucial in medical image segmentation tasks, such as 
tumor or lesion detection, where increasing the Dice 
loss weight reduces the model’s tendency to 
overemphasize the background or large structures, 
thereby improving the segmentation accuracy of 
smaller targets. These changes enhance the model’s 
sensitivity to small object recognition, ultimately 
improving overall segmentation accuracy and 
boundary detail handling. 

3.2 Data Augmentation Strategy 
Optimization 

In order to enhance the generalization ability of the 
model and avoid overfitting, data augmentation 
requires introducing various random transformations 
(such as rotation, scaling, and noise) into the training 
set. By exposing the model to more diverse data, it 
enhances real-world performance and strengthens its 
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robustness and adaptability in testing or inference 
processes. This is particularly important in medical 
image segmentation, as data variability arises from 
differences in patients, imaging conditions, and noise 
levels. 

The paper increased the rotation probability to 0.3 
to simulate anatomical structures from different 
orientations. The paper also extended the variance 
range of Gaussian noise to (0, 0.2) and set its 
application probability to 0.15 to help the model 
handle varying levels of image noise. For low-
resolution simulation, the paper adjusted the scaling 
range to (0.7, 1) and increased the application 
probability to 0.3, allowing the model to adapt to low-
quality or down-sampled images. 

These adjustments significantly improved the 
model’s adaptability to data variations. Increasing the 
rotation probability allowed the model to handle more 
diverse anatomical orientations, while noise 
augmentation improved stability in noisy 
environments. Low-resolution simulation ensured 
that the model could handle varying image 
resolutions, maintaining high segmentation accuracy 
even with low-quality input. These improvements are 
particularly valuable in medical image segmentation, 
where models need to be robust and generalizable in 
clinical applications. 

3.3 Deep Supervision and Multi-scale 
Loss 

Deep supervision and multi-scale loss help guide the 
model at different resolutions, making feature 
extraction across various scales more accurate. Deep 
supervision enables the model to learn segmentation 
information at multiple levels during training, which 
is particularly useful for handling complex 
anatomical structures with intricate boundaries. 
Multi-scale loss weighting ensures that the model 
remains efficient during fine-grained segmentation. 

In the DeepSupervisionWrapper, the paper 
adjusted the multi-scale loss weights by assigning 
higher weights to high-resolution outputs, thereby 
enhancing the model's focus on fine-grained 
segmentation. This adjustment ensures that the model 
maintains a balance in feature extraction across 
different resolutions while emphasizing high-
resolution outputs. 

This modification improves the model's ability to 
handle complex boundaries, particularly when 
segmenting small or blurred anatomical structures. 
By increasing the weight of high-resolution outputs, 
the model is better equipped to handle anatomical 
detail, significantly reducing Hausdorff distance and 
producing more precise segmentation boundaries. 

4 EXPERIMENTAL SETUP 

4.1 Dataset 

This experiment's brain MRI dataset, which includes 
samples required for both training and testing, was 
obtained from TotalSegmentator. The labels and 
photos are included with the data, which is supplied 
in nii.gz format. To make sure the model can be 
applied to different situations, a five-fold cross-
validation technique is used. This dataset is perfect 
for evaluating and verifying the effectiveness of 
medical picture segmentation algorithms because to 
its intricate anatomical structures and thorough 
labeling. The model's capacity to handle complicated 
medical pictures, notably in segmenting small 
structures and handling multimodal problems, may be 
assessed by the study using this dataset. 

4.2 Evaluation Metrics 

The segmentation performance of the model was 
thoroughly evaluated by the article through the 
utilization of several metrics. Dice Score is a useful 
tool for assessing segmentation accuracy in tiny 
regions and handling imbalanced data since it 
assesses the overlap between expected outcomes and 
ground truth. By determining the ratio between the 
intersection and union of the anticipated and actual 
regions, Intersection over Union (IoU) offers a more 
rigorous evaluation that gauges prediction accuracy. 
The model's capacity to identify the target regions and 
steer clear of false positives is measured by sensitivity 
and specificity, respectively. These two metrics, 
which show how well the algorithm detects lesions 
while ignoring normal tissue, are crucial for medical 
picture segmentation. Last but not least, Hausdorff 
Distance assesses segmentation boundary precision 
to make sure the model faithfully represents intricate 
structural elements. These metrics were selected 
because they allow for a thorough evaluation of the 
model's performance in a number of areas, from 
overall segmentation accuracy to boundary 
management and false detection control—a crucial 
component of medical picture segmentation model 
optimization and assessment. 

4.3 Experimental Procedure 

The model training was conducted on a high-
performance computing environment equipped with 
an NVIDIA RTX 3090 GPU, AMD 5800X CPU, 
32GB of RAM, and over 200GB of storage space. 
The system operated on Python 3.10.12 and the 
Pytorch 2.4.0+cu121 deep learning framework, 
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ensuring efficient training in an optimized hardware 
and software environment. M.2 SSD was utilized for 
data storage to maximize data read and write speeds. 
The training followed the standard nnU-Net five-fold 
cross-validation pipeline. First, preprocessing was 
applied to the brain MRI data, including adjusting the 
format and resolution. Each fold was trained using 
high-resolution 3D data. After completing the 
training, five models were generated for performance 
evaluation. The training process also incorporated 
deep supervision and multi-scale loss strategies, 
ensuring the model could learn detailed features at 
various scales, thus enhancing segmentation 
precision. 

The PolyLRScheduler dynamically adjusted the 
learning rate during training, with the initial learning 
rate for hyperparameter values set to 1e-2. With a 
weight decay of 3e-5 and a momentum parameter of 
0.99, SGD was the optimizer that was employed. Data 
augmentation strategies were adjusted to improve 
model generalization by increasing the application 
probability of rotation, noise, and low-resolution 
simulation. These strategies enabled the model to 
better handle real-world complex medical images, 
showing robust performance in dealing with noise, 
resolution variations, and other challenges. 

5 RESULTS AND DISCUSSION 

5.1 results 

The results show that improved nnU-Net significantly 
outperforms TotalSegmentator in terms of 
segmentation accuracy, as demonstrated by its higher 
Dice Score and IoU. The following table summarizes 
the performance comparison: 

Table 1: Experimental result 

Metric TotalSegmentator Improved 
nnU-Net

Dice Score 0.6241 0.99967
IoU 0.4536 0.99935

Sensitivity 0.4600 0.99935
Specificity 0.9973 1.0

95% Hausdorff 
Distance 

26.23 0.0 

99.9% 
Hausdorff 
Distance 

34.67 1.0 

100% Hausdorff 
Distance 

55.24 8.31 

 

Based on the comparison in table 1, improved 
nnU-Net significantly outperforms TotalSegmentator 
across all key performance metrics. improved nnU-
Net achieves a Dice Score of 0.99967, while 
TotalSegmentator only reaches 0.6241, indicating 
near-perfect alignment of improved nnU-Net’s 
segmentation with ground truth labels. Additionally, 
improved nnU-Net’s IoU score of 0.99935 is much 
higher than TotalSegmentator’s 0.4536, reflecting 
greater overlap between predicted segmentation and 
actual labels. In terms of sensitivity, improved nnU-
Net excels with a score of 0.99935, far surpassing 
TotalSegmentator’s 0.4600, demonstrating its 
superior ability to detect relevant foreground regions. 
While both models perform well in specificity, 
improved nnU-Net achieves a perfect score of 1.0, 
indicating its near-flawless ability to avoid false 
positives in background regions. In terms of 
Hausdorff Distance, improved nnU-Net holds a 
significant advantage: its 99.9% Hausdorff Distance 
is 1.0, and the 100% Hausdorff Distance is 8.31, far 
lower than TotalSegmentator’s 95% Hausdorff 
Distance of 26.23 and 100% Hausdorff Distance of 
55.24. This shows that improved nnU-Net provides 
far more accurate boundary delineations of 
anatomical structures. In summary, improved nnU-
Net’s adaptive architecture and finely tuned 
configurations offer substantial advantages in 
medical image segmentation tasks, particularly where 
boundary precision and sensitivity are critical. 

5.2 Discussion 

The improved nnU-Net significantly outperforms 
TotalSegmentator across several metrics due to the 
optimizations made to its loss function and data 
augmentation strategy. By increasing the weight of 
Dice loss, the model more effectively handles small 
targets and imbalanced data, resulting in greater 
precision when segmenting small regions. 
Furthermore, adjustments to the data augmentation 
strategy increased the model’s robustness to various 
image perturbations such as noise, rotation, and 
resolution changes. These improvements have led to 
superior performance in metrics like Dice Score and 
IoU, while significantly reducing Hausdorff 
Distance, indicating more accurate boundary 
segmentation. 

Nevertheless, enhanced nnU-Net has several 
drawbacks. The model's application in resource-
constrained contexts may be limited due to its lengthy 
training timeframes and high processing 
requirements. Further validation on a range of 
datasets is necessary to establish generalizability, as 
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the efficacy of data augmentation procedures may 
also depend on the particular features of the dataset. 

6 CONCLUSIONS 

Through data augmentation techniques and loss 
function tuning, this study greatly enhanced the nnU-
Net model's performance in medical picture 
segmentation tasks. By increasing the weight of Dice 
loss, the model showed enhanced performance in 
handling small targets and data imbalance, while the 
improvements in data augmentation made the model 
more resilient to perturbations like noise and rotation. 
These enhancements boosted accuracy, boundary 
handling, and robustness, outperforming 
TotalSegmentator in metrics like Dice Score, IoU, 
and Hausdorff Distance. 

Future research will aim to reduce the model's 
training time by exploring more efficient 
optimization algorithms and ensemble learning 
techniques. Additionally, efforts will focus on 
validating the model's adaptability and ensuring the 
generalizability of its data augmentation strategies 
across various types of medical image datasets, 
ultimately seeking to enhance performance and 
reliability across a broader range of applications. 
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