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Abstract: Machine learning enables computers to discover patterns in large datasets and use them for recognition or 
prediction. A model's performance typically depends on the amount of data available; sufficient training 
samples ensure good generalization. However, in many applications, acquiring large amounts of labeled data 
is costly and time-consuming, and in fields like healthcare or autonomous driving, labeled samples can be 
scarce. This raises the important challenge of training effective models with only a few samples. Few-shot 
learning addresses this challenge by aiming to perform tasks with very few training examples, learning and 
generalizing from just a few or even a single sample. The paper designs a novel method that combines 
Knowledge Distillation and Few-Shot Learning to improve model performance with limited data. By 
leveraging intermediate features from the teacher model and applying Multiple Teacher-Student Architecture, 
the paper’s approach enhances feature extraction and adaptation in few-shot scenarios. This method achieves 
premier results on the various dataset, demonstrating the effectiveness of feature distillation in Few-Shot 
Learning tasks. 

1 INTRODUCTION 

In applications which require intensive data, Machine 
Learning is widely applied and achieved significant 
success. However, when the available dataset is 
small, model performance is often limited. In reality, 
obtaining large amounts of training samples is both 
difficult and expensive, making it crucial to study 
how to learn effectively under limited data 
conditions. Few-Shot Leaning (FSL), which is a new 
learning method to train with limited supervised 
example was proposed(Fei-Fei et al., 2006; Fink, 
2004). FSL's objective is to make it possible for 
models to fast adapt to new tasks using only a few 
samples. Current FSL approaches can be categorized 
into three types: non-episodic approaches that pre-
train on base classes and then fine-tune on new 
classes (Dong et al., 2022), beta learning methods 
based on meta-learning, where the model learns how 
to learn (Finn et al., 2017), and metric-learning 
methods that categorize by directly analyzing the 
consistency of query images and support classes 
(Snell et al., 2017). 

Additionally, Transfer learning has been 
extensively employed in image classification tasks as 
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a means of avoiding the need to train models from 
scratch. By leveraging models pre-trained on large 
datasets, transfer learning helps models significantly 
enhances the performance of few-shot learning (Sung 
et al., 2022; Mehrotra et al., 2020; Lotfollahi et al., 
2022). 

The paper proposes a novel method that combines 
Knowledge Distillation (KD) with few-shot learning. 
While most previous KD research has focused on 
logical distillation, which trains student models by 
reducing any KL divergence in the output probability 
distributions of the teacher and student models. 
However, feature distillation where intermediate 
teacher’s features are used to guide the student model 
has been proved to outperform logical distillation in 
several tasks (Romero et al., 2014). Despite its 
superior performance, feature distillation has rarely 
been applied to few-shot learning. Therefore, the 
main contributions of the paper include: 

1. Introducing feature distillation into few-shot 
learning. By leveraging the teacher model's logic 
distribution and intermediate features, the paper 
further improves the performance of the few-shot 
learning model. 
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2. This method introduces multi-teacher 
distillation into few-shot learning tasks. By utilizing 
multiple teacher models, the student model is able to 
learn diverse and complementary information from 
different teachers, resulting in more robust feature 
representations. Unlike traditional single-teacher 
distillation, the multi-teacher setup allows for better 
capture of task diversity, thereby enhancing the 
student model’s generalization ability. 

3. The potential of combining feature distillation 
with few-shot learning is demonstrated through the 
best performance metrics in image classification tasks 
achieved by this method on various datasets. 

2 RELATED WORKS 

2.1 Knowledge Distillation 

KD was first introduced by  in (Hinton, 2015), where 
a complex and excellent model(also called teacher 
model) trained to provide knowledge to a slim 
model(also called student model) through distillation 
training. It allows the knowledge of a complex 
teacher model to be transferred to a simpler student 
model with minimal performance loss. Hinton 
proposed the class probability with parameter T, also 
known as "soft targets." Soft targets carry more 
generalized information than hard targets. Initially, 
knowledge distillation only focused on learning from 
the teacher model's soft labels to produce a 
lightweight student model, but as teacher models 
grew deeper and more complex, learning solely from 
soft labels became insufficient. 

Currently, knowledge distillation methods focus 
on two aspects: logical distillation (Komodakis & 
Zagoruyko, 2017; Benaim & Wolf, 2018) and feature 
distillation (Romero et al., 2014; Komodakis & 
Zagoruyko, 2017; Kim et al., 2018; Chen et al., 2021). 
The teacher model's knowledge can include more 
than just its logical output, features from intermediate 
layers, parameters, and even the connections between 
layers can be considered knowledge. Both final-layer 
outputs and intermediate outputs can teach student 
model to learn. Knowledge based on feature can 
complement response-based knowledge and is useful 
for training slim networks. FitNets introduced 
intermediate representations (Romero et al., 2014), 
selecting an intermediate layer from the teacher 
model to guide the hidden layer output of the student 
model. Inspired by (Romero et al., 2014), subsequent 
research proposed various methods to use teacher 
model intermediate layers (Komodakis & Zagoruyko, 
2017; Kim et al., 2018; Chen et al., 2021). Zagoruyko 

et al. proposed using attention maps to represent 
knowledge; Kim et al. introduced convolutional 
translators as more interpretable intermediate 
representations (Kim et al., 2018). Chen et al. 
proposed cross-layer KD, adaptively assigning layers 
in the student network to layers in the teacher network 
using attention mechanisms (Chen et al., 2021). 
Additionally, feature extraction-based methods often 
overlook the importance of logical distillation, which 
Zhao et al. emphasized by rephrasing classical KD 
loss to highlight logical distillation’s importance 
(Zhao et al., 2022). 

2.2 Few Shot Learning 

Few-shot learning was proposed in (Fei-Fei et al., 
2006; Fink, 2004) as a new machine learning 
paradigm for learning from limited supervised 
examples. One approach to FSL is data augmentation 
(Lake et al., 2015; Wang et al., 2019), which involves 
transformations such as translation, flipping, and 
shearing, or data synthesis and feature enhancement. 
These methods enlarge the dataset, but their design 
requires expert domain knowledge and high labor 
costs. Another category is meta-learning-based 
methods, where the model learns to learn. Finn et al. 
proposed a model-agnostic meta-learning framework 
(MAML) (Finn et al., 2017), which performs a few 
gradient updates across multiple tasks to find the 
optimal initialization parameters across all tasks. 
These allow the model to adapt quickly to new tasks 
with minimal gradient updates and achieve good 
performance. Other meta-learning-inspired methods 
like MetaDet use a meta-model to learn predict-class-
specific parameters from few-shot data (Wang et al., 
2019), enabling accurate object detection in new 
classes. Zhang et al. designed a new associated meta-
learning strategy (Zhang et al., 2022), Meta-DETR, 
which use the association aggregation module (CAM) 
combined with task encoding to integrate the 
supported category information into the query 
features, and then encode and decode through the 
Transformer to adapt to new classes in few-shot tasks 
for efficient object detection. 

Previous research has shown that transfer learning 
make model avoid training from scratch possible by 
adapting to new tasks fast (Sung et al., 2022; 
Mehrotra et al., 2020; Lotfollahi et al., 2022). 
Transferring learning has been widely proven to be 
effective through KD, where the teacher model 
instructs the student model. The core task of few-shot 
learning is enabling the model to fit on very few 
samples and generalize well. The dark knowledge 
provided by the teacher model’s soft lable in KD are 
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crucial for FSL models with only a few hard targets, 
helping prevent overfitting and improving task 
generalization. Therefore, some recent studies have 
attempted to combine KD and FSL, typically by using 
the teacher model to augment the data (Rashid et al., 
2020; Rajasegaran et al., 2020; Yoo et al., 2021). In 
contrast, the paper applies feature based distillation to 
FSL, fully utilizing the feature extraction capabilities 
of powerful teacher models to improve student model 
performance under few-shot conditions. 

3 METHOD 

3.1 Pre-Train 

Typically, to perform few-shot learning, the model 
needs to be pre-trained on a source domain dataset 𝑆௦ = {(𝑥ଵ, 𝑦ଵ), . . . , (𝑥ே, 𝑦ே)}, and then trained on the 
target domain dataset 𝑆஽ = {(𝑥ଵ, 𝑦ଵ), . . . , (𝑥ே, 𝑦ே)} , 
(𝑥௜、𝑦௜) represents the i-th sample 𝑥௜ and label 𝑦௜ in 
the dataset. If only 𝑆஽ is used for training, the model 
will struggle to converge. The pre-training phase 
involves mixing the source domain data with the 
target domain data, which has limited samples, to 
create a mixed domain dataset 𝑆஼ = 𝑆௦ + 𝑆஽ , and 
train the teacher backbone using 𝑆஼. This allows the 
teacher model to better grasp the low-level feature 
representations, such as edge information and texture 
information, across different categories, preventing 
the model from overfitting. The student's ability to 
generalize well even with a few samples is greatly 
enhanced by the presence of a well-trained teacher 
backbone in the subsequent steps, which can transfer 
its low-level feature extraction capability to the 
student backbone through KD. 

3.2 Attention-Weighted Distillation Loss 

During the distillation process, the first step is to let 
the teacher model perform inference on the data, save 
the output prediction results (soft labels), and then 
train the smaller model. Soft labels differ from the 
hard labels typically used in model training and 
contain similar information between different classes. 
However, directly using soft labels to train the student 
model can easily ignore the relationships between 
different classes. This is because the output of the 
teacher model is typically a probability distribution 
calculated through the Softmax function. By default, 
the Softmax function tends to concentrate the output 
distribution on one or a few most likely categories, 
resulting in a sharp probability distribution, where 

most categories have probabilities close to zero. 
However, by introducing a temperature coefficient 𝑇 
to the Softmax, the output probability distribution of 
Softmax becomes smoother (Hinton, 2015). The 
Softmax with the temperature parameter T can be 
represented as: 𝑝௜ = exp(𝑧௜/𝑇)∑ exp൫𝑧௝/𝑇൯௝ (1) 

Where 𝑧௜  is the unnormalized score (logit) for 
class i. 

When 𝑇 >1, the probability distribution becomes 
smoother, and the differences between class 
probabilities decrease. The student model is better 
able to capture subtleties during training with a 
smooth probability distribution that provides more 
information about the similarities between different 
classes. After introducing the temperature coefficient 𝑇 into the Softmax function, the output probability 
distribution is 𝑃௧ = {𝑃ଵ௧, . . . , 𝑃ே௧ }, and the output of 
student’s is 𝑃௦ = {𝑃ଵ௦, . . . , 𝑃ே௦} , Pi representing the 
probability of class i. The key to training with soft 
labels is the KL divergence . The loss is calculated to 
determine the disparity between the probability 
distribution of output in student and the soft labels 
from the teacher model. ℓ௦௢௙௧ = 𝐷𝐾௄௅(𝑃௧||𝑃௦) = ෍(஼

௜ୀଵ 𝑃௜௧)(𝑙𝑜𝑔 𝑃௜௧𝑃௜௦) (2) 

 
In equation (2) C represents the number of 

classes. 
The final distillation loss is obtained by 

combining KL divergence and task-specific loss: 
 ℓ௟௢௚௜௖ = 𝛼ℓ௦௢௙௧ + 𝛽ℓ௧௔௦௞ (3) 
 
This method designed a feature loss to measure 

the differences in intermediate layers between the 
student and the teacher. Let the feature maps of the 
teacher model be denoted as 𝐹௜௧∈{𝐹ଵ௧, 𝐹ଶ௧, . . . , 𝐹ே௧ , 𝑃௧} 
and the student model’s are 𝐹௜௦∈{𝐹ଵ௦, 𝐹ଶ௦, . . . , 𝐹ே௦, 𝑃௦}. 
The one-to-one matching method is defined as: ℓ௙ = ෍ 𝐷ே

௜ୀଵ (𝐹௜௧, 𝐹௜௦) (4) 

D is a function that calculate the distance used to 
determine the difference between the student and 
teacher models (such as Euclidean distance or other 
metrics) 

Specifically, equation (4) assumes that channels 
in the feature maps that come from teacher and 
student model are the same. To map features into 
target representations, a transformation o is necessary 
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for channels that differ, and equation (4) can be 
expressed as: ℓ௙ = ෍ 𝐷ே

௜ୀଵ (𝑜(𝐹௜௧), 𝑜(𝐹௜௦)) (5) 

The paper’s goal is to minimize ℓ௙ . When the 
architecture of the teacher and student models differ 
significantly, or multi-layer information needs to be 
considered, a simple one-to-one matching might not 
be enough to effectively transfer knowledge. To 
better achieve knowledge distillation, it is usually 
necessary to combine multi-layer knowledge. After 
introducing multi-layer distillation, the loss in multil-
layer can be defined as: ℓ௠௨௟௧௜ = ෍(ே

௜ୀଵ ෍ 𝐷௜
௝ୀଵ (𝑜(𝐹௜௦), 𝑜(𝐹௝௧))) (6) 

Different layers have different effects on the 
student's learning based on the features of the teacher 
model. Some layers' features are more important than 
others, and simply accumulating the features from all 
layers can lead to these important features being 
overlooked. By introducing attention weights, the 
model can adaptively assign different weights to the 
features of each layer, allowing the important features 
to receive more attention while the less important 
features are appropriately suppressed. Therefore, the 
paper designed Attention-Weighted Distillation 
Loss (AWD), which balances multi-layer knowledge 
with dynamic weighting instead of simply 
accumulating it. AWD is defined as: ℓ஺ௐ஽ = ෍ 𝐷(ே

௜ୀଵ 𝑜(𝐹௜௦), ෍ 𝛼௜,௝௜
௝ୀଵ ⋅ 𝑜(𝐹௝௧)) (7) 

where 𝛼௜,௝  is the attention weight, and the 
definition of 𝛼௜,௝ is: 𝛼௜,௝ = 𝑒𝑥𝑝 (𝐹௜௦ ⋅ 𝐹௝௧)∑ 𝑒𝑥𝑝௜௞ୀଵ  (𝐹௜௦ ⋅ 𝐹௞௧) (8) 

Finally, the paper define the overall loss function 
as: 

ℓ = 𝛾ℓ௦௢௙௧ + (1 − 𝛾)ℓ஺ௐ஽ (9) 

3.3 Multiple Teacher-Student 
Architecture 

Previous KD work has focused on the framework of 
single teacher-single students (Komodakis & 
Zagoruyko, 2017; Chen et al., 2021; Zhao et al., 
2022). This is because, under conditions of limited 
computational resources and insufficient data, this 
method has shown relatively good performance, and 
it is easy to implement in practice. A single teacher 
model can provide strong supervision by transferring 
complex knowledge representations to a smaller 
student model, thus improving the student model’s 
learning ability. However, in FSL scenarios, the 
single teacher distillation method has certain 
limitations. Due to insufficient training data, the 
teacher model often fails to fully capture the diversity 
and fine-grained characteristics of the data, leading to 
insufficient transfer of knowledge and limiting the 
student’s ability to generalize. 

This paper suggests a method called MTKD 
(multiple teacher-student) to address this issue. The 
student model can learn from diverse perspectives 
and dimensions in FSL scenarios when the multiple 
teacher models are combined. Each teacher model 
can provide diverse feature representations, helping 
the student model to achieve a more comprehensive 
learning process. Multiple teacher models generate 
various knowledge. Distilling with multiple teachers, 
which is different from a single teacher, the student 
model can better handle the diversity and complexity 
of tasks under few-shot conditions. The multiple 
teacher-student framework effectively enables the 
student model to build a stronger learning foundation 
in limited data settings, compensating for the 
shortcomings of a single teacher. 

Table 1: Accuracy of teacher model on ImageNet Dataset. 

Model Dataset Top-1(%) Tok-5(%) 
ResNet-50 ImageNet 77.6 93.2 

DenseNet-121 ImageNet 76.2 92.6 

Table 2: Accuracy of few-shot learning tasks in the 1-shot settings. 

Model Mini-ImageNet Omniglot CUB 
MTKD(Ours) 67.40±0.18 97.74 ± 0.15 70.44 ± 0.25 

MAML(Finn et al., 2017) 56.72±0.22 96.50 ± 0.30 61.52 ± 0.20
ProtoNet(Snell et al., 2017) 60.74±0.19 97.62 ± 0.20 65.31 ± 0.25

SAML(Hao et al., 2019) 61.61±0.20 97.30 ± 0.15 66.07 ± 0.20
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MetaOptNet(Gong, 2023) 62.79±0.20 97.53 ± 0.15 66.49 ± 0.20
Tranfer Learning+Finetune 65.95±0.20 98.45 ± 0.15 69.53 ± 0.20

Table 3: Accuracy of few-shot learning tasks in the 5-shot settings. 

Model Mini-ImageNet Omniglot CUB 
MTKD(Ours) 81.83±0.20 98.64 ± 0.15 82.50 ± 0.21 

MAML(Finn et al., 2017) 68.81±0.19 98.59 ± 0.22 74.21 ± 0.21
ProtoNet(Snell et al., 2017) 79.19±0.22 98.82 ± 0.15 77.50 ± 0.19

SAML(Hao et al., 2019) 78.91±0.17 98.72 ± 0.17 78.22 ± 0.22
MetaOptNet(Gong, 2023) 80.52±0.20 98.92 ± 0.17 79.39 ± 0.19

Tranfer Learning+Finetune 79.77±0.22 99.25 ± 0.16 80.26 ± 0.21

4 EXPERIMENTS 

4.1 Implementation Details 

In experiments, the paper adopted ResNet-50 and 
DenseNet-121 as the teacher models, as these two 
architectures possess different feature learning 
abilities. ResNet-50, with its deeper hierarchical 
structure, excels at capturing global features, while 
DenseNet-121 enhances local feature extraction 
through inter-layer feature reuse. Combining both 
logics and features from these two teacher models, the 
paper performed distillation training on the student 
model, ResNet-18. The paper compared MTKD with 
a baseline model that did not use distillation and was 
directly trained on the small sample dataset, to 
validate the effectiveness of MTKD in few-shot 
learning scenarios. 

In both the distillation and baseline training, the 
paper conducted 1-shot and 5-shot learning tasks. The 
teacher models were pre-trained on the full training 
dataset, while the student model was trained under 
one-shot and five-shot scenarios with guidance from 
the teacher models. Paper’s method combined soft-
label distillation, hard-label supervision, and 
attention-weighted feature distillation loss functions. 
The student model was able to improve its feature 
representation and generalization capabilities by 
acquiring knowledge from both teacher models 
during the distillation process. 

The train process experiment employed a SGD 
and use a baseline ResNet-18 model. Weight decay 
occurs at a rate of 4e-4. Initially, the learning rate is 
lowered to 0.01. Models were trained directly on the 
one-shot and five-shot settings with different 
methods. In the experiments, the paper used accuracy 
as evaluation metrics. 

 

 4.2 Teacher Models on Source Dataset 

The two teacher models performed exceptionally well 
on the ImageNet dataset, as shown in Table 1, 
indicating that they were able to capture key features 
and class information in large-scale image 
classification tasks. The Top-1 accuracy of ResNet-
50 was 77.6% and the Top-5 accuracy was 93.2, 
while DenseNet-121 was 76.2% accurate in Top-1 
and 92.6% in Top-5. Although ResNet-50 slightly 
outperformed DenseNet-121, the difference in Top-5 
accuracy between the two models is minimal, 
indicating that both models have strong 
generalization capabilities and can accurately identify 
the correct class in most cases. This strong 
classification performance makes these two models 
well-suited as teacher models, providing effective 
supervision signals for the student model in few-shot 
learning tasks. Through these teacher models, the 
student model can learn from rich feature 
representations, overcoming the data scarcity issue in 
few-shot learning and improving the overall 
performance of the model. 

4.3 Performance of Few Shot Learning 

In Table 2, MTKD achieves higher accuracy across 
all datasets compared to other methods in the 1-shot 
learning tasks. On Mini-ImageNet and CUB, the 
improvement is particularly evident when compared 
to baseline methods like MAML and ProtoNet. This 
demonstrates that MTKD can effectively extract key 
features even with extremely limited data, regardless 
of the small number of training samples. Unlike 
MAML and ProtoNet, which tend to struggle with 
distinguishing subtle inter-class differences when 
sample sizes are small, MTKD, with the assistance of 
teacher models, can extract features more efficiently 
and generalize faster. 

On the Omniglot dataset, MTKD also performs 
exceptionally well, with accuracy significantly higher 
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than other models. Although Omniglot is a relatively 
simple dataset, the stable performance of MTKD on 
this dataset further demonstrates its robustness. The 
results indicate that MTKD not only excels at 
learning from small amounts of data but is also 
adaptable to different types of datasets, including 
those with relatively simple or homogeneous classes. 
However, it is also evident from the results that while 
MTKD performs excellently on Omniglot, it does not 
achieve the best performance among all methods. The 
source dataset the teacher model used is ImageNet 
and it is quite different from handwritten character 
dataset, Omniglot. Obviously, there is a huge domain 
gap. 

According to Table 3, when performing 5-shot 
learning tasks, the performance of all models 
improves as the number of training samples increases. 
However, MTKD continues to maintain its leading 
position, especially on the Mini-ImageNet and CUB 
datasets. This suggests that MTKD not only benefits 
from having more samples but also consistently 
maintains a significant performance gap compared to 
other methods. The improved accuracy with more 
samples further demonstrates MTKD's strong ability 
to utilize additional information, improve 
classification decisions, and reduce errors. 

A key factor contributing to the enhanced 
performance of MTKD is the use of distillation from 
multiple teachers. By leveraging several teacher 
models, the student model can assimilate diverse and 
complementary insights from various sources, 
leading to stronger feature representations. This 
technique helps the student model improve its 
generalization abilities, especially in situations where 
the training data is limited or contains noise. 

Although Transfer Learning + Finetune shows 
competitive performance on the Omniglot dataset, its 
performance is inconsistent across different datasets. 
This inconsistency suggests that while transfer 
learning helps leverage pre-trained knowledge, it may 
struggle to adapt effectively to new categories and 
tasks that differ from the source domain. In contrast, 
MTKD is specifically designed for few-shot learning 
tasks, making it more reliable and adaptable across 
various scenarios. 

Furthermore, the success of MTKD can also be 
attributed to its ability to simultaneously learn both 
local and global features. This allows the model to 
capture fine details while also recognizing broader 
patterns, giving it a distinct advantage over models 
that focus predominantly on one aspect. This 
balanced feature-learning approach ensures that the 
model can adapt to a wide range of tasks, regardless 
of the complexity of the dataset. 

5 CONCLUSION 

This study proposed and validated a FSL approach 
based on KD. By utilizing ResNet50 and DenseNet-
121 as teacher models and ResNet18 as the student 
model, the study effectively applied the principles of 
knowledge distillation. This allowed the student 
model, even with a limited amount of training data, to 
achieve performance surpassing other few-shot 
learning methods. Additionally, the paper designed a 
comprehensive loss function, combining soft-label 
loss, hard-label loss, and attention-weighted feature 
distillation, which further enhances the student 
model's feature learning capabilities while 
maintaining prediction accuracy. 

The experimental results show that after thorough 
training of the teacher model on a large dataset, 
distillation to the student model not only reduced the 
model's parameter count and computational cost but 
also significantly improved the student model's 
generalization ability in few-shot tasks. Specifically, 
in One-Shot and Few-Shot scenarios, the student 
model achieved better performance after distillation 
training compared to training independently on small 
datasets and other few-shot learning methods. This 
approach fully validated the effectiveness of 
knowledge distillation in few-shot learning and 
demonstrated its high practical value, especially in 
resource-constrained applications. Future work will 
further explore more sophisticated distillation 
strategies, such as adaptive temperature parameter 
adjustment, to achieve more robust model 
performance across more tasks and datasets. 
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