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Abstract: As an important topic in the field of computer vision, 3D human reconstruction has a wide range of 
applications in the fields of film and television entertainment, sports and medicine. Traditional 3D human 
reconstruction methods often require professional equipment and clothing for technical support, and the 
process is very cumbersome and has great limitations. In recent years, with the development of deep learning, 
the method of human reconstruction using deep learning has achieved great success. Based on this 
background, this paper introduces a 3D human reconstruction algorithm based on multi-view synchronized 
video sequences, which can improve the shortcomings of traditional methods. Specifically, this paper 
reprojects the key points on the 3D human model back to the 2D plane under multiple perspectives, and uses 
the key points obtained by 2D human posture detection to optimize the reprojected key points, and finally 
obtains the body shape and posture parameters of the 3D human model. After comparative experiments, the 
method of this paper has achieved good accuracy and efficiency. 

1 INTRODUCTION 

At present, with the rapid development of augmented 
reality (AR) and virtual reality (VR) technologies, the 
metaverse (Wang, et al., 2023) has attracted more and 
more attention. As a digital space based on the virtual 
world, the metaverse can effectively simulate the 
physical laws and human activities in the real world. 
In this artificially created virtual world, users can 
interact immersively through their own avatars, such 
as engaging in social activities, work production, etc. 
At present, one of the key research directions of the 
metaverse is how to obtain the user's human posture 
in real time and reconstruct their avatars in the 
metaverse at the same time. This technology is also 
called three-dimensional human body reconstruction 
technology. As a key research topic in computer 
vision and computer graphics, three-dimensional 
human body reconstruction technology has been 
widely used in game modeling, medical imaging, film 
and television motion capture, identity recognition 
and other fields. 

Traditional three-dimensional human body 
reconstruction technologies include motion capture 
methods based on optical marker capture (Siaw, Han, 
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and Wong, 2023) and inertial capture (He, Zheng, 
Zhu, et al., 2022). The method based on optical 
marker capture is to capture the marker points 
attached to different positions of the human body 
through a multi-view camera, so as to obtain the 
positions of each joint of the human body and perform 
human body modeling. The method based on inertial 
capture is to equip accelerometers, gyroscopes and 
other measuring instruments at various positions of 
the human body to capture the speed, acceleration, 
etc. of different parts of the human body, and finally 
calculate the human body model. Although these 
methods are feasible, they require professional 
equipment, and the process is cumbersome and has 
great limitations. 

The main research purpose of this paper is to 
propose a multi-perspective jointly driven 3D human 
body reconstruction technology. This multi-
perspective jointly driven 3D human body 
reconstruction technology no longer relies on 
professional wearable equipment, can effectively 
solve the problems existing in traditional methods, 
and provides a simpler and more efficient 3D human 
body reconstruction method, which has strong 
practical significance. 

214
Wu and Y.
3D Human Body Model Reconstruction Algorithm Based on Multi-View Synchronized Video Sequences.
DOI: 10.5220/0013512800004619
In Proceedings of the 2nd International Conference on Data Analysis and Machine Learning (DAML 2024), pages 214-220
ISBN: 978-989-758-754-2
Copyright © 2025 by Paper published under CC license (CC BY-NC-ND 4.0)



2 LITERATURE REVIEW 

Two-dimensional human pose detection can be 
divided into two categories: top-down and bottom-up. 
Top-down methods, such as the AlphaPose algorithm 
(Fang, Li, Tang, et al., 2022), first use a human 
detector (REN, HE, Girshick, et al., 2015)) to detect 
all the human bodies in the image, and then use a 
neural network to estimate the human pose for each 
individual human body. Bottom-up methods, such as 
the OpenPose algorithm (Wu, Tang, Xiong, et al., 
2022), have a network structure divided into many 
layers. The first layer is used to predict the joint point 
heat map and the limb association confidence map, 
and each subsequent layer will gradually optimize the 
connection between the joints and limbs until all 
human skeletons are assembled. In addition, many 
detection methods have improved OpenPose, such as 
the OpenPifPaf (Kreiss, Bertoni, and Alahi, 2022) 
multi-person pose estimation method. 

In order to simplify the human body model, 
people have proposed the concept of parametric 
human body model, that is, using a template and 
different parameters to generate a variety of human 
body models, such as the SMPL (Song, Yoon, Cho, 
et al., 2023) model proposed by Loper in 2015, which 
is a model based on linear mixed skinning drive. 
Later, the face parameterized model FLAME (Athar, 
Shu, and Samaras, 2023) and the hand parameterized 
model MANO (Potamias, Ploumpis, Moschoglou, et 
al., 2023) were also proposed one after another. In 
2019, Pavlakos et al. improved on SMPL, combined 
with FLAME and MANO models, and constructed a 
full-body human model SMPL-X (Pavlakos, et al., 
2019). Compared with SMPL, which has simpler 
parameters, the SMPL-X model can not only adjust 
the height, weight and posture of the human body, but 
also make separate adjustments for facial expressions 
and hand movements. 

For single-person human model reconstruction, 
SMPLify (Hassan, Choutas, Tzionas, et al., 2019) 
designed a reconstruction method based on joint 
detection and posture prior for the SMPL model. 
After the emergence of the SMPL-X model, 
SMPLify-X (Pavlakos, et al., 2019) also came into 
being. Compared with SMPLify, it relearned the 
action prior using variational autoencoders (VAE) 
and designed new model penetration penalties, 
thereby achieving better reconstruction results. In 
2018, Kanazawa et al. proposed the HMR (Human 
Mesh Recovery) (Moon, Choi, and Lee, 2022) 
method, which realized an end-to-end deep learning 
network, directly regressed a three-dimensional 
human model from a single image, and the training 

process did not require supervision of three-
dimensional key points of the human body. 

Many current studies often sacrifice a certain 
degree of accuracy in order to improve reconstruction 
speed, ignoring the error accumulation caused by the 
two processes of two-dimensional posture detection 
and three-dimensional reconstruction, resulting in 
jitter in the reconstructed human body model. The 
main research content of this paper is to use the key 
point coordinates obtained by two-dimensional 
posture detection as the main reference based on 
multi-view video information, and use the 
information obtained by triangulation of key points to 
initialize the human body model, reconstruct the 
three-dimensional human body model by optimizing 
the parameters of the human body model, and 
optimize the jitter problem of the human body model, 
and finally maximize the efficiency of human body 
reconstruction without sacrificing accuracy. 

3 METHOD 

3.1 Camera Model 

The camera model used in this paper is the pinhole 
camera model, which contains four coordinate 
systems: world coordinate system, camera coordinate 
system, image coordinate system, and pixel 
coordinate system. In this model, a point in the real 
world is transformed into a point in the image through 
the conversion between these four coordinate 
systems. Next, this paper will discuss the method of 
projecting point P from its coordinates (X, Y, Z) in 
the world coordinate system to its coordinates (u, v) 
in the pixel coordinate system. The pinhole camera 
model is shown in Figure 1. 

 

Figure 1: Pinhole camera model. (Photo/Picture credit : 
Original ) 
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Given the coordinates (X, Y, Z) of point P in the 
world coordinate system, the formula for projecting 
this coordinate to the coordinates (u, v) in its pixel 
coordinate system is: 
 

𝑍𝑐 ቈ𝑢𝑣1 = ⎣⎢⎢
⎢⎡ 1𝑑𝑥 0 𝑢0 1𝑑𝑦 𝑣0 0 1 ⎦⎥⎥

⎥⎤ 𝑓 0 00 𝑓 00 0 1    000൩  𝑅 𝑡0ଵ×ଷ 1൨ ൦𝑋𝑌𝑍1൪
= 𝑓௫ 0 𝑢0 𝑓௬ 𝑣0 0 1     000൩  𝑅 𝑡0ଵ×ଷ 1൨ ൦𝑋𝑌𝑍1൪                                 ሺ1ሻ

 

 

Among them, 𝑓௫ 0 𝑢0 𝑓௬ 𝑣0 0 1     000൩  is called the 

intrinsic parameter matrix, and  𝑅 𝑡0ଵ×ଷ 1൨  is called 
the extrinsic parameter matrix. The intrinsic 
parameter matrix is the parameter that describes the 
internal properties of the camera, which includes 
information such as focal length, principal point 
coordinates, and distortion coefficients. For a specific 
camera, these intrinsic parameters are usually fixed 
and do not change with time or space. The extrinsic 
parameter matrix is used to describe the pose 
parameters of the camera in the world coordinate 
system, which changes with the position and pose of 
the camera in space. 

3.2 Parametric Human Body Model 

In the SMPL model, the mesh model of a 3D human 
body model consists of 𝑁 = 6890 vertices, including K = 23 human joints, and the driving relationship of 
each joint to each mesh vertex is described by the 
Blend Weight matrix ωሺ6890 × 24ሻ . The author 
uses PCA (Principal Component Analysis) to reduce 
the dimension of a large number of parameters and 
extracts some parameters that have the greatest 
impact on the body shape and movement of the 
human body model, ultimately achieving the purpose 
of simplifying the number of parameters. For body 
shape, the parameter β ∈ ℝଵ is defined to describe 
height, weight, and thinness. For posture, the 
parameter θ ∈ ℝଷሺାଵሻ is defined, and the axis angle 
is used to represent the rotation of the joint relative to 
the initial posture. The first three parameters control 
the rotation posture of the root orientation, and the 
remaining three parameters each describe the rotation 
axis and angle of a joint. After obtaining a set of 
determined body shape parameters β  and posture 
parameters θ, the human body model can be driven 
using linear blend skinning (LBS) (Khamis, Taylor, 

Shotton, et al., 2015). A schematic diagram of the 
SMPL human body model is shown in Figure 2. 

 

Figure 2: SMPL human body model (Loper, 2024). 

The model used in this paper is the human body 
model SMPL-X (SMPL eXpressive) (Hassan, 
Choutas, Tzionas, et al., 2019), which was improved 
by Pavlakos et al. in 2019 based on the SMPL model. 
It combines the original SMPL model of the body, the 
MANO (hand Model with Articulated and Non-rigid 
deformations) (Potamias, Ploumpis, Moschoglou, 
2023) model of the hand, and the FLAME (Faces 
Learned with an Articulated Model and Expressions) 
(Athar, Shu, and Samaras, 2023) model of the head to 
describe the human body with a unified model. A 
schematic diagram of the SMPL-X human body 
model is shown in Figure 3. 

 
Figure 3: SMPL-X human body model (Pavlakos, et al., 
2019). 

The SMPL-X model uses a standard LBS-driven 
human body model. The mesh model of a 3D human 
body model consists of 𝑁 = 10475  vertices and 
contains 𝐾 = 54 key points (including joints, chin, 
fingers, eyes, etc.). The SMPL-X model can be 
expressed as the following function: 

 Mሺθ, β, ψሻ: ℝ||×|ஒ|×|ந| → ℝଷ ሺ2ሻ 
 
Among them, 𝜃 ∈ ℝଷሺାଵሻ is the posture 

parameter, which includes three types of parameters: 

DAML 2024 - International Conference on Data Analysis and Machine Learning

216



chin parameters, finger parameters, and parameters of 
other body joints. And 𝛽 ∈ ℝଵ  is the body shape 
parameter as in the SMPL model. The new 𝜓 ∈ ℝଵ 
is the facial expression parameter, which is used to 
represent the human expression after dimensionality 
reduction. After PCA dimensionality reduction, the 
author reduced the total number of model parameters 
of SMPL-X to 119, of which 10 are body shape 
parameters, 10 are facial expression parameters, 24 
are hand parameters used to represent finger 
movements, and the remaining 75 are body posture 
parameters used to represent the rotation of the 
remaining key points (body, chin, eyes, etc.). 

3.3 2D Human Posture Detection 

Before reconstructing and optimizing the three-
dimensional model, it is first necessary to perform 
two-dimensional human posture detection on each 
frame image from different perspectives in the video 
and extract the two-dimensional human posture 
information at each perspective. The two-
dimensional detection method used in this paper is the 
MediaPipe Holistic method (Huu, Hong, Dang, et al., 
2023) released by Google engineer Grishchenko in 
2020. A new Pipeline is proposed in MediaPipe 
Holistic, which successfully optimizes the detection 
components of the face, hands, and body, and 
completes the semantic level combination between 
the three components, so that it can complete the 
synchronous detection of human face, hands, and 
posture in real time. The detection results output by 
MediaPipe Holistic includes 33 human posture key 
points, 21 hand movement key points for each hand, 
and 468 facial expression key points, which can 
provide comprehensive and sufficient data support 
for the successful execution of subsequent research 
and analysis work. Figure 4 shows an example of 
MediaPipe Holistic human pose detection. 

 
Figure 4: Example of MediaPipe Holistic human pose 
detection (Kim, Baek, 2023). 

After using MediaPipe Holistic to extract the 2D 
human posture key points of each frame at each 
viewpoint, in order to use it to reconstruct the SMPL-
X model, it is also necessary to find the 
correspondence between the SMPL-X key points and 
the key points output by MediaPipe Holistic to 
complete the mapping between the two models. 
Figure 5 shows key point annotation of body and 
hands in MediaPipe Holistic. 

 

Figure 5: Key point annotation of body and hands in 
MediaPipe Holistic (Kim, Baek, 2023). 

3.4 Residual Function 

3.4.1 Residual Term For Body 

At a specific viewing angle, the residual of the body 
part is calculated by the previously obtained 
reprojected key point 2D coordinates 𝑃௦ and the key 
point 2D coordinates 𝑃௧  obtained by detection. The 
L2 norm is calculated for ሺ𝑃௦ െ 𝑃௧ሻ , and different 
weights ωୠ୭ୢ୷ are designed for different key points 
to optimize the reconstruction effect. 
 𝑑𝑖𝑠ௗ௬ = ωୠ୭ୢ୷ × L2. normሺ𝑃௦ െ 𝑃௧ሻ ሺ3ሻ 

 
Because at a specific viewing angle, the 

confidence C୮ (the probability that the error between 
the calibrated key point and its corresponding real key 
point on the human body is small) of each key point p୧ obtained by 2D human posture detection is not the 
same: some key points have a higher confidence, and 
these key points can be used for fitting optimization; 
while some key points have a lower confidence, that 
is, these key points are likely to be inaccurate and 
have a lower reference value, so it is not accurate to 
use 𝑑𝑖𝑠ௗ௬ as the value of the residual function. In a 
gesture to avoid this problem, this paper only selects 
key points with C୮  0.5 (C୮ is the confidence) for 
residual function calculation. In summary, the 
residual function is as follows (where M  is the 
number of viewing angles): 
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ℒୠ୭ୢ୷ = 1M  𝑑𝑖𝑠ௗ௬    ௪௧ வ.ହ


୨ୀଵ ሺ4ሻ 

3.4.2 Residual Term For Hand 

By taking the L2 norm between the reprojected key 
points and the key points obtained by detection, the 
residual term of the hand can also be obtained. 
However, unlike the calculation of the residual 
function for the body, the calculation of the residual 
function for the hand does not need to consider the 
confidence C୮ . This is because MediaPipe Holistic 
detection will directly discard the key points of the 
hand image with insufficient confidence. Therefore, 
all hand key points are high confidence. In summary, 
the residual function of all views of the two hands is 
averaged to obtain the residual function: ℒ୦ୟ୬ୢ = 12M  𝑑𝑖𝑠ௗଶ

୨ୀଵ ሺ5ሻ 

3.4.3 Residual Term For Face 

This paper uses 478 specific vertices of the human 
body mesh model for fitting optimization. Since all 
key points obtained by face detection are also high-
confidence key points, there is no need to consider the 
confidence C୮. The residual function of all views is 
averaged to obtain the facial residual term: ℒୟୡୣ = 1M  𝑑𝑖𝑠

୨ୀଵ ሺ6ሻ 

3.4.4 Regularization Term 

Since direct training may lead to the problem of 
excessively large parameters, making the model 
susceptible to noise and ultimately leading to 
inaccurate fitting results, this paper uses a 
combination of L1 regularization and L2 
regularization to constrain and penalize the parameter 
size. 

Combining the above three residual terms, the 
final residual function expression is as 
follows:ℒ௧௧ = 𝜔ௗ௬మ × ℒௗ௬ + 𝜔ௗమ × ℒௗ +𝜔_ଶௗ × ℒௗ௬ + 𝜔 × ℒ ሺ7ሻ 

 
 
 

4 EXPERIMENT 

4.1 Dataet 

The CMU Panoptic Dataset is a series of datasets 
released between August 2016 and April 2019. The 
dataset contains 65 video sequences (5.5 hours) and 
1.5 million 3D skeletons (Joo, Liu, Tan, et al., 2015). 
This paper selects the video sequences of the single-
person part as the training dataset. 

The parameters for each set of video sequences 
are as follows: 

(1) 480 VGA cameras with a resolution of 640 × 
480, capturing at 25 fps, all synchronized using a 
hardware clock (Joo, Liu, Tan, et al., 2015). 

(2) 31 HD cameras with a resolution of 1920 × 
1080, capturing at 30 fps, also synchronized using a 
hardware clock and time-aligned with the VGA 
cameras (Joo, Liu, Tan, et al., 2015). 

(3) 10 Kinect Ⅱ sensors, providing 1920 × 1080 
(RGB) and 512 × 424 (depth) resolutions, capturing 
at 30 fps, synchronized both among themselves and 
with the other sensors (Joo, Liu, Tan, et al., 2015). 

(4) 5 DLP projectors, synchronized with the HD 
cameras (Joo, Liu, Tan, et al., 2015). 

The experiment uses the videos of 8 viewpoints in 
the above dataset as the final training dataset input. 
To ensure the consistency of the training data, all 
videos of 8 viewpoints are synchronized. To prevent 
overfitting, the upper limit of the training rounds of 
each frame model is set to 15 rounds. 

4.2 Evaluation Indicators 

This paper selects the values of mean joint position 
error (MPJPE, Mean Per Joint Position Error) and 
reconstruction error (PA-MPJPE, Procrustes Aligned 
MPJPE) as the evaluation indicators of the 
experiment. The accuracy of the algorithm is judged 
by calculating the mean joint position error (MPJPE, 
Mean Per Joint Position Error) and reconstruction 
error (PA-MPJPE, Procrustes Aligned MPJPE) 
between the key point coordinates of the fitted 3D 
human model and the real coordinates of the key 
points given in the data set, and comparing them with 
the full-body motion capture method published by 
Zhang (Zhang, Li, An, et al., 2021). 

On this basis, this experiment also statistically 
analyzes the 3D human reconstruction speed of the 
algorithm and evaluates the efficiency of the 
algorithm based on this indicator. 

DAML 2024 - International Conference on Data Analysis and Machine Learning

218



4.3 Result 

According to the method in the above experiment, the 
3D human body reconstruction was performed on 
several single-person action video sequences in the 
CMU panoramic data set. The final 3D human body 
reconstruction model has a very small visual jitter that 
is almost imperceptible to the naked eye. After the 
model training is completed, it is tested using a test 
set, which consists of multi-view synchronized video 
sequences collected under similar conditions. The 3D 
human body reconstruction effect of the test set is 
shown in Figure 6 below. 

         

Figure 6: 3D reconstruction effect of the test set. 
(Photo/Picture credit: Original) 

From a data perspective, the MPJPE, PA-MPJPE, 
and reconstruction speed collected by the algorithm 
described in this paper are compared with the 
corresponding indicators in the full-body motion 
capture method published by Zhang (Zhang, Li, An, 
et al., 2021). The final experimental results are shown 
in Table 1: 

Table 1 experimental results. 

method MPJPE（
mm） 

PA-MPJPE
（mm） 

Recon-
struction 
speed 
(minutes/f-
rame) 

This paper 24.10 19.83 0.59 
Zhang 24.38 20.06 0.95 

Comparing the experimental results, the MPJPE 
of this paper's method is reduced by about 1.15% and 

the PA-MPJPE is reduced by about 1.12% compared 
with Zhang's full-body motion capture method. 
Therefore, the human body model reconstructed by 
this paper's method is slightly more accurate than 
Zhang's method. In addition, this paper's method has 
a huge improvement in the reconstruction speed of 
the model, which is increased by about 60%. 

In summary, the 3D human body reconstruction 
algorithm proposed in this paper has achieved 
improvements in both accuracy and efficiency. 

5 CONCLUSION 

This paper studies the pinhole camera model, 2D 
human pose detection, uses the MediaPipe Holistic 
method, adopts the SMPL-X model, and finally 
obtains an algorithm for reconstructing a 3D human 
model from synchronized 2D human pose video 
sequences from various angles through deep learning. 
In addition, this paper adds restrictions to the 
parameters of the human model, reduces error 
accumulation by adjusting the relationship between 
the residual function and the parameter optimization, 
and effectively suppresses the instability of the 
model. The experimental results verify that these 
technical improvements have greatly improved the 
stability and reconstruction effect of the model, and 
have achieved good results in both accuracy and 
efficiency. 

From a visual perspective, although the jitter 
observable to the naked eye is extremely subtle and 
almost imperceptible, these jitters may still need to be 
further optimized in extreme application scenarios. 
However, under the existing experimental conditions 
and test sets, the method in this paper has been able 
to achieve high visual stability and reconstruction 
accuracy. 

In future research, it is possible to consider further 
reducing possible jitters by improving the details of 
the model and improving the adaptability of the 
model in more complex scenarios. In addition, the 
versatility and extensibility of the algorithm can also 
be further verified by introducing more different 
types of test sets to evaluate its performance in 
different application scenarios. 
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