
Using Neural Networks to Build an Efficient Classification Model for
Classifying Images in the CIFAR-10 Dataset

Yu Huang
Shenzhen College of International Education, Shenzhen, Guangdong, 518043, China

Keywords: Deep Learning, Machine Learning, Image Classification, Convolutional Neural Network.

Abstract: Image Classification has been a hot topic in recent years, with computer vision becoming essential for many
real-life scenarios in fields like health and security. This paper proposes a Convolutional Neural Network
(CNN) to classify images into separate classes from the Canadian Institute for Advanced Research dataset
(CIFAR-10), with the objectives of achieving high accuracy and low loss. The model is built with repeating
convolutional, pooling, and Normalization layers and is optimized with algorithms like dropout, gradient
descent and early stopping further maximizing efficiency and accuracy of the model. Results show a high
accuracy of 91.2% and a low loss of 0.401 with validation data, suggesting that this model is reliable and
precise. Overall, this study builds an efficient classification model using a Convolutional Neural network and
is used to be tested on the CIFAR-10 dataset, and the results show such architecture is viable in real-life
scenarios.

1 INTRODUCTION

With technological advancements, computer vision
has been on the frontier of artificial intelligence. With
demands from numerous practical applications like
self-driving automobiles, healthcare, and security, the
demand for an efficient, low-loss, and accurate image
classification model has been higher than ever before.
With the constant developments and breakthroughs in
the field of computer vision, this paper aims to
contribute to this growing field by creating a low-loss
and accurate approach to classifying objects into
classes in the Canadian Institute for Advanced
Research (CIFAR) datasets (Krizhevsky, 2009) using
convolutional neural networks (CNN) as a basis.

The Canadian Institute for Advanced Research
datasets contain two datasets, CIFAR-10 and CIFAR-
100, where for CIFAR-10, there are ten classes and
100 classes for CIFAR-100. In each class, it contains
6,000 32x32x3 color images. Even with its low
resolution, this research uses the CIFAR-10 dataset
due to its reasonable amount of images in the dataset
as well as the variety between images in the same
class, reflecting to real-life scenarios of image
classification.

In deep learning architectures, neural networks
(Abiodun et al., 2018) are an essential method in

image classifying and computer vision tasks, as they
create layers and nodes called neurons that resemble
the human brain. Convolutional neural networks
(Wu, 2017; Lei et al., 2019) are a type of feed-forward
neural network that, by using convolution operations
in their convolutional layer to extract information and
locate similarities, can automatically learn
hierarchical features from raw picture data. These
neural Network’s architecture mainly contains
convolutional, pooling, flatten, and dense layers that
each perform specific tasks in the image classifying
process.

The development of CNNs first began in the
1990s with the construction of LeNet (LeCun et al.,
1998), which laid the fundamentals of CNN
architecture. The newer architectures of CNNs were
produced in the 2010s due to the classification
challenge of images, which led to much development
in CNNs for computer vision. In 2012, Krizhevsky
proposed AlexNet (Krizhevsky et al., 2009), which
won the imageNet classification Challenge.
Furthermore, the development of VGGNet
(Simonyan & Zisserman, 2014) by Oxford University
in 2014 suggested smaller kernels in convolutional
layers and stacks, more of which are more efficient
and have better performance than smaller but bigger
kernels. Another breakthrough in CNNs was the
development of ResNet from Microsoft Research,

Huang and Y.
Using Neural Networks to Build an Efficient Classification Model for Classifying Images in the CIFAR-10 Dataset.
DOI: 10.5220/0013511400004619
In Proceedings of the 2nd International Conference on Data Analysis and Machine Learning (DAML 2024), pages 149-153
ISBN: 978-989-758-754-2
Copyright © 2025 by Paper published under CC license (CC BY-NC-ND 4.0)

149

which introduced the idea of residual blocks, which
was extended to more recent architectures like
WideResNet and ResNeXt.

Even with studies conducted on CNNs for many
years, designing and optimizing these models to
achieve top-level accuracy and computational
efficiency is an ongoing challenge and is still desired.
This paper explores the application of classic
convolutional neural network architectures to build
an efficient model for classifying images in the
CIFAR dataset. The proposed approach involves an
in-depth analysis of various neural network
configurations, data augmentation (Taylor &
Nitschke, 2017), and optimizations like dropout (Cai
et al., 2019), early stopping (Prechelt, 2002) and
gradient descent (Kingma & Ba, 2014) with the
ultimate goal of presenting a model that has high
performance. This paper discusses the preparation of
data from CIFAR dataset as well as data
augmentation, the architecture of the neural network
as well as the optimizations that are implemented on
the model. Furthermore, the paper analyses the results
of the model by evaluating its loss and accuracy
through creating and training such a model using the
Keras library from TensorFlow and discusses the
improvements that could be made to this model.

2 METHOD

2.1 Data augmentation from dataset

The dataset this model is trained on is CIFAR-10, a
dataset consisting of 10 classes (airplane, automobile,
automobile, bird, cat, deer, dog, frog, horse, ship,
truck), with 6000 32 by 32 pixel labeled colored
images for each class. Each image contains one main
object and belongs only to one class, meaning the
classes are mutually exclusive.

Data augmentation is performed with the images
from the CIFAR-10 dataset to create a more diverse
range of data. Data augmentation is the process of
generating more data from existing data through
transformations to increase the variety of the final
data.

In the model, data augmentation was performed in
ways including geometric-based transformations with
Horizontal flipping, rotation of the image by 15
degrees to either side, Resizing the image by zooming
in and out by 10 percent, and shifting images
horizontally and vertically by 10 percent. The model
also undergoes colour-based Transformations like
brightness adjustments by changing the color

brightness up and down by 10 percent and Noise
injections by applying random Gaussian noise to the
image.

2.2 Architecture

The architecture of the convolutional neural network
contains 26 layers, consisting mainly of
convolutional, pooling, normalization, Flatten, and
dense layers, as shown in Figure 1. The architecture
repeats eight times of convolutional layer with a 3 by
3 kernel and a normalization layer, with Max pooling
layers and a dropout layer repeating every two cycles.
Then the model uses the Flatten layer to transfer the
input into 1-dimensional for the Dense layers to
classify images into their respective classes.

The model architecture consists of eight
convolutional layers, all with a kernel size of 3 by 3
to extract key information and find similarities in data.
During each convolution process, a kernel traverses
across the input data, and for each of the 3 by 3 pixels
on the image, the pixel values are then performed dot
product with the filter (multiplying corresponding
elements and summing up) and put into feature maps.
With each layer, normalization is performed with the
ReLU algorithm, which creates non-linearity into the
computation.

In order to stabilize and optimise training, the
batch normalization layer normalizes the
convolutional layer's output. Data is transformed to a
range between 0 and 1 to execute batch
normalization.

Pooling layers are layers that reduce the
dimension of input by applying pooling operations
like maximum pooling and average pooling. The
model uses the maximum pooling method which is a
2 by 2 filter that also slides across the input in the
model. The operation finds the maximum value in
each 2 by 2 on the image and outputs a map of the
maximum in each kernel.

Next is the flattened layer, which Converts the 3-
dimensional input into a 1-dimensional vector to
reduce spatial complexity as well as maintain the
usefulness of the information. This is done by
reshaping the 3-dimensional input to a 1-dimensional
output.

Dense Layers are fully connected layers in which
every neuron is linked to every activation from the
layer before it. Ten output units make up the final
Dense Layer, providing options for every class. To
get the required quantity of output, the dense layer
uses the dot product, which involves taking an input,
multiplying it by the weight, and adding bias.

DAML 2024 - International Conference on Data Analysis and Machine Learning

150

Figure 1: Architecture of model (Picture credit : Original)

2.3 Optimizations

The model contains three main optimization methods,
dropout, early stopping, and Gradient descent which
are used to reduce the time of training as well as
improve accuracy.

During training, a portion of the input units are
randomly dropped as part of the dropout optimization
technique, which aims to prevent overfitting. In the
model, the dropout has an increasing chance of
dropping a neuron per layer, from a 20% rate in the
first dropout layer to 50% in the last with steps of
10%, which makes the dropped neuron not contribute
to the result. This is beneficial as this allows neurons
to learn without dependence on other neurons.

Early stopping is an algorithm that stops the
training process early when little is changed in the
model’s weights and values to prevent overfitting as
well as improve the time efficiency of the model, as
the training time is reduced. Early stopping consists
of a patience value, which is the number of epochs the
model waits before early stopping happens.

Stochastic gradient descent (SGD), a technique
for locating local minima of parameter loss, is also
used in the model. This is accomplished by
computing the partial derivatives to update the
parameters and determining the gradient of the loss
function with respect to each parameter. Every epoch,
this process is carried out again until convergence
(local minimum of loss) is achieved. The model
employs a particular gradient descent technique based
on the Adam algorithm, which reduces memory

consumption and enhances performance by taking
into account both adaptive learning rates to handle
changing data and the exponentially weighted
average to find the minimum more quickly.

3 RESULTS

Results are measured using the validation dataset of
the images, where the model has not seen these
images before. The performance of the model is
tested on its accuracy and its loss. The experiment
was carried out on a Mac computer with a m2 CPU
and 16GB of memory, with a total training time of 4
hours 50 minutes.

The model is early stopped at epoch 273 with little
change in its parameters. Results show a 91.14%
accuracy and a loss of 0.4014 on the testing data in
the final epoch, as shown in Table 1.

Table 1: Loss and accuracy of epoch

Epoch Loss Accuracy
1 1.701 0.422

50 0.638 0.858
100 0.481 0.892
150 0.42 0.903
200 0.401 0.911
250 0.404 0.910
273 0.401 0.912

Using Neural Networks to Build an Efficient Classification Model for Classifying Images in the CIFAR-10 Dataset

151

Figure 2 is loss per epoch. The observation that
both training and validation loss curves exhibit a
gradual decline with the increasing number of
training epochs is a common trend in the training
process of machine learning models. This pattern
indicates that the model is learning and improving its
ability to fit the training data. The fact that the losses
reach their minimum at the 250th epoch suggests that
the model has been adequately trained and has found
a set of weights that provide a good balance between
fitting the training data and not overfitting to it. The
training and validation loss curves are essential for
visualizing the model's learning process. The training
loss typically decreases as the model learns the
patterns in the training data. The validation loss,
which is computed on a separate set of data not used
in training, provides an estimate of the model's
performance on unseen data.

Figure 2: Loss per epoch (Picture credit : Original)

Figure 3 is accuracy per Epoch. It can be seen that
the training loss and the validation loss show a
gradual increase trend with the increase of epochs,
and reach the maximum accuracy at 250 epochs. So
this training process is valid.

Figure 3: Accuracy per epoch (Picture credit : Original)

4 CONCLUSIONS

In this work, a CNN model for classifying images into
ten groups using the CIFAR-10 dataset is developed.
Eight convolutional layers, eight batch normalisation
layers, four max-pooling layers, and dropout layers
are sandwiched between every two convolution and
batch normalisation levels in this CNN model
architecture. In order to further reduce training time
and improve performance by preventing overfitting,
the model additionally employs early stopping. When
the program is backpropagated, the Adam optimizer
method allows faster and better memory usage when
minimizing the loss function. When trained, a result
of 91.14% accuracy shows that this model can
accurately classify images into its classes. The model
have many improvements by increasing the number
of layers, which could lead to improved accuracy but
increases complexity as well as risk to overfitting. In
the future, with more efficient and accurate
algorithms, image classification could reach new
accuracy and greater efficiency levels.

REFERENCES

Abiodun, O. I., Jantan, A., Omolara, A. E., Dada, K. V., Mo
Mohamed, N. A., & Arshad, H. (2018). State-of-the-art
in artificial neural network applications: A survey.
Heliyon, 4(11).

Wu, J. (2017). Introduction to convolutional neural
networks. National Key Lab for Novel Software
Technology. Nanjing University. China, 5(23), 495.

Cai, S., Shu, Y., Chen, G., Ooi, B. C., Wang, W., & Zhang,
M. (2019). Effective and efficient dropout for deep
convolutional neural networks.

Kingma, D. P., & Ba, J. (2014). Adam: A method for
stochastic optimization.

Krizhevsky, A. (2009). Learning Multiple Layers of
Features from Tiny Images.

Krizhevsky, A., & Hinton, G. (2010). Convolutional deep
belief networks on cifar-10. Unpublished manuscript,
40(7), 1-9.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012).
Imagenet classification with deep convolutional neural
networks. Advances in neural information processing
systems, 25.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998).
Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11), 2278-
2324.

Lei, X., Pan, H., & Huang, X. (2019). A dilated CNN model
for image classification. IEEE Access, 7, 124087–
124095.

Prechelt, L. (2002). Early stopping-but when?. In Neural
Networks: Tricks of the trade (pp. 55-69). Berlin,
Heidelberg: Springer Berlin Heidelberg.

DAML 2024 - International Conference on Data Analysis and Machine Learning

152

Simonyan, K., & Zisserman, A. (2014). Very deep
convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556.

Taylor, L., & Nitschke, G. (2017). Improving deep learning
using generic data augmentation.

Using Neural Networks to Build an Efficient Classification Model for Classifying Images in the CIFAR-10 Dataset

153

