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Abstract: Image Classification has been a hot topic in recent years, with computer vision becoming essential for many 
real-life scenarios in fields like health and security. This paper proposes a Convolutional Neural Network 
(CNN) to classify images into separate classes from the Canadian Institute for Advanced Research dataset 
(CIFAR-10), with the objectives of achieving high accuracy and low loss. The model is built with repeating 
convolutional, pooling, and Normalization layers and is optimized with algorithms like dropout, gradient 
descent and early stopping further maximizing efficiency and accuracy of the model. Results show a high 
accuracy of 91.2% and a low loss of 0.401 with validation data, suggesting that this model is reliable and 
precise. Overall, this study builds an efficient classification model using a Convolutional Neural network and 
is used to be tested on the CIFAR-10 dataset, and the results show such architecture is viable in real-life 
scenarios.

1 INTRODUCTION 

With technological advancements, computer vision 
has been on the frontier of artificial intelligence. With 
demands from numerous practical applications like 
self-driving automobiles, healthcare, and security, the 
demand for an efficient, low-loss, and accurate image 
classification model has been higher than ever before. 
With the constant developments and breakthroughs in 
the field of computer vision, this paper aims to 
contribute to this growing field by creating a low-loss 
and accurate approach to classifying objects into 
classes in the Canadian Institute for Advanced 
Research (CIFAR) datasets (Krizhevsky, 2009) using 
convolutional neural networks (CNN) as a basis.  

The Canadian Institute for Advanced Research 
datasets contain two datasets, CIFAR-10 and CIFAR-
100, where for CIFAR-10, there are ten classes and 
100 classes for CIFAR-100. In each class, it contains 
6,000 32x32x3 color images. Even with its low 
resolution, this research uses the CIFAR-10 dataset 
due to its reasonable amount of images in the dataset 
as well as the variety between images in the same 
class, reflecting to real-life scenarios of image 
classification.  

In deep learning architectures, neural networks 
(Abiodun et al., 2018) are an essential method in 

image classifying and computer vision tasks, as they 
create layers and nodes called neurons that resemble 
the human brain. Convolutional neural networks 
(Wu, 2017; Lei et al., 2019) are a type of feed-forward 
neural network that, by using convolution operations 
in their convolutional layer to extract information and 
locate similarities, can automatically learn 
hierarchical features from raw picture data. These 
neural Network’s architecture mainly contains 
convolutional, pooling, flatten, and dense layers that 
each perform specific tasks in the image classifying 
process.  

The development of CNNs first began in the 
1990s with the construction of LeNet (LeCun et al., 
1998), which laid the fundamentals of CNN 
architecture. The newer architectures of CNNs were 
produced in the 2010s due to the classification 
challenge of images, which led to much development 
in CNNs for computer vision. In 2012, Krizhevsky 
proposed AlexNet (Krizhevsky et al., 2009), which 
won the imageNet classification Challenge. 
Furthermore, the development of VGGNet 
(Simonyan & Zisserman, 2014) by Oxford University 
in 2014 suggested smaller kernels in convolutional 
layers and stacks, more of which are more efficient 
and have better performance than smaller but bigger 
kernels. Another breakthrough in CNNs was the 
development of ResNet from Microsoft Research, 
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which introduced the idea of residual blocks, which 
was extended to more recent architectures like 
WideResNet and ResNeXt. 

Even with studies conducted on CNNs for many 
years, designing and optimizing these models to 
achieve top-level accuracy and computational 
efficiency is an ongoing challenge and is still desired. 
This paper explores the application of classic 
convolutional neural network architectures to build 
an efficient model for classifying images in the 
CIFAR dataset. The proposed approach involves an 
in-depth analysis of various neural network 
configurations, data augmentation (Taylor & 
Nitschke, 2017), and optimizations like dropout (Cai 
et al., 2019), early stopping (Prechelt, 2002) and 
gradient descent (Kingma & Ba, 2014) with the 
ultimate goal of presenting a model that has high 
performance. This paper discusses the preparation of 
data from CIFAR dataset as well as data 
augmentation, the architecture of the neural network 
as well as the optimizations that are implemented on 
the model. Furthermore, the paper analyses the results 
of the model by evaluating its loss and accuracy 
through creating and training such a model using the 
Keras library from TensorFlow and discusses the 
improvements that could be made to this model. 

2 METHOD 

2.1 Data augmentation from dataset 

The dataset this model is trained on is CIFAR-10, a 
dataset consisting of 10 classes (airplane, automobile, 
automobile, bird, cat, deer, dog, frog, horse, ship, 
truck), with 6000 32 by 32 pixel labeled colored 
images for each class. Each image contains one main 
object and belongs only to one class, meaning the 
classes are mutually exclusive. 

Data augmentation is performed with the images 
from the CIFAR-10 dataset to create a more diverse 
range of data. Data augmentation is the process of 
generating more data from existing data through 
transformations to increase the variety of the final 
data. 

In the model, data augmentation was performed in 
ways including geometric-based transformations with 
Horizontal flipping, rotation of the image by 15 
degrees to either side, Resizing the image by zooming 
in and out by 10 percent, and shifting images 
horizontally and vertically by 10 percent. The model 
also undergoes colour-based Transformations like 
brightness adjustments by changing the color 

brightness up and down by 10 percent and Noise 
injections by applying random Gaussian noise to the 
image. 

2.2 Architecture 

The architecture of the convolutional neural network 
contains 26 layers, consisting mainly of 
convolutional, pooling, normalization, Flatten, and 
dense layers, as shown in Figure 1. The architecture 
repeats eight times of convolutional layer with a 3 by 
3 kernel and a normalization layer, with Max pooling 
layers and a dropout layer repeating every two cycles. 
Then the model uses the Flatten layer to transfer the 
input into 1-dimensional for the Dense layers to 
classify images into their respective classes. 

The model architecture consists of eight 
convolutional layers, all with a kernel size of 3 by 3 
to extract key information and find similarities in data. 
During each convolution process, a kernel traverses 
across the input data, and for each of the 3 by 3 pixels 
on the image, the pixel values are then performed dot 
product with the filter (multiplying corresponding 
elements and summing up) and put into feature maps. 
With each layer, normalization is performed with the 
ReLU algorithm, which creates non-linearity into the 
computation. 

In order to stabilize and optimise training, the 
batch normalization layer normalizes the 
convolutional layer's output. Data is transformed to a 
range between 0 and 1 to execute batch 
normalization. 

Pooling layers are layers that reduce the 
dimension of input by applying pooling operations 
like maximum pooling and average pooling. The 
model uses the maximum pooling method which is a 
2 by 2 filter that also slides across the input in the 
model. The operation finds the maximum value in 
each 2 by 2 on the image and outputs a map of the 
maximum in each kernel. 

Next is the flattened layer, which Converts the 3-
dimensional input into a 1-dimensional vector to 
reduce spatial complexity as well as maintain the 
usefulness of the information. This is done by 
reshaping the 3-dimensional input to a 1-dimensional 
output. 

Dense Layers are fully connected layers in which 
every neuron is linked to every activation from the 
layer before it. Ten output units make up the final 
Dense Layer, providing options for every class. To 
get the required quantity of output, the dense layer 
uses the dot product, which involves taking an input, 
multiplying it by the weight, and adding bias. 
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Figure 1: Architecture of model (Picture credit : Original)

2.3 Optimizations 

The model contains three main optimization methods, 
dropout, early stopping, and Gradient descent which 
are used to reduce the time of training as well as 
improve accuracy. 

During training, a portion of the input units are 
randomly dropped as part of the dropout optimization 
technique, which aims to prevent overfitting. In the 
model, the dropout has an increasing chance of 
dropping a neuron per layer, from a 20% rate in the 
first dropout layer to 50% in the last with steps of 
10%, which makes the dropped neuron not contribute 
to the result. This is beneficial as this allows neurons 
to learn without dependence on other neurons.  

Early stopping is an algorithm that stops the 
training process early when little is changed in the 
model’s weights and values to prevent overfitting as 
well as improve the time efficiency of the model, as 
the training time is reduced. Early stopping consists 
of a patience value, which is the number of epochs the 
model waits before early stopping happens. 

Stochastic gradient descent (SGD), a technique 
for locating local minima of parameter loss, is also 
used in the model. This is accomplished by 
computing the partial derivatives to update the 
parameters and determining the gradient of the loss 
function with respect to each parameter. Every epoch, 
this process is carried out again until convergence 
(local minimum of loss) is achieved. The model 
employs a particular gradient descent technique based 
on the Adam algorithm, which reduces memory 

consumption and enhances performance by taking 
into account both adaptive learning rates to handle 
changing data and the exponentially weighted 
average to find the minimum more quickly. 

3 RESULTS 

Results are measured using the validation dataset of 
the images, where the model has not seen these 
images before. The performance of the model is 
tested on its accuracy and its loss. The experiment 
was carried out on a Mac computer with a m2 CPU 
and 16GB of memory, with a total training time of 4 
hours 50 minutes.  

The model is early stopped at epoch 273 with little 
change in its parameters. Results show a 91.14% 
accuracy and a loss of 0.4014 on the testing data in 
the final epoch, as shown in Table 1.  

Table 1: Loss and accuracy of epoch 

Epoch Loss Accuracy 
1 1.701 0.422 

50 0.638 0.858 
100 0.481 0.892 
150 0.42 0.903 
200 0.401 0.911 
250 0.404 0.910 
273 0.401 0.912
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Figure 2 is loss per epoch. The observation that 
both training and validation loss curves exhibit a 
gradual decline with the increasing number of 
training epochs is a common trend in the training 
process of machine learning models. This pattern 
indicates that the model is learning and improving its 
ability to fit the training data. The fact that the losses 
reach their minimum at the 250th epoch suggests that 
the model has been adequately trained and has found 
a set of weights that provide a good balance between 
fitting the training data and not overfitting to it. The 
training and validation loss curves are essential for 
visualizing the model's learning process. The training 
loss typically decreases as the model learns the 
patterns in the training data. The validation loss, 
which is computed on a separate set of data not used 
in training, provides an estimate of the model's 
performance on unseen data. 

 
Figure 2: Loss per epoch (Picture credit : Original) 

Figure 3 is accuracy per Epoch. It can be seen that 
the training loss and the validation loss show a 
gradual increase trend with the increase of epochs, 
and reach the maximum accuracy at 250 epochs. So 
this training process is valid. 

 
Figure 3: Accuracy per epoch (Picture credit : Original) 

4 CONCLUSIONS 

In this work, a CNN model for classifying images into 
ten groups using the CIFAR-10 dataset is developed. 
Eight convolutional layers, eight batch normalisation 
layers, four max-pooling layers, and dropout layers 
are sandwiched between every two convolution and 
batch normalisation levels in this CNN model 
architecture. In order to further reduce training time 
and improve performance by preventing overfitting, 
the model additionally employs early stopping. When 
the program is backpropagated, the Adam optimizer 
method allows faster and better memory usage when 
minimizing the loss function. When trained, a result 
of 91.14% accuracy shows that this model can 
accurately classify images into its classes. The model 
have many improvements by increasing the number 
of layers, which could lead to improved accuracy but 
increases complexity as well as risk to overfitting. In 
the future, with more efficient and accurate 
algorithms, image classification could reach new 
accuracy and greater efficiency levels. 
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