
Task Scheduling for Heterogeneous Systems Using a Hybrid Deep
Neural Network and Genetic Algorithm Approach

Yutao Han a
Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada

Keywords: Heterogeneous System, Task Scheduling, Deep Neural Network, Genetic Algorithm.

Abstract: Task scheduling in heterogeneous computing systems is a highly complex and challenging problem due to
the diverse architectures and varying computational capabilities of different hardware resources. Efficiently
allocating tasks to these resources to optimize performance is a significant challenge in such environments.
This study addresses this challenge by combining the deep neural network with the genetic algorithm to create
an efficient task scheduling approach. The research focuses on constructing a deep neural network that
progressively learns from the task scheduling schemes generated by the genetic algorithm, aiming to
accelerate the scheduling process. The method involves using the genetic algorithm to generate initial
scheduling solutions and training a Deep Neural Networks (DNN) to learn from these solutions. The results
show that it is difficult for the network to fully reproduce the performance of genetic algorithm-based
scheduling, but the network significantly reduces the time required to generate effective scheduling plans.
This hybrid model highlights the potential of leveraging machine learning techniques to enhance the
efficiency of task scheduling in heterogeneous computing systems.

1 INTRODUCTION

With the rise of big data, machine learning, and real-
time analytics, the need for higher performance and
specialized processing capabilities has become more
urgent. Traditional CPU-based architectures struggle
with the diverse and intensive workloads these fields
demand (Lee et al., 2010). Heterogeneous computing
systems have emerged to solve these challenges by
integrating different types of processors, such as
GPUs, FPGAs, and specialized accelerators, into a
single system. This approach utilizes the unique
strengths of each processor to significantly improve
performance and efficiency. Since each processor has
its own execution logic and advantages, an
appropriate task scheduling approach among the
different processors becomes critical in
heterogeneous systems to achieve maximum
utilization.

A proper scheduling plan should assign tasks to
different processors/machines effectively which can
minimize the total processing time of all jobs. Due to
the dependencies of tasks in the real world,
scheduling has been proven to be an NP-complete

a https://orcid.org/0009-0006-1970-5731

problem (Ullman, 1975). According to the huge
solution space, complex constraints and multi-
objective optimization characteristics, the genetic
algorithm (GA) is suitable for scheduling problems.

Researchers have developed updates for different
procedures of the basic genetic algorithm. The most
intuitive approach to improve is having more
reasonable population initialization and adaptive
parameters for mutation/crossing to increase the
convergence speed (Fang et al., 2020). HGAAP
involves a heuristic algorithm like HEFT to generate
good initial solutions as the population based on the
earliest finish time (Ding et al., 2017). Another
approach is replicating individuals with high fitness
to the next generation to increase the probability of
keeping outstanding genes (Cheng & Xu, 2020).
Besides GA, the list scheduling algorithm is also
famous for heterogeneous computing scheduling.
PSLS further expands the basic list algorithm with a
downward length table (DLT), which is used to
measure the time difference between a task being
affected by its subsequent tasks when it is executed
on any processor (Zhao et al., 2019). The selection of
processors will depend on the DLT, allowing this

Han and Y.
Task Scheduling for Heterogeneous Systems Using a Hybrid Deep Neural Network and Genetic Algorithm Approach.
DOI: 10.5220/0013510800004619
In Proceedings of the 2nd International Conference on Data Analysis and Machine Learning (DAML 2024), pages 137-143
ISBN: 978-989-758-754-2
Copyright © 2025 by Paper published under CC license (CC BY-NC-ND 4.0)

137

algorithm to consider the global effect when
assigning tasks. An algorithm also enhances task
prioritization by using an improved weight that
considers execution time differences across
processors and incorporates communication costs.
Then selecting processors by a randomized decision
mechanism of balancing local and global
optimizations (AlEbrahim & Ahmad, 2017).

Although the above methods are effective and
efficient, generalization is a big defect for them. The
optimal solutions yielded by applying algorithms on
a specific structure of computing tasks are not helpful
for other different structures. All of them need to be
re-evaluated from the beginning. To improve the
generalization, the artificial neural network (ANN)
based scheduler has been introduced. Based on the
statistics of CPU instructions and threads as
parameters, a lightweight single-layer ANN can be
constructed to predict which processors different
tasks should be assigned to (Gupta et al., 2020).
While ANNs are promising in making quick
decisions based on learned patterns, their training
from scratch can be computationally expensive and
challenging.

This research proposes a hybrid scheduling
approach that combines the deep neural network
(DNN) with GA to leverage the strengths of both
methods. The DNN is trained from scratch initially.
In the early stages, GA plays a critical role in
optimizing task scheduling, and the solutions are then
used to train the DNN. The DNN gradually learns to
predict efficient scheduling strategies based on GA's
feedback. Over time as the DNN becomes more
proficient, the scheduler will more depend on the
DNN to improve the system's overall efficiency and
capability of generalization. The training process of
DNN is similar to supervised learning where is target
is produced by GA. This approach also does not
require a pre-train network.

The main objective of this research is to develop
a robust and efficient task scheduling framework that
can adapt to the dynamic nature of heterogeneous
computing environments. By combining the rapid
decision-making capabilities of DNNs with the
optimization power of GA, this approach aims to
achieve a balance between computational efficiency
and scheduling accuracy. This study will evaluate the
proposed method against traditional scheduling
algorithms to demonstrate its effectiveness in
handling complex, dependent tasks within a
heterogeneous computing system.

2 METHODOLOGY

This methodology addresses task scheduling in
heterogeneous systems using a combination of DNN
and GA. The task scheduling problem is modelled as
a Directed Acyclic Graph (DAG), with tasks assigned
to processors based on computation and
communication costs. The DNN predicts task
allocations through learning from the GA's solution,
while the GA optimizes scheduling plans to minimize
execution time.

2.1 Scheduling Problem Modelling

The task scheduling problem is often modelled as a
Directed Acyclic Graph (DAG), which is used
broadly in research (Ding et al., 2017; Cheng & Xu,
2020; Heydari & Shahhoseini, 2011; Zhao et al.,
2019). Each node in DAG represents a task and the
arrowed edges between nodes indicate the
dependencies of tasks. There are communication
costs for dependent tasks, shown as edge weight in
the graph. The acyclic nature of the graph ensures that
no state is revisited, thus reflecting the progressive
nature of scheduling tasks. When running a task
scheduler on a heterogeneous system consisting of
multiple processors, different tasks will have different
performances on different. This also needs to be
considered.

Due to the above, a heterogeneous system could
be presented by 𝑷, a set of 𝒑 processors where each
one is denoted as 𝒑𝒊. A task scheduling problem could
be defined as 𝑮 = (𝑻, 𝑬). 𝑻 is the set of tasks needed
to execute and each task is denoted as 𝒕𝒊. There will
be a list of length 𝒑 encoded in each node,
representing the computation cost of the task 𝒕𝒊 on
each processor 𝒑𝒋 . 𝑬 is the set of edges including
weights. Each edge from node 𝒊 to node 𝒋 is denoted
as 𝒆𝒊𝒋 and its value is the communication cost from
task 𝒕𝒊 to 𝒕𝒋 if these two tasks are not executing on the
same processor. The paper assumes the number of
tasks is constant, but the structure of the DAG could
be any. Figure 1 gives an example instance of a
scheduling problem of six tasks on a heterogeneous
system of three processors.

Based on the task scheduling problem, a
scheduling plan could be defined as assigning each
task a processor to execute. The execution order
follows the topological order to satisfy the
dependencies between tasks.

DAML 2024 - International Conference on Data Analysis and Machine Learning

138

Figure 1: A DAG example with communication costs and
the computation costs for each task on each processor.
(Picture credit : Original)

2.2 Deep Neural Network

In this research, the DNN architecture is inspired by
the encoder-decoder structure with graph attention
network (GAT) and multi-head attention (Lee et al.,
2021). Figure 2 shows the overview of the structure.
The feature extractor layer of the proposed DNN will
receive the computation cost of all tasks on all
processors and the communication cost among tasks.
For tasks that are not the child task of the current one,
simply set the communication cost to 0. There will
be affine operations on two types of costs, concating
the result gives the initial task representation vectors.
The encoder then leverages multiple GAT layers to
encode the task relationships into each task vector.
The final vector representation will be the sum of the
normal GAT result and inversed graph GAT result to
have a better task feature embedding from the given
DAG structure.

The allocation predictor of the DNN will receive
the features of each task from the extractor and use

the attention mechanism to predict the allocation. For
each task, it combines embeddings from previous and
subsequent tasks, along with the last task's
embedding, into a context vector. This context vector
is used to query the embeddings via multi-head
attention. Then the attention output of each task is
passed through the corresponding fully connected
layer to produce logits. With Softmax, the decoder
will finally produce processor allocation probability
for each task as the final output of the network. A
scheduling plan could be derived by taking the
argmax of probabilities as the allocated processor for
each task.

Since the output is probabilities, the scheduling
problem could be treated as a classification problem.
Based on task features, the DNN will predict which
processor (class) should a task be allocated to. The
loss function is the sum of Cross Entropy Loss of each
task prediction. Moreover, to ensure the property of
processors (classes) remain the same, for each input
DAG, the ID numbers of processors are always sorted
by ascending computation costs, which means that, 𝒑଴ is one with minimum computation cost, 𝒑ଵ is the
one with second minimum computation cost, and so
on.

2.3 Genetic Algorithm

GA is an optimization algorithm that searches for the
optimal solution in the possible solution space by
simulating biological evolution mechanisms. In this
research, the GA is implemented as following. The
algorithm first generates an initial population of
random solutions, where each individual represents a
possible scheduling plan.

Figure 2: Structure of the DNN to predict processor allocation probability of each task. (Picture credit : Original)

Task Scheduling for Heterogeneous Systems Using a Hybrid Deep Neural Network and Genetic Algorithm Approach

139

After the population initialization, tournament is
used for selection. Each tournament will randomly
choose three individuals and only keep the one with
best fitness. Since the goal is finding the best

scheduling plan, this research uses the Makespan as
the fitness of each plan, which could be calculated
with the following formulas:

𝑀𝑎𝑘𝑒𝑆𝑝𝑎𝑛 = 𝑀𝑎𝑥௣൫Execute𝑇𝑖𝑚𝑒(𝑝)൯ (1)
 𝐸𝑥𝑒𝑐𝑢𝑡𝑒𝑇𝑖𝑚𝑒(𝑝) = 𝑀𝑎𝑥௧∈௣൫𝐸𝑛𝑑𝑇𝑖𝑚e(𝑡)൯ (2)
 𝑆𝑡𝑎𝑟𝑡𝑇𝑖𝑚𝑒(𝑡) = 𝑀𝑎𝑥௨∈௣௔௥௘௡௧(௧)൫𝐸𝑛𝑑𝑇𝑖𝑚𝑒(𝑢) + 𝐶𝑜𝑚𝑚(𝑢, 𝑡)൯ (3)
 𝐸𝑛𝑑𝑇𝑖𝑚𝑒(𝑡) = 𝑆𝑡𝑎𝑟𝑡𝑇𝑖𝑚𝑒(𝑡) + 𝐶𝑜𝑠𝑡(𝑡) (4)
 𝐶𝑜𝑚𝑚(𝑢, 𝑡) = ൜𝐶𝑜𝑚𝑚(𝑢, 𝑡), 𝑢, 𝑡 𝑎𝑟𝑒 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 𝑜𝑛 𝑎 𝑠𝑎𝑚𝑒 𝑝0, otherwise (5)

where 𝒑 represents the processor, 𝒕 ∈ 𝒑 are tasks
that allocated to processor 𝒑 , 𝑪𝒐𝒔𝒕(𝒕) is the
computation cost of task t on the processor it belongs
to, and 𝑪𝒐𝒎𝒎(𝒖, 𝒕) is the communication cost
between task 𝒖 and its child task 𝒕. Notes that the
communication costs only occur when these two tasks
are executed on different processors. These formulas
show that, Makespan of a scheduling plan is the
greatest execution time of the tasks among all
processors.

In the next step, the algorithm will sequentially
choose two individuals from the selection above to do
crossing and mutation to generate offspring. For
crossing, two individuals will swap cells after a
randomly selected index. Since the cells are always
ordered in tasks’ topological order, therefore the new
offspring will not contain cells with duplicate tasks or
cells with missing tasks. For mutation, the algorithm
will randomly allocate a new processor to the task in
each cell of every individual in the population.

The algorithm also takes advantages from the
method of saving elite individuals (Ding et al., 2017).
The elite group consists of the top 10% of individuals
with the best fitness in the population. After offspring
generation, the new population will be created by
concatenating the elite group and all offspring, and
the best individual in the new population will be
recorded. After running for a specified number of
generations, the algorithm will return the individual
with the best fitness during this period.

2.4 Combination of DNN and GA

At the earlier stage, the scheduling model provided in
this paper mainly depends on GA with long
generation time to product qualitied schedule plan. As
the DNN’s loss and the Makespan difference between
DNN and GA’s scheduling plan converge, the model

can start to use DNN for inference. Depending on the
performance of DNN’s inferred result, the model can
gradually decrease the number of generations or even
eliminate the application of GA to accelerate the
entire scheduling process.

3 RESULT

3.1 Performance of DNN

This research runs through some experiments to
check if the designed network is able to converge and
learn from the GA's scheduling plan. There are three
groups are tested: (20, 3), (50, 5), and (100, 10),
where the first number of each group is the number of
tasks, and the second one is the number of processors.
1500 DAGs are generated randomly for each test
group for training, with range of computation cost
being 1 to 20 and range of communication cost being
1 to 10. There will be only one DAG input for each
epoch to simulate the training process while GA
doing task scheduling in the real world. The
population size is set to 200 for all testing groups, and
the generations are set as 200, 350, 500 iterations for
tasks numbers of 20, 50, and 100 respectively.

Figure 3, 4, 5, 6, 7, and 8 demonstrate the loss
during training process and the Makespan difference
between DNN and GA’s scheduling plan for each test
group. It could be observed that the performance of
the DNN remains the same after around 1000 epochs’
training. Since GA is a heuristic method that explores
solutions through stochastic search, the generated
targets lack a consistent structure or coherent
scheduling rules, which causes the instability of the
DNN's performance. This is the biggest limitation of
the model proposed in this research. Despite the

DAML 2024 - International Conference on Data Analysis and Machine Learning

140

fluctuations observed in both the training loss and
makespan difference, the overall downward trend
demonstrates that the network can capture some
useful patterns from the input data and learn effective
scheduling strategies to a certain extent.

Figure 3: Training loss of test group (20, 3).
(Picture credit : Original)

Figure 4: Training loss of test group (50, 5).
(Picture credit : Original)

Figure 5: Training loss of test group (100, 10).
(Picture credit : Original)

Figure 6: Makespan difference between DNN and GA’s
scheduling plan during training of test group (20, 3).
(Picture credit : Original)

Figure 7: Makespan difference between DNN and GA’s
scheduling plan during training of test group (50, 5).
(Picture credit : Original)

Figure 8: Makespan difference between DNN and GA’s
scheduling plan during training of test group (100, 10).
(Picture credit : Original)

1000 DAGs are also randomly generated for each
task group for evaluation. Figure 9, 10, and 11 shows
the evaluation result. Combined with Figure 6, 7, and
8, it could be derived that test groups (20, 3) and (100,
10) have smaller Makespan difference and better
performance. Group (20, 3) has the minimum number
of tasks, which reduces the complexity of the
scheduling problem. Suboptimal scheduling plans do
not result in significant Makespan differences. For the
group (100, 10), while the problem complexity
increases due to the larger number of tasks, the
availability of more processors does increase in
trainable parameters which allow the network to
capture more patterns.

Figure 9: Makespan difference between DNN and GA’s
scheduling plan during evaluation of test group (20, 3).
(Picture credit : Original)

Task Scheduling for Heterogeneous Systems Using a Hybrid Deep Neural Network and Genetic Algorithm Approach

141

Figure 10: Makespan difference between DNN and GA’s
scheduling plan during evaluation of test group (50, 5).
(Picture credit : Original)

Figure 11: Makespan difference between DNN and GA’s
scheduling plan during evaluation of test group (100, 10).
(Picture credit : Original)

3.2 Acceleration of Using DNN

Overall, the scheduling plans generated by the DNN
still show a great Makespan difference compared to
the GA-generated optimal solutions. Therefore, the
model still needs to rely on GA to do further
optimization. However, since the DNN’s output
already has relatively good fitness, the entire
scheduling process could be accelerated by using the
DNN’s output to create the initial population and
reducing the number of generations for GA.

This research also runs experiments to compare
the performance of hybrid and pure GA models. For
the hybrid model, after obtaining outputs from DNN,
half of the initial population used in GA is generated
by mutating DNN’s output, and the second half is
randomly generated. Then running GA based on this
initial population with half the number of generations.
Table 1 shows the time consumption between these
two models. Figure 12, 13, and 14 presents the
Makespan difference between these two models.

Even though GA uses only half the number of
generations in the hybrid model, the resulting
scheduling plans have a minimal Makespan
difference compared to those generated by the pure
GA. The reduction in generations leads to a
significant speedup. The hybrid model is nearly twice
as fast as the pure GA, with the DNN's inference time

being almost negligible. This highlights the efficiency
of using the DNN as a pre-processing step to guide
GA, ultimately reducing the computational burden
while maintaining competitive performance in
scheduling quality.

Table 1: Time consumption between the hybrid and pure
GA model. (Table credict: Original)

 Hybrid Pure GA Epochs
Test group

(20, 3)
662.366
seconds

1292.870
seconds 1000

Test group
(50, 5)

5125.380
seconds

10274.914
seconds 1000

Test group
(100, 10)

11312.046
seconds

22949.441
seconds 500

Figure 12: Makespan difference between the hybrid and
pure GA’s scheduling plan of test group (20, 3). (Picture
credit : Original)

Figure 13: Makespan difference between the hybrid and
pure GA’s scheduling plan of test group (50, 5). (Picture
credit : Original)

Figure 14: Makespan difference between the hybrid and
pure GA’s scheduling plan of test group (100, 10). (Picture
credit : Original)

DAML 2024 - International Conference on Data Analysis and Machine Learning

142

4 CONCLUSION

This study explores the integration of DNN with GA
for scheduling tasks represented by DAG on multiple
processors. The DNN is trained to predict the
probability of task allocation on processors based on
task computation and communication costs. GA-
generated optimal solutions are the targets. The
experiment results indicate that while the DNN shows
significant fluctuations during training, the overall
trend demonstrates its ability to learn effective
scheduling patterns. Specifically, for test groups with
fewer tasks or more processors, the DNN's
predictions have a noticeable reduction in the
makespan difference compared to the GA targets.

The inherent randomness of GA poses a challenge
to the DNN's learning process. As a result, the DNN
is not yet sufficient to produce optimal scheduling
solutions only. The model utilizes DNN’s output to
initialize GA's population. This approach reduced the
number of GA generations needed to produce a
scheduling plan while maintaining minimal
makespan differences.

The impact of this research lies in the potential to
significantly accelerate scheduling optimization for
complex DAG tasks, reducing the reliance on purely
heuristic methods. Future work could focus on
improving the DNN's generalization abilities by
employing reinforcement learning approaches.
Additionally, further exploration into hybrid methods
could lead to more scalable and efficient solutions for
real-time and large-scale scheduling problems.

REFERENCES

AlEbrahim, S., & Ahmad, I. (2017). Task scheduling for
heterogeneous computing systems. The Journal of
Supercomputing, 73(6), 2313–2338. https://doi.org/
10.1007/s11227-016-1917-2

Cheng, X., & Xu, R. (2020). Research on Task Scheduling
of Heterogeneous Multi-core Processor based on
Replication Genetic algorithm. Proceedings of the 4th
International Conference on Intelligent Information
Processing, 454–460. https://doi.org/10.1145/33780
65.3378151

Deepa, R., Srinivasan, T., Doreen, D., & Miriam, H. (2006).
An Efficient Task Scheduling Technique in
Heterogeneous Systems Using Self-Adaptive
Selection-Based Genetic Algorithm. International
Symposium on Parallel Computing in Electrical
Engineering (PARELEC’06), 343–348. https:
//doi.org/10.1109/PARELEC.2006.14

Ding, S., Wu, J., Xie, G., & Zeng, G. (2017). A Hybrid
Heuristic-Genetic Algorithm with Adaptive Parameters
for Static Task Scheduling in Heterogeneous
Computing System. 2017 IEEE Trustcom
/BigDataSE/ICESS, 761–766. https://doi.org/10.1109
/Trustcom/BigDataSE/ICESS.2017.310

Fang, J., Zhang, J., Lu, S., & Zhao, H. (2020). Exploration
on Task Scheduling Strategy for CPU-GPU
Heterogeneous Computing System. 2020 IEEE
Computer Society Annual Symposium on VLSI
(ISVLSI), 306–311. https://doi.org/10.1109/ISVL
SI49217.2020.00063

Gupta, M., Bhargava, L., & Indu, S. (2020). Artificial
Neural Network based Task Scheduling for
Heterogeneous Systems. 2020 3rd International
Conference on Emerging Technologies in Computer
Engineering: Machine Learning and Internet of Things
(ICETCE), 74–79. https://doi.org/10.1109/ICETC
E48199.2020.9091745

Heydari, F., & Shahhoseini, H. S. (2011). Adaptive
algorithm for task scheduling in the distributed
heterogeneous systems using harmony search. 7th
International Conference on Networked Computing,
11–16. https://ieeexplore.ieee.org/document/6058937

Lee, H., Cho, S., Jang, Y., Lee, J., & Woo, H. (2021). A
Global DAG Task Scheduler Using Deep
Reinforcement Learning and Graph Convolution
Network. IEEE Access, 9, 158548–158561. IEEE
Access. https://doi.org/10.1109/ACCESS.2021.3130
407

Lee, V. W., Kim, C., Chhugani, J., Deisher, M., Kim, D.,
Nguyen, A. D., Satish, N., Smelyanskiy, M.,
Chennupaty, S., Hammarlund, P., Singhal, R., &
Dubey, P. (2010). Debunking the 100X GPU vs. CPU
myth: An evaluation of throughput computing on CPU
and GPU. Proceedings of the 37th Annual International
Symposium on Computer Architecture, 451–460.
https://doi.org/10.1145/1815961.1816021

Ullman, J. D. (1975). NP-complete scheduling problems.
Journal of Computer and System Sciences, 10(3), 384–
393. https://doi.org/10.1016/S0022-0000(75)80008-0

Zhao, Y., Cao, S., & Yan, L. (2019). List Scheduling
Algorithm Based on Pre-Scheduling for Heterogeneous
Computing. 2019 IEEE Intl Conf on Parallel &
Distributed Processing with Applications, Big Data &
Cloud Computing, Sustainable Computing &
Communications, Social Computing & Networking
(ISPA/BDCloud/SocialCom/SustainCom), 588–595.
https://doi.org/10.1109/ISPA-BDCloud-SustainCom-
SocialCom48970.2019.00089

Task Scheduling for Heterogeneous Systems Using a Hybrid Deep Neural Network and Genetic Algorithm Approach

143

