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Abstract: Task scheduling in heterogeneous computing systems is a highly complex and challenging problem due to 
the diverse architectures and varying computational capabilities of different hardware resources. Efficiently 
allocating tasks to these resources to optimize performance is a significant challenge in such environments. 
This study addresses this challenge by combining the deep neural network with the genetic algorithm to create 
an efficient task scheduling approach. The research focuses on constructing a deep neural network that 
progressively learns from the task scheduling schemes generated by the genetic algorithm, aiming to 
accelerate the scheduling process. The method involves using the genetic algorithm to generate initial 
scheduling solutions and training a Deep Neural Networks (DNN) to learn from these solutions. The results 
show that it is difficult for the network to fully reproduce the performance of genetic algorithm-based 
scheduling, but the network significantly reduces the time required to generate effective scheduling plans. 
This hybrid model highlights the potential of leveraging machine learning techniques to enhance the 
efficiency of task scheduling in heterogeneous computing systems. 

1 INTRODUCTION 

With the rise of big data, machine learning, and real-
time analytics, the need for higher performance and 
specialized processing capabilities has become more 
urgent. Traditional CPU-based architectures struggle 
with the diverse and intensive workloads these fields 
demand (Lee et al., 2010). Heterogeneous computing 
systems have emerged to solve these challenges by 
integrating different types of processors, such as 
GPUs, FPGAs, and specialized accelerators, into a 
single system. This approach utilizes the unique 
strengths of each processor to significantly improve 
performance and efficiency. Since each processor has 
its own execution logic and advantages, an 
appropriate task scheduling approach among the 
different processors becomes critical in 
heterogeneous systems to achieve maximum 
utilization. 

A proper scheduling plan should assign tasks to 
different processors/machines effectively which can 
minimize the total processing time of all jobs. Due to 
the dependencies of tasks in the real world, 
scheduling has been proven to be an NP-complete 
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problem (Ullman, 1975). According to the huge 
solution space, complex constraints and multi-
objective optimization characteristics, the genetic 
algorithm (GA) is suitable for scheduling problems. 

Researchers have developed updates for different 
procedures of the basic genetic algorithm. The most 
intuitive approach to improve is having more 
reasonable population initialization and adaptive 
parameters for mutation/crossing to increase the 
convergence speed (Fang et al., 2020). HGAAP 
involves a heuristic algorithm like HEFT to generate 
good initial solutions as the population based on the 
earliest finish time (Ding et al., 2017). Another 
approach is replicating individuals with high fitness 
to the next generation to increase the probability of 
keeping outstanding genes (Cheng & Xu, 2020). 
Besides GA, the list scheduling algorithm is also 
famous for heterogeneous computing scheduling. 
PSLS further expands the basic list algorithm with a 
downward length table (DLT), which is used to 
measure the time difference between a task being 
affected by its subsequent tasks when it is executed 
on any processor (Zhao et al., 2019). The selection of 
processors will depend on the DLT, allowing this 
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algorithm to consider the global effect when 
assigning tasks. An algorithm also enhances task 
prioritization by using an improved weight that 
considers execution time differences across 
processors and incorporates communication costs. 
Then selecting processors by a randomized decision 
mechanism of balancing local and global 
optimizations (AlEbrahim & Ahmad, 2017). 

Although the above methods are effective and 
efficient, generalization is a big defect for them. The 
optimal solutions yielded by applying algorithms on 
a specific structure of computing tasks are not helpful 
for other different structures. All of them need to be 
re-evaluated from the beginning. To improve the 
generalization, the artificial neural network (ANN) 
based scheduler has been introduced. Based on the 
statistics of CPU instructions and threads as 
parameters, a lightweight single-layer ANN can be 
constructed to predict which processors different 
tasks should be assigned to (Gupta et al., 2020). 
While ANNs are promising in making quick 
decisions based on learned patterns, their training 
from scratch can be computationally expensive and 
challenging. 

This research proposes a hybrid scheduling 
approach that combines the deep neural network 
(DNN) with GA to leverage the strengths of both 
methods. The DNN is trained from scratch initially. 
In the early stages, GA plays a critical role in 
optimizing task scheduling, and the solutions are then 
used to train the DNN. The DNN gradually learns to 
predict efficient scheduling strategies based on GA's 
feedback. Over time as the DNN becomes more 
proficient, the scheduler will more depend on the 
DNN to improve the system's overall efficiency and 
capability of generalization. The training process of 
DNN is similar to supervised learning where is target 
is produced by GA. This approach also does not 
require a pre-train network. 

The main objective of this research is to develop 
a robust and efficient task scheduling framework that 
can adapt to the dynamic nature of heterogeneous 
computing environments. By combining the rapid 
decision-making capabilities of DNNs with the 
optimization power of GA, this approach aims to 
achieve a balance between computational efficiency 
and scheduling accuracy. This study will evaluate the 
proposed method against traditional scheduling 
algorithms to demonstrate its effectiveness in 
handling complex, dependent tasks within a 
heterogeneous computing system. 

2 METHODOLOGY 

This methodology addresses task scheduling in 
heterogeneous systems using a combination of DNN 
and GA. The task scheduling problem is modelled as 
a Directed Acyclic Graph (DAG), with tasks assigned 
to processors based on computation and 
communication costs. The DNN predicts task 
allocations through learning from the GA's solution, 
while the GA optimizes scheduling plans to minimize 
execution time. 

2.1 Scheduling Problem Modelling 

The task scheduling problem is often modelled as a 
Directed Acyclic Graph (DAG), which is used 
broadly in research (Ding et al., 2017; Cheng & Xu, 
2020; Heydari & Shahhoseini, 2011; Zhao et al., 
2019). Each node in DAG represents a task and the 
arrowed edges between nodes indicate the 
dependencies of tasks. There are communication 
costs for dependent tasks, shown as edge weight in 
the graph. The acyclic nature of the graph ensures that 
no state is revisited, thus reflecting the progressive 
nature of scheduling tasks. When running a task 
scheduler on a heterogeneous system consisting of 
multiple processors, different tasks will have different 
performances on different. This also needs to be 
considered. 

Due to the above, a heterogeneous system could 
be presented by 𝑷, a set of 𝒑 processors where each 
one is denoted as 𝒑𝒊. A task scheduling problem could 
be defined as 𝑮 = (𝑻, 𝑬). 𝑻 is the set of tasks needed 
to execute and each task is denoted as 𝒕𝒊. There will 
be a list of length 𝒑  encoded in each node, 
representing the computation cost of the task 𝒕𝒊  on 
each processor 𝒑𝒋 . 𝑬  is the set of edges including 
weights. Each edge from node 𝒊 to node 𝒋 is denoted 
as 𝒆𝒊𝒋 and its value is the communication cost from 
task 𝒕𝒊 to 𝒕𝒋 if these two tasks are not executing on the 
same processor. The paper assumes the number of 
tasks is constant, but the structure of the DAG could 
be any. Figure 1 gives an example instance of a 
scheduling problem of six tasks on a heterogeneous 
system of three processors. 

Based on the task scheduling problem, a 
scheduling plan could be defined as assigning each 
task a processor to execute. The execution order 
follows the topological order to satisfy the 
dependencies between tasks. 
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Figure 1: A DAG example with communication costs and 
the computation costs for each task on each processor. 
(Picture credit : Original) 

2.2 Deep Neural Network 

In this research, the DNN architecture is inspired by 
the encoder-decoder structure with graph attention 
network (GAT) and multi-head attention (Lee et al., 
2021). Figure 2 shows the overview of the structure. 
The feature extractor layer of the proposed DNN will 
receive the computation cost of all tasks on all 
processors and the communication cost among tasks. 
For tasks that are not the child task of the current one, 
simply set the communication cost to 0.  There will 
be affine operations on two types of costs, concating 
the result gives the initial task representation vectors. 
The encoder then leverages multiple GAT layers to 
encode the task relationships into each task vector. 
The final vector representation will be the sum of the 
normal GAT result and inversed graph GAT result to 
have a better task feature embedding from the given 
DAG structure. 

The allocation predictor of the DNN will receive 
the features of each task from the extractor and use 

the attention mechanism to predict the allocation. For 
each task, it combines embeddings from previous and 
subsequent tasks, along with the last task's 
embedding, into a context vector. This context vector 
is used to query the embeddings via multi-head 
attention. Then the attention output of each task is 
passed through the corresponding fully connected 
layer to produce logits. With Softmax, the decoder 
will finally produce processor allocation probability 
for each task as the final output of the network. A 
scheduling plan could be derived by taking the 
argmax of probabilities as the allocated processor for 
each task. 

Since the output is probabilities, the scheduling 
problem could be treated as a classification problem. 
Based on task features, the DNN will predict which 
processor (class) should a task be allocated to. The 
loss function is the sum of Cross Entropy Loss of each 
task prediction. Moreover, to ensure the property of 
processors (classes) remain the same, for each input 
DAG, the ID numbers of processors are always sorted 
by ascending computation costs, which means that, 𝒑଴ is one with minimum computation cost, 𝒑ଵ is the 
one with second minimum computation cost, and so 
on. 

2.3 Genetic Algorithm 

GA is an optimization algorithm that searches for the 
optimal solution in the possible solution space by 
simulating biological evolution mechanisms. In this 
research, the GA is implemented as following. The 
algorithm first generates an initial population of 
random solutions, where each individual represents a 
possible scheduling plan. 

 

Figure 2: Structure of the DNN to predict processor allocation probability of each task. (Picture credit : Original)
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After the population initialization, tournament is 
used for selection. Each tournament will randomly 
choose three individuals and only keep the one with 
best fitness. Since the goal is finding the best 

scheduling plan, this research uses the Makespan as 
the fitness of each plan, which could be calculated 
with the following formulas: 

𝑀𝑎𝑘𝑒𝑆𝑝𝑎𝑛 = 𝑀𝑎𝑥௣൫Execute𝑇𝑖𝑚𝑒(𝑝)൯                                                          (1) 
 𝐸𝑥𝑒𝑐𝑢𝑡𝑒𝑇𝑖𝑚𝑒(𝑝) = 𝑀𝑎𝑥௧∈௣൫𝐸𝑛𝑑𝑇𝑖𝑚e(𝑡)൯                                                (2) 
 𝑆𝑡𝑎𝑟𝑡𝑇𝑖𝑚𝑒(𝑡) = 𝑀𝑎𝑥௨∈௣௔௥௘௡௧(௧)൫𝐸𝑛𝑑𝑇𝑖𝑚𝑒(𝑢) + 𝐶𝑜𝑚𝑚(𝑢, 𝑡)൯                               (3) 
 𝐸𝑛𝑑𝑇𝑖𝑚𝑒(𝑡) = 𝑆𝑡𝑎𝑟𝑡𝑇𝑖𝑚𝑒(𝑡) + 𝐶𝑜𝑠𝑡(𝑡)                                                          (4) 
 𝐶𝑜𝑚𝑚(𝑢, 𝑡) = ൜𝐶𝑜𝑚𝑚(𝑢, 𝑡), 𝑢, 𝑡 𝑎𝑟𝑒 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 𝑜𝑛 𝑎 𝑠𝑎𝑚𝑒 𝑝0, otherwise                                      (5) 

 
where 𝒑  represents the processor, 𝒕 ∈ 𝒑  are tasks 
that allocated to processor 𝒑 , 𝑪𝒐𝒔𝒕(𝒕)  is the 
computation cost of task t on the processor it belongs 
to, and 𝑪𝒐𝒎𝒎(𝒖, 𝒕)  is the communication cost 
between task 𝒖 and its child task 𝒕. Notes that the 
communication costs only occur when these two tasks 
are executed on different processors. These formulas 
show that, Makespan of a scheduling plan is the 
greatest execution time of the tasks among all 
processors. 

In the next step, the algorithm will sequentially 
choose two individuals from the selection above to do 
crossing and mutation to generate offspring. For 
crossing, two individuals will swap cells after a 
randomly selected index. Since the cells are always 
ordered in tasks’ topological order, therefore the new 
offspring will not contain cells with duplicate tasks or 
cells with missing tasks. For mutation, the algorithm 
will randomly allocate a new processor to the task in 
each cell of every individual in the population. 

The algorithm also takes advantages from the 
method of saving elite individuals (Ding et al., 2017). 
The elite group consists of the top 10% of individuals 
with the best fitness in the population. After offspring 
generation, the new population will be created by 
concatenating the elite group and all offspring, and 
the best individual in the new population will be 
recorded. After running for a specified number of 
generations, the algorithm will return the individual 
with the best fitness during this period. 

2.4 Combination of DNN and GA 

At the earlier stage, the scheduling model provided in 
this paper mainly depends on GA with long 
generation time to product qualitied schedule plan. As 
the DNN’s loss and the Makespan difference between 
DNN and GA’s scheduling plan converge, the model 

can start to use DNN for inference. Depending on the 
performance of DNN’s inferred result, the model can 
gradually decrease the number of generations or even 
eliminate the application of GA to accelerate the 
entire scheduling process. 

3 RESULT 

3.1 Performance of DNN 

This research runs through some experiments to 
check if the designed network is able to converge and 
learn from the GA's scheduling plan. There are three 
groups are tested: (20, 3), (50, 5), and (100, 10), 
where the first number of each group is the number of 
tasks, and the second one is the number of processors. 
1500 DAGs are generated randomly for each test 
group for training, with range of computation cost 
being 1 to 20 and range of communication cost being 
1 to 10. There will be only one DAG input for each 
epoch to simulate the training process while GA 
doing task scheduling in the real world. The 
population size is set to 200 for all testing groups, and 
the generations are set as 200, 350, 500 iterations for 
tasks numbers of 20, 50, and 100 respectively. 

Figure 3, 4, 5, 6, 7, and 8 demonstrate the loss 
during training process and the Makespan difference 
between DNN and GA’s scheduling plan for each test 
group. It could be observed that the performance of 
the DNN remains the same after around 1000 epochs’ 
training. Since GA is a heuristic method that explores 
solutions through stochastic search, the generated 
targets lack a consistent structure or coherent 
scheduling rules, which causes the instability of the 
DNN's performance. This is the biggest limitation of 
the model proposed in this research. Despite the 
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fluctuations observed in both the training loss and 
makespan difference, the overall downward trend 
demonstrates that the network can capture some 
useful patterns from the input data and learn effective 
scheduling strategies to a certain extent. 

Figure 3: Training loss of test group (20, 3).            
(Picture credit : Original) 

Figure 4: Training loss of test group (50, 5).            
(Picture credit : Original) 

Figure 5: Training loss of test group (100, 10).        
(Picture credit : Original) 

Figure 6: Makespan difference between DNN and GA’s 
scheduling plan during training of test group (20, 3). 
(Picture credit : Original) 

Figure 7: Makespan difference between DNN and GA’s 
scheduling plan during training of test group (50, 5). 
(Picture credit : Original) 

Figure 8: Makespan difference between DNN and GA’s 
scheduling plan during training of test group (100, 10). 
(Picture credit : Original) 

1000 DAGs are also randomly generated for each 
task group for evaluation. Figure 9, 10, and 11 shows 
the evaluation result. Combined with Figure 6, 7, and 
8, it could be derived that test groups (20, 3) and (100, 
10) have smaller Makespan difference and better 
performance. Group (20, 3) has the minimum number 
of tasks, which reduces the complexity of the 
scheduling problem. Suboptimal scheduling plans do 
not result in significant Makespan differences. For the 
group (100, 10), while the problem complexity 
increases due to the larger number of tasks, the 
availability of more processors does increase in 
trainable parameters which allow the network to 
capture more patterns. 

Figure 9: Makespan difference between DNN and GA’s 
scheduling plan during evaluation of test group (20, 3). 
(Picture credit : Original) 
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Figure 10: Makespan difference between DNN and GA’s 
scheduling plan during evaluation of test group (50, 5). 
(Picture credit : Original) 

Figure 11: Makespan difference between DNN and GA’s 
scheduling plan during evaluation of test group (100, 10). 
(Picture credit : Original) 

3.2 Acceleration of Using DNN 

Overall, the scheduling plans generated by the DNN 
still show a great Makespan difference compared to 
the GA-generated optimal solutions. Therefore, the 
model still needs to rely on GA to do further 
optimization. However, since the DNN’s output 
already has relatively good fitness, the entire 
scheduling process could be accelerated by using the 
DNN’s output to create the initial population and 
reducing the number of generations for GA. 

This research also runs experiments to compare 
the performance of hybrid and pure GA models. For 
the hybrid model, after obtaining outputs from DNN, 
half of the initial population used in GA is generated 
by mutating DNN’s output, and the second half is 
randomly generated. Then running GA based on this 
initial population with half the number of generations. 
Table 1 shows the time consumption between these 
two models. Figure 12, 13, and 14 presents the 
Makespan difference between these two models. 

Even though GA uses only half the number of 
generations in the hybrid model, the resulting 
scheduling plans have a minimal Makespan 
difference compared to those generated by the pure 
GA. The reduction in generations leads to a 
significant speedup. The hybrid model is nearly twice 
as fast as the pure GA, with the DNN's inference time 

being almost negligible. This highlights the efficiency 
of using the DNN as a pre-processing step to guide 
GA, ultimately reducing the computational burden 
while maintaining competitive performance in 
scheduling quality. 

Table 1: Time consumption between the hybrid and pure 
GA model. (Table credict: Original) 

 Hybrid Pure GA Epochs 
Test group 

(20, 3) 
662.366 
seconds 

1292.870 
seconds 1000 

Test group 
(50, 5)

5125.380 
seconds

10274.914 
seconds 1000 

Test group 
(100, 10)

11312.046 
seconds

22949.441 
seconds 500 

Figure 12: Makespan difference between the hybrid and 
pure GA’s scheduling plan of test group (20, 3). (Picture 
credit : Original) 

Figure 13: Makespan difference between the hybrid and 
pure GA’s scheduling plan of test group (50, 5). (Picture 
credit : Original) 

 
Figure 14: Makespan difference between the hybrid and 
pure GA’s scheduling plan of test group (100, 10). (Picture 
credit : Original) 

DAML 2024 - International Conference on Data Analysis and Machine Learning

142



4 CONCLUSION 

This study explores the integration of DNN with GA 
for scheduling tasks represented by DAG on multiple 
processors. The DNN is trained to predict the 
probability of task allocation on processors based on 
task computation and communication costs. GA-
generated optimal solutions are the targets. The 
experiment results indicate that while the DNN shows 
significant fluctuations during training, the overall 
trend demonstrates its ability to learn effective 
scheduling patterns. Specifically, for test groups with 
fewer tasks or more processors, the DNN's 
predictions have a noticeable reduction in the 
makespan difference compared to the GA targets. 

The inherent randomness of GA poses a challenge 
to the DNN's learning process. As a result, the DNN 
is not yet sufficient to produce optimal scheduling 
solutions only. The model utilizes DNN’s output to 
initialize GA's population. This approach reduced the 
number of GA generations needed to produce a 
scheduling plan while maintaining minimal 
makespan differences. 

The impact of this research lies in the potential to 
significantly accelerate scheduling optimization for 
complex DAG tasks, reducing the reliance on purely 
heuristic methods. Future work could focus on 
improving the DNN's generalization abilities by 
employing reinforcement learning approaches. 
Additionally, further exploration into hybrid methods 
could lead to more scalable and efficient solutions for 
real-time and large-scale scheduling problems. 
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