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Abstract: Earthquake prediction is a critical challenge, requiring advanced methods with strong generalization 
capabilities. This paper investigates the generalization of traditional machine learning models—Linear 
Regression (LR), Support Vector Regression (SVR), Random Forest (RF), K-Nearest Neighbors (KNN), and 
Decision Tree (DT)—in predicting earthquake magnitudes across different geographic distributions. Using 
seismic data from the United States Geological Survey (USGS), the study trains models on data from the 
Eastern Hemisphere and tests them on the Western Hemisphere, evaluating their performance and ability to 
migrate across regions. The RF model showed superior generalization with the lowest mean squared error 
(MSE) and the highest R² value, indicating robust performance across different distributions. In contrast, the 
KNN model struggled, reflecting its limitations in handling diverse data. The study's findings demonstrate the 
reliability of RF in generalizing across distributions and the significance of model selection when working 
with information from various geographic areas. More comprehensive knowledge of model migration and its 
adaptability to various datasets is facilitated by this work, opening the door for more trustworthy earthquake 
prediction models. 

1 INTRODUCTION 

Natural disasters have always posed significant 
threats to human life, infrastructure, and the 
environment. Among these disasters, earthquakes are 
among the most destructive due to their sudden 
occurrence and devastating impacts. An earthquake is 
typically caused by the rapid release of energy in the 
Earth's crust, usually due to tectonic activities like 
fault slips. Earthquakes can trigger secondary hazards 
such as tsunamis, landslides, and building collapses, 
which amplify the risks to human populations (Duan, 
2021; Mavrouli, 2023). Given the frequency and 
severity of seismic events, the ability to predict 
earthquake magnitudes is crucial for early warning 
systems and risk mitigation strategies. 

However, traditional earthquake prediction 
methods, primarily based on seismological data 
analysis and empirical models, have significant 
limitations. These methods often struggle with 
accurately predicting the timing, location, and 
magnitude of seismic events due to the highly 
complex nature of geological processes (Wald, 2020; 
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Mignan, 2020). With advancements in computational 
technology, there is increasing interest in using 
Artificial Intelligence (AI) techniques to improve 
prediction accuracy and address these challenges. AI 
models, leveraging large datasets and sophisticated 
algorithms, have shown promise in capturing non-
linear patterns.  Combining AI with seismological 
data could enhance earthquake prediction 
capabilities, making this field an essential area of 
exploration (Banna, 2020; Bhatia, 2023). 

AI has rapidly evolved over the past few decades 
and has been successfully applied in various domains, 
ranging from healthcare and finance to environmental 
monitoring and disaster management (Secinaro, 
2021; Goodell, 2021; Ullo, 2020; Sun, 2020). 
Representative machine learning algorithms have 
demonstrated impressive performance in complex 
tasks, including pattern recognition, time-series 
forecasting, and anomaly detection (Pisner, 2020; 
Aguilar, 2023; Patil, 2020). In the field of 
geosciences, AI has been increasingly used for 
natural disaster predictions. For instance, 
Makinoshima et al. proposed a deep learning model 
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using Convolutional Neural Networks (CNNs) that 
integrates geodetic observation data and 
oceanographic data to predict tsunami events along 
the Pacific coast of Japan (Makinoshima, 2021). 
Similarly, Ruttgers et al. used Generative Adversarial 
Networks (GAN) to predict the trajectory and 
intensity of typhoons in the Northwest Pacific based 
on historical meteorological data (Ruttgers, 2022). In 
earthquake prediction, Cui et al. (2021) employed a 
stacking-based ensemble learning model for 
earthquake casualty prediction. The model employs 
XGBoost, Bagged Decision Trees, and Gradient 
Boosting Decision Trees (GBDT) as first-level base 
learners and GBDT as a second-level meta-learner. 
Popular machine learning techniques including SVM, 
RF, and Classification and Regression Trees (CART) 
were surpassed by the suggested approach (Cui, 
2021). Additionally, Iaccarino et al. (2023) utilized a 
Gradient Boosting Regressor (GBR) and achieved 
reliable results in predicting the seismic ground 
motion intensity (Iaccarino, 2023). 

Despite these advances, current approaches often 
fail to consider variations in geographical 
distributions, such as the differences between seismic 
activities in the Eastern and Western Hemispheres. 
This limitation could affect the generalizability of 
models when applied to regions with distinct 
geological characteristics. In order to close this gap, 
the present work uses seismic data from various 
hemisphere distributions to assess how well various 
machine learning models predict earthquake 
magnitudes. By systematically comparing the 
generalization capabilities of models trained on 
Eastern Hemisphere data and tested on Western 
Hemisphere data, the study aims to provide insights 
into the robustness and adaptability of popular AI 
models for seismic prediction. 

The technical approach of this research involves 
dividing the seismic data into two classes: Eastern 
Hemisphere and Western Hemisphere. The models 
under consideration include LR, SVR, RF, KNN, and 
DTs. The methodology is structured as follows: (1) 
preprocessing and feature extraction from the seismic 
dataset, (2) training models using Eastern 
Hemisphere data, (3) evaluating model performance 
on Western Hemisphere data, and (4) examining and 
contrasting the models' generalizability using 
different assessment metrics, including Mean 
Absolute Error (MAE), MSE, Root Mean Squared 
Error (RMSE), and R². The study also explores the 
implications of these findings for improving seismic 
prediction models and enhancing their practical 
applicability in disaster management. 

2 METHOD 

This section outlines the dataset preparation, the 
specific machine learning models utilized, and the 
evaluation metrics adopted in this study. The aim is 
to assess the generalizability of various machine 
learning models in predicting earthquake magnitudes 
based on seismic data from different hemispheres (i.e. 
training on Eastern Hemisphere and testing on 
Western Hemisphere). 

2.1 Dataset Preparation 

The seismic dataset used in this study was sourced 
from USGS, which provides a comprehensive 
collection of earthquake data worldwide (USGS, 
2024). The data covers seismic events from the 
Eastern Hemisphere and the Western Hemisphere. 
Specifically, the data range from records of 
earthquakes with magnitudes greater than 4.5 since 
2020, with 19,671 records collected in the Eastern 
Hemisphere and 14,075 records in the Western 
Hemisphere, providing a robust basis for model 
training and testing. The dataset consists of 22 
features in total such as time and latitude. 

Given the scope and nature of this study, which 
focuses on predicting earthquake magnitudes, the 
primary target variable is "Magnitude(ergs)." The 
task is thus framed as a regression problem. The 
dataset underwent feature selection and index 
conversion as part of preprocessing to improve model 
performance and lower complexity. The "time" 
feature was converted into an index to simplify 
chronological ordering, while the number of features 
was reduced to eight essential predictors: 
"Latitude(deg)," "Longitude(deg)," "Depth(km)," 
"Magnitude(ergs)," "Magnitude_type," 
"No_of_Stations," "horizontalError," and 
"depthError." Notably, the dataset did not contain 
missing values, obviating the need for imputation. 

In this study, the models use six features for 
prediction: "Latitude(deg)," "Longitude(deg)," 
"Depth(km)," "No_of_Stations," "horizontalError," 
and "depthError." The training and testing datasets 
are divided based on hemispheres: the Eastern 
Hemisphere dataset is used for training, while the 
Western Hemisphere dataset is used for testing. This 
division is critical in evaluating the generalizability of 
the models across different geographic distributions. 
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2.2 Machine Learning Models-Basesd 
Prediction 

The study employs five distinct machine learning 
models: LR, SVR, RF Regression, KNN Regression, 
and DT Regression. All models were implemented 
using the scikit-learn (sklearn) library in Python. To 
verify each model's generalizability, it was first 
trained using data from the Eastern Hemisphere and 
then tested using data from the Western Hemisphere. 
These metrics were used to assess each model's 
performance: R², MAE, MSE, and RMSE. 

2.2.1 Linear Regression 

Regression analysis's most basic and widely applied 
algorithm is LR. It explains the relationship between 
a dependent variable and one or more independent 
variables by fitting a linear equation to observable 
data. The formula for a simple LR is given as: 
 𝑦 = 𝛽଴ + 𝛽ଵ𝑥 + 𝜖 (1)
 

Where 𝑦 stands for the predicted value, 𝛽଴ for the 
intercept, 𝛽ଵ for the slope of the line, 𝑥 for the input 
variable, and 𝜖 for the error term (Maulud, 2020). By 
minimizing the sum of squared residuals—the 
variations between observed and anticipated values—
the least squares method was used in this study to fit 
the model. More intricate models can be compared to 
the LR model as a baseline. 

2.2.2 Support Vector Regression 

SVR extends the principles of SVM to regression 
tasks. The primary objective of SVR is to find a 
hyperplane that best fits the data points within a 
predefined margin of tolerance (Bansal, 2022). SVR 
uses a kernel trick to transform data into a higher-
dimensional space, making it easier to perform LR in 
this transformed space. The Radial Basis Function 
(RBF) kernel is widely used in SVR due to its 
flexibility in handling non-linear data patterns. The 
RBF kernel function is defined as (Montesinos, 
2022): 
 K൫𝑥௜, 𝑥௝൯ = exp ቀ−𝛾ฮ𝑥௜ − 𝑥௝ฮଶቁ (2)

 
The SVR model used in this work has the 

following hyperparameters set: gamma = 0.1, C = 1, 
and kernel = 'rbf'. The influence of individual data 
points is defined by the parameter "gamma," while 
the trade-off between obtaining a narrow error margin 
and preserving a smooth decision border is managed 

by the parameter "C." When there is a non-linear 
relationship between characteristics, SVR is 
especially helpful, which makes it a good fit for 
complex seismic data. 

2.2.3 Random Forest Regression 

RF is an ensemble learning technique that lessens 
overfitting and increases accuracy by combining the 
predictions of several Decision Trees. In regression 
tasks, RF averages the outputs of individual trees to 
produce a final prediction. To ensure diversity across 
the trees, each tree is trained on a random portion of 
the data and only takes into account a random subset 
of features for splitting at each node (Genuer, 2020). 

The hyperparameters for the RF Regressor used in 
this study were set as ‘n_estimators=1000’, where 
‘n_estimators’ represents the number of Decision 
Trees in the forest. The model is an effective tool for 
estimating earthquake magnitudes because of its 
resilience to noise and capacity to manage high-
dimensional data, particularly in situations where the 
data distribution is intricate and has non-linear 
correlations. 

2.2.4 K-Nearest Neighbors Regression 

A non-parametric, instance-based learning approach 
called KNN Regression uses the values of a data 
point's k-nearest neighbors to predict the value of a 
new data point. The target point and every other point 
in the training set are measured using the Euclidean 
distance technique. The prediction is then determined 
by averaging the values of the k-nearest neighbors 
(Bansal, 2022). 

In this study, the value of k was set to 5 
(‘n_neighbors=5’), which balances bias and variance. 
Even while KNN is easy to use and understand, when 
working with big datasets, it can be computationally 
demanding and sensitive to the size of the features. 
Despite these limitations, KNN was included in this 
study for its effectiveness in capturing local data 
patterns and trends. 

2.2.5 Decision Tree Regression 

A non-linear predictive model called DT Regression 
divides the dataset recursively at decision nodes until 
a leaf node is reached. It does this by dividing the data 
into subsets according to feature values. The final 
prediction is contained in the leaf node, while each 
decision node represents a feature and each branch a 
potential result. The DT algorithm selects the feature 
that results in the highest information gain or lowest 
mean squared error at each split (Bansal, 2022). 
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Although DTs are prone to overfitting, they are 
easy to visualize and interpret, making them a 
valuable tool for exploring feature importance and 
model behavior (Charbuty, 2021). In this study, a 
standard DT Regressor was employed with default 
settings. 

3 RESULTS AND DISCUSSION 

This section presents the findings of the study and 
offers a critical analysis of the results obtained from 
applying five machine learning models—LR, SVR, 
RF, KNN, and DT—to earthquake magnitude 
prediction. In the subsequent analysis, the strengths, 
weaknesses, and insights gained from the 
experiments are discussed in detail, alongside a 
reflection on the limitations and suggestions for 
future improvements. 

3.1 The Performance of Models 

The results of the experiment are provided in Table 1, 
where the performance metrics for each model are 
summarized. 

The RF model consistently outperformed the 
other models in terms of predictive performance; it 
had the lowest MAE (0.2331), MSE (0.1057), RMSE 
(0.3251), and positive R² value (0.2230). These 
measures show that when it comes to predicting 
earthquake magnitudes across various geographies, 
the RF model has a more favorable balance between 
bias and variance, which leads to improved 
generalizability. On the other hand, the KNN model 
performed the worst, as evidenced by large error rates 
and a markedly negative R² value (-0.6002), 
indicating inadequate dataset adaption. 

To better visualize the performance of each 
model, scatter plots depicting actual versus predicted 
values were generated for each model: 

The scatter plot shown in Figure 1 reveals that the 
model tends to underestimate earthquake magnitudes, 
particularly for magnitudes exceeding 5. The 
alignment of points close to the perfect prediction line 
is mostly observed for lower magnitudes, where 
linearity assumptions hold. 

The SVR model shown in Figure 2 shows a highly 
clustered set of predictions with limited variance, 
indicating that the model struggles to capture the 
dynamic range of the data. This results in consistently 
inaccurate predictions. 

The scatter plot shown in Figure 3 shows the RF 
model’s predictions are closely aligned with actual 
values, with most prediction errors within a 1 to 1.5 
unit range. This suggests that the ensemble approach 
effectively captures complex relationships. 

The KNN’s in Figure 4 predictions are 
concentrated between 4.5 and 5.5, leading to 
significant inaccuracies for larger earthquake 
magnitudes. The pattern highlights the model’s 
inability to generalize beyond local data points. 

The DT model shown in Figure 5 demonstrates 
considerable prediction errors, with points scattered 
away from the perfect prediction line, particularly in 
the lower left corner. This reflects the model’s 
tendency toward high variance and overfitting. 

Additionally, two key plots provide further 
insights: 

A feature importance plot shown in Figure 6 for 
the RF model highlights the relative importance of 
each input feature. Notably, the features "No. of 
Stations" and "Depth Error" stand out as the most 
influential factors in predicting earthquake 
magnitudes. 

A line plot shown in Figure 7 showing the first 
100 actual and predicted values in the test dataset for 
the RF model illustrates that while the model follows 
the general trend, there are noticeable deviations, 
particularly at higher magnitudes. This indicates 
some limitations in fully capturing the non-linear 
relationships in seismic data. 
 

Table 1: Performance Metrics of Each Model. 

Model Name MAE MSE RMSE R² 
Linear Regression 0.241816 0.131785 0.363022 0.031435 

SVR 0.277640 0.137359 0.370620 -0.009529 
Random Forest 0.233067 0.105717 0.325141 0.223026 

KNN 0.373962 0.217721 0.466606 -0.600158 
Decision Tree 0.302034 0.199197 0.446315 -0.464016 
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Figure 1: Linear Regression Result (Photo/Picture credit: Original).  

 

Figure 2: SVR Result (Photo/Picture credit: Original). 

 

Figure 3: Random Forest Result (Photo/Picture credit: Original). 
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Figure 4: KNN Result (Photo/Picture credit: Original). 

 

Figure 5: Decision Tree Result (Photo/Picture credit: Original). 

 

Figure 6: Feature Importance Plot (Photo/Picture credit: Original). 
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Figure 7: Actual vs. Predicted Line Plot (Photo/Picture credit: Original). 

3.2 Analysis and Discussion 

The study's conclusions offer significant new 
understandings into the applicability of different 
machine learning methods for assessing the size of 
earthquakes in diverse geographic locations. The 
ensemble aspect of the RF model, which combines 
several Decision Trees to average out mistakes and 
lower the risk of overfitting, is responsible for its 
better performance. For a complicated task like 
earthquake prediction, this method is very useful in 
capturing non-linear correlations and interactions 
among the characteristics. Large feature spaces and 
reduced variance were advantages of the RF model in 
this investigation, which led to more accurate 
predictions. 

In contrast, the KNN model’s poor performance is 
largely due to its sensitivity to noisy data and its 
reliance on localized patterns. The model tends to 
perform well when data is uniformly distributed; 
however, in this case, the geographic and 
seismological variations across different regions 
introduce significant challenges. The high-
dimensional feature space further exacerbates the 
model’s limitations, leading to suboptimal 
predictions clustered within a narrow range. 

The LR model, while simple and interpretable, 
failed to capture the complex relationships inherent in 
the data. The model works well for linear trends, as 
seen in its reasonably good predictions for 
magnitudes below 5, but struggles with non-linear 
patterns, leading to consistent underestimations for 
higher magnitudes. 

The SVR model, using an RBF kernel, did better 
at capturing some non-linearities, but its performance 

was hindered by the challenge of tuning 
hyperparameters like the penalty parameter (C) and 
kernel coefficient (γ). The model’s tendency to 
produce similar predictions regardless of input 
variations suggests it did not generalize well to the 
unseen test set. 

The DT model, despite being interpretable and 
fast, showed high variance, leading to overfitting. The 
model’s lack of regularization resulted in large 
prediction errors, as seen in the widely scattered 
points on the scatter plot. This behavior is typical of 
DTs when they fail to generalize beyond the training 
data. 

Several important findings emerge from this 
study. First, models trained solely on Eastern 
Hemisphere data struggled to generalize effectively 
to Western Hemisphere data, emphasizing the 
importance of considering regional heterogeneity in 
seismic modeling. This result points to a potential 
limitation in some existing predictive models that are 
typically trained on data from one geographic area. It 
also underscores the necessity of employing transfer 
learning techniques or training region-specific 
models when dealing with the task of global 
earthquake prediction. 

Second, the study emphasizes how crucial feature 
selection is and how it affects model performance. 
The RF’s ability to identify the importance of features 
like "No. of Stations" and "Depth Error" provides 
valuable guidance for future research, suggesting that 
integrating additional features related to seismic 
activity, geological composition, and real-time 
monitoring could further enhance prediction 
accuracy. 
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4 CONCLUSIONS 

This paper investigates the generalizability of five 
machine learning models—LR, SVR, RF, KNN, and 
DT—in predicting earthquake magnitudes across 
different geographical distributions. By using seismic 
data from the Eastern Hemisphere for training and 
testing on data from the Western Hemisphere, the 
study highlights the varying effectiveness of these 
models in handling data distribution shifts. Among 
the models, RF demonstrated the best predictive 
performance, while KNN showed the least accuracy. 
The experimental results underscore the importance 
of model selection when dealing with datasets from 
different regions. 

The study's conclusions advance the knowledge 
of model migration and adaptability, particularly in 
applying machine learning models to datasets with 
diverse distributions. This exploration is crucial for 
improving the robustness of predictive models in 
seismology, potentially aiding in better disaster 
preparedness and risk mitigation. 

However, the study is not without limitations, 
such as the exclusion of more granular regional data 
and the lack of temporal dynamics consideration. 
Future work should address these limitations by 
incorporating localized geophysical factors and 
evolving seismic patterns to enhance model 
generalization further. 
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