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Abstract: Mobile Edge Computing (MEC) leverages the nearness of computational elements to end-users in wireless
networks, pledging low latency and elevated throughput for emerging mobile utilities. Nevertheless, efficient
resource allotment remains a notable challenge in MEC ecosystems due to the varying and heterogeneous char-
acter of mobile networks. Classic static resource allotment strategies often fail to adjust to varying network
conditions, showing suboptimal allotments. In this paper, we propose a novel strategy for resource allotment
in MEC ecosystems utilizing a Multi-Armed Bandit (MAB) based Reinforcement Learning (RL) approach.
By viewing the resource allotment problem as an MAB problem, our strategy enables the dynamic assignment
of resources founded on real-time feedback, thereby enhancing resource usage and user satisfaction. We offer
a comprehensive evaluation of our technique through simulations in diverse MEC scenarios, which includes
a comprehensive comparison with the round robin task scheduling algorithm to represent the efficacy of our
proposed methodology, exhibiting its efficacy in acclimating to changing network conditions and surpass-
ing traditional static allocation procedures. Thereby, our results showcase the prospect of MAB-based RL
strategies in improving resource administration in MEC ecosystems, curving the path for better adaptive and
productive mobile edge computing applications.

1 INTRODUCTION

Mobile Edge Computing (MEC) has appeared as
a revolutionary paradigm in wireless communica-
tion systems, striving to provide low-latency, high-
throughput services to mobile users by integrating
computational elements at the network edge (Wang
et al., 2023b). With the expansion of latency-prone
utilities like augmented reality, autonomous automo-
biles, and Internet of Things (IoT) gadgets, the need
for efficient resource allotment in MEC ecosystems
has evolved paramount. Nevertheless, conventional
static allotment strategies often fail to dynamically
adjust to the evolving network requirements and user
needs, leading to suboptimal resource usage and tar-
nished quality of service (QoS).

Considering an augmented reality (AR) (Ateya
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et al., 2023) utility where users interact with virtual
entities superimposed onto the real-world ecosystem
in real time. In such a scenario, the latency/delay
between user communication and the processing of
virtual entities performs a crucial role in delivering
a flawless and immersive venture. Static allotment
of computational elements may lead to erratic per-
formance, as the need for resources varies dynami-
cally with user mobility and utility needs (Gong et al.,
2024). Similarly, in the context of automobiles, which
laboriously depend on real-time data processing for
direction and decision-making, productive resource
allotment evolves critically(Ray and Banerjee, 2024).
Considering a scenario, during the time of day when
the traffic is at its peak, the processing requirement
for the data generated by various sensors functioning
with complicated algorithms changes with the traffic
variance of different regions. Resource allotment with
static allotment procedures will result in misutiliza-
tion of resources in areas where crowd accumulations
are minimal, and uplifting latency issues in crowded
regions, which may result in security breaches and
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Figure 1: The MAB fostered RL approach in mobile edge computing ecosystems

lessening of reliability with autonomous driving ve-
hicles (Gong et al., 2024).

Following up on the IoT domain, where the em-
ployed devices produce data in variable quantities re-
quires special attention for processing and extract-
ing useful information. Productive resource allot-
ment is paramount for efficient processing and op-
timal utilization of computational resources (Wang
et al., 2023a). Citing an example, in smart cities
where integrated sensors capture various data like air
pollution levels, traffic movement/hotspots, and en-
ergy usage, therefore the employed resource allot-
ment procedures must be accustomed to the rapid
variance of data produced along with their dynamic
processing demands. To handle these dynamic issues,
there has been a growing interest in the enactment of
adjustable resource allotment procedures that would
function in dynamic MEC ecosystems. The proposed
mechanism must be able to consider the user require-
ment and real-time data feedback to allot computa-
tional resources. Thereby, this research paper fo-
cuses on introducing and enacting a Multi Arm Bandit
(MAB) (Simchi-Levi and Wang, 2023) fostered Rein-
forcement Learning (RL) techniques for allotting re-
sources in MEC ecosystems (Preil and Krapp, 2023)
(fig.1). Here the resource allotment problem is formu-
lated as an MAB problem, and the proposed technique
enables diligent decision enactment for allotting re-
sources, thereby improving resource utilization, less-
ening latency, and enhancing the satisfaction of the

users.

2 RELATED WORKS

Vast research has been carried out in the domain of
Mobile Edge Computing ecosystems focusing on re-
source allotment, which has examined various tech-
niques to enhance system productivity/performance
while functioning on dynamic edge ecosystems (Chi
et al., 2023). Conventional allotment strategies like
Robin-Robin (Zhou et al., 2023), which is simpler,
but yet suffer when exposed to varying network and
resource needs, thereby resulting in a substantial sys-
tem performance drop. To tackle these inefficiencies,
resource allotment procedures that perform dynami-
cally have grown increasingly popular. RL strategies
like the MAB algorithms enable dynamic allotment of
resources founded upon the input, which is given in
real-time, thereby improving resource usage and en-
hancing system performance (Galli et al., 2023).

Researchers have worked on strategies like multi-
objective enhancement to handle various aspects like
throughput, latency/delay, and enable efficient con-
sumption of energy (Dehghani and Movahhedinia,
2023). These strategies employ generic procedures,
evolutionary procedures, and Pareto enhancement
techniques to address the various sophisticated trade-
offs contained in MEC resource allotment situations
(Khan et al., 2024).
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Utilization of autonomous procedures and coin-
ciding it with edge brilliance was stood up as a
noteworthy solution for resource allotment in edge
ecosystems. Approaches like edge-catching and fed-
erated learning provide the facility of dispersed de-
cision enactment for variable resource allotment at
the network edge. By utilizing edge intelligence and
automation, MEC systems can dynamically adjust to
varying conditions, improving resource allotment in
real time and enriching overall system productivity
and performance (Kar et al., 2023).

Likewise, real-world integrations and case anal-
yses provide valuable understandings of the practi-
cal feasibility and efficacy of resource allotment algo-
rithms in myriad MEC ecosystems, comprising smart
cities, industrial IoT, and vehicular networks. These
analyses close the gap between theoretical improve-
ments and real-world applications, validating the ef-
fectiveness of resource allotment procedures and ad-
vising future research pathways in Mobile Edge Com-
puting.

3 THE PROPOSED SYSTEM
MODEL

Considering a Mobile Edge Computing (MEC)
ecosystem comprising of a group of N edge servers
represented by SR = {sr1,sr2, . . . ,srN}, serving a
set of M mobile users represented by UR =
{ur1,ur2, . . . ,urM}. The objective is to dynamically
allot computational elements to mobile users to re-
duce latency and increase system throughput while
guaranteeing efficient resource usage.

We model the resource allotment scenario as a
Multi-Armed Bandit (MAB) problem, where every
edge server sr j serves as an arm and the available
computational elements at each server represent the
arms’ reward allotments. Let RWj(t) represent the re-
ward received from allotting resources at server sr j
at time t, where RWj(t) is a random variable with an
unknown allotment.

At every time step t, the MEC regulator chooses
an edge server founded on a policy that balances in-
quiry (trying out various servers to learn their re-
ward allotments) and exploitation (allotting resources
to servers with potentially higher rewards founded
on current knowledge). Allowing AC(t) indicate the
step taken by the regulator at time t, where AC(t) ∈
{1,2, ...,N} illustrates the chosen edge server index.

The goal is to maximize the cumulative reward

over T time steps:

max
π

T

∑
t=1

RWAC(t)(t) (1)

in the above equation π denotes the utilized policy for
selecting actions.

In order to perform this, we utilize the Upper Con-
fidence Bound (UCB) algorithm coming under RL
strategies, which functions by balancing inquiry and
exploitation. The algorithm utilizes the upper con-
fidence limit expected rewards to select the actions,
enabling the identification of novel/new arms while
utilizing the older high-reward arms.

4 THE PROPOSED MECHANISM

Now, we provide the algorithmic design for the pro-
posed Multi-Arm Bandit (MAB) fostered Reinforce-
ment Learning (RL) procedure for resource allotment
in MEC ecosystems dynamically. The proposed pro-
cedure strives to intelligently select the intended edge
servers, and allot them to the mobile edge users ef-
ficiently, which in turn will improve the latency, re-
source usage, and throughput, thereby enhancing the
user’s overall system performance.

4.1 Action Choosing

• The Upper Confidence Bound (UCB) procedure is
used by the MEC regulator to choose the intended
edge servers at each time step t. The below-given
equation is utilized to calculate the action AC(t):

AC(t) = argmax
i

(
ˆRW j(t)+

√
2log(t)
N j(t)

)
(2)

where,

• Up and until time t, the estimated average reward
for server sr j is represented by ˆRW j(t).

• Up and until time t, the number of times edge
server sr j was chosen is depicted by N j(t).

• The present time step is represented by t

4.2 The Reward Calculation

• At time t, utilizing the calculated average reward
ˆRW j(t) for server sr j the below given equation es-

timates/adjusts the sample mean.

ˆRW j(t) =
∑

t
τ=1 RWj(τ) · I(AC(τ) = j)

N j(t)
(3)

where,
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• RWj(τ) is the perceived reward received from
server sr j at time τ.

• I(AC(τ)= j) is an indicator function that becomes
1 if server sr j was chosen at time τ, and 0 other-
wise.

• N j(t) depicts the number of times server sr j has
been chosen up to time t.

4.3 The Proposed Algorithm

Algorithm 1 MAB-RL for Dynamic Resource Allot-
ment in MEC.

1: Initialize estimated rewards ˆRW j(0) and selection
counts N j(0) for all servers sr j.

2: for time step t = 1,2, . . . ,T do
3: Select action AC(t) using UCB algorithm:

4: AC(t) = argmax j

(
ˆRW j(t −1)+

√
2log(t)
N j(t−1)

)
5: Execute action AC(t) and observe reward

RWAC(t)(t).
6: Update estimated mean reward ˆRW AC(t)(t):

7: ˆRW AC(t)(t) =
∑

t
τ=1 RWAC(t)(τ)·I(AC(τ)=AC(t))

NAC(t)(t)

8: Increment selection count NAC(t)(t):
NAC(t)(t) = NAC(t)(t −1)+1

9: end for

The algorithm initializes the calculated rewards
and choosing counts for all servers. At each time
step, it chooses an action (edge server) founded on
the UCB algorithm. It accomplishes the selected ac-
tion, observes the reward, and updates the calculated
mean reward for the selected server. Finally, it in-
crements the choice count for the chosen server. The
process continues until the specified time horizon T
is attained. This algorithm enables dynamic resource
allotment in MEC ecosystems by adaptively choos-
ing edge servers founded on real-time feedback, thus
improving system performance.

4.4 Algorithm Properties

Proposition 1: The UCB algorithm guarantees that
the calculated mean reward converges to the true
mean reward with high probability.

Proof: Let ˆRW j(t) denote the calculated mean re-
ward for server sr j at time t, and RWj(t) represent
the true mean reward. By Hoeffding’s inequality, we
have:

Prb
(

ˆRW j(t)−RWi(t)> ε
)
≤ e−2ε2N j(t) (4)

where, ε > 0 is a constant depicting the deviation

from the true mean reward, and N j(t) is the number
of times server sr j has been chosen up to time t.

To confirm that ˆRW j(t) is near to RWj(t) with high

probability, we set ε =
√

log(t)
N(t) . Then, we have:

Prb

(
ˆRW j(t)−RWj(t)>

√
log(t)
N j(t)

)
≤ 1

t2 (5)

By the union bound, the probability that any server
sr j varies from its true mean reward declines expo-
nentially with time. Therefore, the UCB algorithm
guarantees convergence to the true mean reward for
all servers equipped with high probability.

Proposition 2: Regret Bound for UCB Algorithm
The regret of the UCB algorithm is determined by
O(G log(T )), where G is the servers present and T
is the time horizon.

Proof: Let RW ∗ represent the maximum mean re-
ward among all servers. The regret at time T is de-
scribed as:

Regret(T ) = T ·RW ∗−
G

∑
j=1

E

[
T

∑
t=1

RWj(t)

]
(6)

By the UCB algorithm’s investigation-
exploitation trade-off, the envisioned cumulative
reward of the algorithm satisfies:

E

[
T

∑
t=1

RWAC(t)(t)

]
≥

G

∑
j=1

E

[
T

∑
t=1

RW j(t)

]
−

G

∑
j=1

√
2log(T )
N j(T )

(7)
Using Proposition 1, we have:

G

∑
j=1

√
2log(T )
N j(T )

= O(
√

G log(T )) (8)

Thus, the regret of the UCB algorithm is deter-
mined by O(G log(T )), demonstrating sublinear re-
gret growth with relation to the time horizon T .

These theorems deliver theoretical assurances for
the convergence and productivity of the UCB algo-
rithm in dynamic resource allotment procedures.

4.5 Time Complexity Analysis

The time complexity study of the suggested Multi-
Armed Bandit (MAB) based Reinforcement Learn-
ing (RL) mechanism for dynamic resource allotment
in Mobile Edge Computing (MEC) ecosystems con-
cerns evaluating the computational cost of key pro-
cesses within the algorithm.

UCB algorithm based action choosing: The time
complexity of choosing an action utilizing the UCB
algorithm relies on computing the upper confidence
bounds for each arm (edge server). For G servers and
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T time steps, the time complexity for action choosing
is O(G).

Reward Calculation: Revising the calculated
mean reward for each server concerns calculating the
sample average of observed rewards. For every time
step t, the time complexity of revising the calculated
mean reward for G servers is O(G).

Overall Time Complexity: The overall time com-
plexity of the suggested strategy can be approximated
as O(G), where G is the number of servers (arms)
and T is the time horizon. This complexity results
from making action decisions and evaluating rewards
at each time step.

Regret Bound Analysis: The regret bound in-
volves calculating the cumulative regret across T time
steps. Regret increases sublinearly with T (limited by
O(G log(T ))), resulting in a modest processing cost
relative to the major operations of action selection and
reward computation.

The suggested approach for dynamic resource al-
location in MEC ecosystems is highly impacted by
the number of edge servers (G) and the time pe-
riod (T ). The algorithm’s complexity scales linearly
with both G and T , making it computationally feasi-
ble for practical usages in real-time MEC procedures.
Furthermore, the regret-bound investigation demon-
strates the algorithm’s efficacy in having sublinear re-
gret growth with respect to time, further backing its
scalability and usefulness.

4.6 Scenario Analysis

Considering a scenario where there are 3 edge servers
(arms) represented by sr1, sr2, and sr3, providing ser-
vice to a group of mobile users. The objective is to
dynamically allot computational elements to reduce
latency and increase throughput.

Step 1. Initialization:
• At first, the algorithm initializes the estimated

mean rewards
(

ˆRW j(t) ) and choice counts ( N j(t)
) for each server sr j.

• Let’s assume the initial estimated mean rewards
are:

– ˆRW 1(0) = 0.5
– ˆRW 2(0) = 0.3
– ˆRW 3(0) = 0.2

• And the initial choice counts are all set to 0 :
N1(0) = N2(0) = N3(0) = 0.

Step 2. Action Choosing (Time Step 1-5):
• At each time step, the algorithm chooses an action

(server) utilizing the UCB algorithm.

• For instance, at time step 1, the UCB algorithm
chooses server sr1 as it has the maximum upper
confidence bound.

• Likewise, actions are chosen for time steps 2 to 5
founded on the UCB algorithm.

Step 3. Reward Observation and Computation:
• After choosing an action, the algorithm performs

it, notices the reward, and revises the calculated
mean reward for the chosen server.

• For example, at time step 1, if server sr1 obtains a
reward of 0.6, the calculated mean reward ˆRW 1(t)
is updated consequently.

Step 4. Steps Repetition 2-3 (Time Step 6-10):
• The procedure of action selection, reward obser-

vance, and computation persists for subsequent
time steps.

Step 5. Performance Evaluation:
• After a certain number of time steps, the algo-

rithm’s productivity is assessed in concerning cu-
mulative reward, regret, and convergence to the
true mean reward.

By iteratively revising the estimated mean rewards
and choosing actions founded on the UCB algorithm,
the algorithm adjusts to the various ecosystem dy-
namics and enhances resource allotment to improve
system productivity. In real-world cases, the algo-
rithm would run continually, dynamically modifying
resource allotment founded on real-time feedback and
user needs.

5 SOCIAL WELFARE OF THE
PROPOSED MECHANISM

In the context of resource allotment in Mobile Edge
Computing (MEC) ecosystems, social welfare can be
described as a metric that captures the overall benefit
emanated from the allotment of computational utili-
ties to mobile users. Social welfare regards not only
the individual utilities of users but also the system-
wide purposes such as lowering latency, increasing
throughput, and improving resource usage.

Social welfare (sW ) can be represented as the
summation of individual utilities (UTj) of all mobile
users (UT ):

SW =
M

∑
j=1

UTj (9)

where:

• M is the total number of mobile users.
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• UTj denotes the utility acquired by user j.

The individual utility (UTj) can be determined
based on diverse factors such as latency, throughput,
quality of service (QoS), energy usage, or any other
suitable performance metric. For example, in the con-
text of MEC, the utility of a user may rely on the la-
tency experienced in completing a task, the quantity
of computational resources allotted, and the trustwor-
thiness of the service delivered.

Figure 2: Comparison between the proposed and round
robin strategy in handling latency (ms) between dynamic
workloads, bursty traffic, and network congestion

Figure 3: Impact of the proposed and round robin strategy
in managing system throughput (Mbps) between dynamic
workloads, bursty traffic, and network congestion

Figure 4: Impact of the proposed and round robin strategy
in managing system utilization (%) between dynamic work-
loads, bursty traffic, and network congestion

Figure 5: Impact of the proposed and round robin strategy
in achieving social welfare between dynamic workloads,
bursty traffic, and network congestion

6 THE SIMULATION RESULTS

6.1 Simulation setup

Our research activity traverses across three stem do-
mains—dynamic workloads, bursty traffic, and net-
work congestion—to evaluate the efficacy of our sug-
gested methodology in a simulation ecosystem. For
comparison purposes, we employed the round-robin
task scheduling algorithm, which is a static schedul-
ing algorithm that works by preempting the function-
ing of the executing processes at a specific time quan-
tum and resuming them again from the ready queue
to accomplish the tasks. Alongside this, parameters
such as latency (ms), throughput (Mbps), resource uti-
lization, and social welfare are estimated by allotting
five mobile devices among three edge servers. This
setup assures clarity while retaining applicability to
real-world designs.

6.2 Results

In Table 1, we demonstrate the allotment of 5 mo-
bile devices among 3 edge servers utilizing the pro-
posed methodology to estimate latency (ms), through-
put (Mbps), resource utilization (%), and social wel-
fare in terms of dynamic workloads. Similarly, in Ta-
ble 2 and Table 3, we execute the same investigation
for bursty traffic and network congestion scenarios re-
spectively utilizing the proposed methodology. The
same approach is performed for the round-robin pro-
cedure, but for the sake of simplicity, it is not included
in this research paper, thereby only the mean values
are reported.

Utilizing the above tables in Tables 4 and 5, we
introduce the mean latency, mean throughput, mean
resource usage, and mean social welfare for manag-
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Table 1: Dynamic Workload management via the proposed methodology for allotting edge devices to mobile users. ES:Edge
Server,LT:Latency (ms),TP:Throughput (Mbps), RU:Resource Utilization (%),SW:Social Welfare

Mobile Device ES LT TP RU SW
Device 1 Server 1 50 100 70 850
Device 2 Server 2 60 95 65 820
Device 3 Server 3 45 105 75 870
Device 4 Server 1 55 98 80 880
Device 5 Server 2 52 102 72 840

Table 2: Bursty traffic management via the proposed methodology for allotting edge devices to mobile users. ES:Edge
Server,LT:Latency (ms),TP:Throughput (Mbps), RU:Resource Utilization (%),SW:Social Welfare

Mobile Device ES LT TP RU SW
Device 1 Server 1 60 80 60 700
Device 2 Server 2 70 75 55 680
Device 3 Server 3 55 85 65 720
Device 4 Server 1 65 78 70 730
Device 5 Server 2 62 82 62 710

ing dynamic workloads utilizing both the proposed
methodology and the round-robin procedure. Sim-
ilarly, in Tables 6 and 7, we supply these metrics
for managing bursty traffic utilizing the suggested
methodology and round-robin procedure. Eventu-
ally, in Table 8 and 9, the same investigation is
performed for handling network congestion utilizing
both methodologies.

Visualizing the tabular data, fig. 2 demonstrates
the effectiveness of the suggested methodology in
comparison to the round-robin technique in lower-
ing latency across three domains: handling dynamic
workloads, handling bursty traffic, and network con-
gestion. Fig. 3 indicates the usefulness of the
suggested procedure in improving throughput cor-
responding to the round-robin technique across the
same domains. Similarly, Fig. 4 showcases the
progress in resource utilization accomplished by the
suggested methodology over round-robin across these
domains. Lastly, Fig. 5 portrays the enhancement in
social welfare, directing to better customer satisfac-
tion, attained by the presented methodology over the
round-robin procedure across the same domains.

7 CONCLUSION AND FUTURE
WORKS

This research paper presents a newly integrated re-
source allotment approach for Mobile Edge Com-
puting (MEC) utilizing Multi-Armed Bandit (MAB)
and Reinforcement Learning (RL). By presenting re-
source allotment as an MAB problem and employing
the Upper Confidence Bound (UCB) algorithm, it al-
lows adaptive allotment of computational resources

in real-time, improving performance and minimiz-
ing latency. The investigation exhibits the signifi-
cance of the procedure in dynamically determining
edge servers founded on real-time feedback, exceed-
ing static allotment strategies. Future research av-
enues comprise upgrading dynamic MEC models, in-
vestigating multi-objective improvements, and han-
dling security issues. Real-world integration and part-
nership with industry stakeholders are crucial for val-
idation and implementation. Overall, the research do-
nates to growing MEC systems for latency-prone util-
ities in the 5G era and beyond.
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