
Advancements and Prospects in Machine Learning-Driven Code 
Generation and Completion 

Menghao Hu 
School of Computing and Information, University of Pittsburgh, Pennsylvania, 15213, U.S.A. 

Keywords: Code Generation, Code Completion, Machine Learning. 

Abstract: Code generation and completion technologies have become important tools for enhancing development 
efficiency in modern software development, especially with recent breakthroughs in large-scale pre-trained 
language models, bringing new development opportunities to the field. With the advancement of machine 
learning technologies, particularly large language models, users can now generate and complete code through 
textual interaction, presenting new opportunities in this field. This paper reviews code generation and 
completion technologies based on machine learning and large-scale pre-trained models, analyzes the 
advantages and disadvantages of these methods, and discusses their performance and challenges in practical 
applications. The research shows that although large models perform well in semantic understanding and 
cross-language code generation, further optimization is needed regarding computational resource 
consumption and evaluation standards. Finally, this paper explores the future research directions of code 
generation technologies, providing references for improving the efficiency of large models, establishing 
unified evaluation standards, and enhancing the practical usability of generated code. 

1 INTRODUCTION 

In modern software development, code generation 
and completion technologies have gradually become 
key tools for improving development efficiency and 
reducing human costs. These technologies can 
automatically provide developers with code 
completion, error correction, and the generation of 
complete code segments in specific scenarios, thereby 
reducing repetitive work and shortening development 
time (Allamanis, 2018). Integrated development 
environments (IDEs) such as Visual Studio Code 
completion features significantly enhance 
productivity by reducing the time spent on manual 
coding. Code generation technology further 
automates the development process by automatically 
generating code snippets that meet specifications 
through semantic analysis of requirement 
descriptions or partial code (Austin, 2021). 

In recent years, with the continuous development 
of machine learning and deep learning technologies, 
particularly breakthroughs in large-scale pre-trained 
language models, such as Generative Pre-trained 
Transformer (GPT), Codex, the field of code 
generation and completion has seen unprecedented 
development opportunities (Chen, 2021). Compared 

with traditional rule- or template-based methods, 
machine learning models show significant 
advantages in handling complex contexts, cross-
language code generation, and semantic 
understanding. However, these technologies still face 
some challenges, such as high computational resource 
consumption and uncertainties in the accuracy and 
evaluation standards of generated code (Chen, 2021). 

This paper aims to review and analyze code 
generation and completion technologies based on 
machine learning and large models, discussing the 
possible directions for future development through 
the analysis of the strengths and weaknesses of 
current technologies. This research shows that 
although large models perform well in semantic 
understanding, they still need further optimization 
regarding accuracy, computational resource 
consumption, and evaluation standards (Zeng, 2022). 

2 PRINCIPLES OF LARGE-SCALE 
PRE-TRAINED MODEL 

In recent years, large-scale pre-trained models have 
become frontier technologies in the field of code 

392
Hu, M.
Advancements and Prospects in Machine Learning-Driven Code Generation and Completion.
DOI: 10.5220/0013332700004558
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 1st International Conference on Modern Logistics and Supply Chain Management (MLSCM 2024), pages 392-396
ISBN: 978-989-758-738-2
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.



generation and completion. Models such as GPT, 
Codex, and AlphaCode, based on the Transformer 
architecture, learn complex syntax and semantic 
structures by training on massive amounts of code 
and natural language data (Vaswani, 2017). These 
models can understand natural language descriptions 
and generate code consistent with programming 
semantics based on context. The Transformer model 
relies on self-attention mechanisms, which provide 
significant advantages in capturing long-range 
dependencies and contextual understanding (Vaswani, 
2017). The pre-training process usually consists of 
two stages: unsupervised language modeling and 
task-specific fine-tuning. This training strategy 
enables the model to exhibit excellent flexibility and 
generative capabilities when handling multiple 
programming languages and complex contexts. 

2.1 Transformer Architecture 

The Transformer architecture is currently one of the 
most widely used deep learning models for natural 
language processing (NLP) and code generation tasks. 
Unlike traditional recurrent neural networks (RNN) 
and long short-term memory networks (LSTM), the 
Transformer does not rely on sequential processing 
but uses self-attention mechanisms to simultaneously 
focus on all elements in a sequence, significantly 
improving parallel computing efficiency (Vaswani, 
2017). The self-attention mechanism allows the 
model to weight elements according to their 
associations with other elements when encoding the 
input sequence, enabling it to better capture long-
distance dependencies. 

The core components of the Transformer include 
encoders and decoders, with each encoder and 
decoder layer containing self-attention and 
feedforward neural networks. By stacking multiple 
layers of encoders and decoders, the Transformer 
effectively handles complex language understanding 
and generation tasks. In code generation, the 
Transformer is used to transform natural language 
descriptions (such as user requirements) into code 
snippets that conform to syntax and logic (Chen, 
2021). 

2.2 GPT and Codex Models 

GPT is a series of pre-trained language models 
developed by OpenAI, trained on massive text data to 
learn language syntax and semantic features through 
unsupervised pre-training. The application of GPT 
models in code generation is led by GPT-3 and its 
variant Codex, which is fine-tuned specifically for 

programming languages, significantly improving its 
performance in code generation and completion tasks 
(Chen, 2021). 

Codex can directly convert natural language 
descriptions into code, allowing users to generate 
complex code snippets through simple language 
commands. This ability stems from Codex's extensive 
training on large-scale programming language data 
across various languages, enabling it to understand 
syntax rules and generate code across different 
programming languages (Austin, 2021). 

2.3 AlphaCode and Reinforcement 
Learning 

AlphaCode, developed by DeepMind, is a code 
generation model designed to solve competition-level 
programming tasks. Unlike Codex, AlphaCode 
combines large-scale pre-training and reinforcement 
learning techniques, making it particularly suitable 
for generating complex algorithms. Trained on 
programming competition datasets, AlphaCode 
generates logically correct high-quality code and 
achieves results close to human competitors in 
competition tasks (Li, 2022). 

The innovation of AlphaCode lies in its 
reinforcement learning strategy, incorporating 
compiler feedback into the training process, allowing 
the model to better understand the correctness and 
efficiency of generated code. During training, 
AlphaCode uses large-scale parallel training and 
multiple reward mechanisms to optimize the quality 
of generated code (Li, 2022). 

3 MACHINE LEARNING-BASED 
CODE COMPLETION AND 
GENERATION 

Machine learning-based code generation and 
completion methods mainly rely on supervised 
learning and deep learning models, trained on large 
annotated code datasets to learn syntax and semantic 
patterns among code snippets. Significant progress in 
recent years includes tools such as DeepCode and 
TabNine, which analyze common structures and 
patterns in large-scale codebases to provide context-
aware code completion suggestions to developers 
(Allamanis, 2018). 

DeepCode combines static analysis with deep 
learning techniques for code completion and error 
detection. The model uses syntax trees and data flow 
analysis methods to help identify potential errors in 

Advancements and Prospects in Machine Learning-Driven Code Generation and Completion

393



code and propose intelligent repair suggestions. 
Research shows that DeepCode has been effectively 
applied in multiple open-source projects, 
significantly reducing the occurrence of code 
vulnerabilities (Pashchenko, 2020). 

TabNine is based on the autoregressive structure 
of the GPT-2 model and can generate high-quality 
code completion suggestions, particularly excelling 
in multi-language development environments such as 
combined use of Python and JavaScript. TabNine 
continuously improves completion quality by 
optimizing model parameters and algorithms and has 
become a widely used tool in integrated development 
environments (Chen, 2021). 

These machine learning-based code generation 
methods are flexible and adaptable, capable of 
handling multiple programming languages and styles. 
They perform well in completing code snippets and 
automatically fixing simple errors. However, they 
still have significant limitations in understanding 
complex contexts and cross-module reasoning, 
especially in scenarios requiring deep semantic 
understanding, where the generated code can easily 
contain logical errors or semantic inconsistencies 
(Zeng, 2022). 

4 LARGE-SCALE PRE-TRAINED 
MODEL-BASED CODE 
GENERATION AND 
COMPLETION 

Large-scale pre-trained models (such as Codex and 
AlphaCode) demonstrate powerful code generation 
capabilities by training on large-scale code and 
natural language datasets. Compared to traditional 
rule-based or machine learning methods, these 
models can better understand complex contexts, 
perform cross-language code generation, and 
generate high-quality code. 

Codex is a specialized code generation model 
developed by OpenAI, based on the GPT-3 
architecture and trained on large-scale programming 
language data from platforms like GitHub. The core 
advantage of Codex is its ability to generate 
corresponding code snippets through natural 
language input, support multi-turn dialogue, and 
optimize code logic and structure. Experiments show 
that Codex outperforms traditional machine learning 
methods in complex code generation tasks, 
particularly when dealing with complex data 
structures (Chen, 2021). 

AlphaCode, developed by DeepMind, combines 
reinforcement learning and large-scale parallel 
training techniques to solve complex algorithm code 
generation problems. During training, AlphaCode 
continuously optimizes the quality and correctness of 
generated code through compiler feedback and 
reinforcement learning mechanisms. Research shows 
that AlphaCode achieves results close to human 
competitors in programming competition tasks, 
demonstrating its potential in complex programming 
tasks (Li, 2022). 

PPOCoder is a code generation method 
combining deep reinforcement learning and compiler 
feedback. PPOCoder utilizes Proximal Policy 
Optimization (PPO) strategies to refine the 
optimization process, enhancing the syntactic and 
functional correctness of generated code. This 
method exhibits good adaptability and generation 
capability in multiple programming tasks (Le, 2022). 

Although large-scale pre-trained models excel in 
handling complex contexts and generating logically 
consistent code, their high computational resource 
consumption and the lack of unified evaluation 
standards remain major challenges. Existing 
evaluation methods mainly focus on the syntactic 
correctness of code, lacking systematic evaluation of 
code functionality, readability, and maintainability. 

5 DISCUSSIONS 

5.1 Limitations 

Despite the superior performance of large-scale pre-
trained models in handling complex contexts and 
cross-language code generation, they still face several 
challenges in practical applications: 

Computational Resource Consumption: Large-
scale pre-trained models require significant 
computational resources during both training and 
inference stages, including GPUs and memory. This 
makes it challenging for these models to be widely 
used by resource-constrained small and medium-
sized development teams. Most current research 
focuses on enhancing model performance, but 
reducing computational resource consumption 
remains a pressing issue (Chen, 2021). 

Accuracy and Stability of Code Generation: 
Although large models perform well in generating 
syntactically correct code, their logical and functional 
accuracy still needs improvement. Generated code 
often requires debugging and modification by 
developers, which diminishes the advantages of 
automation. For complex programming tasks, such as 

MLSCM 2024 - International Conference on Modern Logistics and Supply Chain Management

394



algorithm generation and cross-module code 
synthesis, current models still cannot fully achieve 
the stability of human programming (Austin, 2021). 

Lack of Unified Evaluation Standards: Current 
evaluations of code generation models primarily 
focus on syntactic correctness and surface logical 
consistency, lacking comprehensive assessments of 
functional, readability, and maintainability aspects. 
Establishing a unified evaluation framework to 
measure the multidimensional performance of 
generated code will be a key focus of future research. 

5.2 Future Perspectives 

Future research should focus on the following key 
directions to advance the development and 
application of code generation technologies: 

Improving Computational Efficiency: By 
optimizing model architectures or introducing new 
inference algorithms (such as quantization techniques, 
model pruning, and knowledge distillation), 
computational resource consumption can be reduced, 
making large-scale models more broadly applicable 
in real-world development scenarios. Optimizing 
compiler feedback mechanisms is crucial to reducing 
the complexity of model training and inference, while 
exploring efficient distributed training methods can 
accelerate the training speed of large-scale pre-
trained models (Chen, 2024). 

Establishing Unified Code Generation Evaluation 
Standards: Future efforts should develop 
comprehensive code quality evaluation metrics, 
including logical accuracy, functionality, readability, 
and maintainability, to improve the evaluation system 
for code generation. These standards should cover 
scenarios ranging from simple code completion to 
complex algorithm synthesis to ensure the practical 
value of generated code. Research shows that 
multidimensional evaluation standards focusing on 
practicality and maintainability represent a 
significant gap in current code generation 
technologies (Hendrycks, 2021). 

Enhancing Debugging and Optimization 
Capabilities: Developing mechanisms that can 
automatically debug and optimize generated code 
will enable code generation models not only to 
produce initial code but also to autonomously 
improve based on compiler and test feedback. 
Introducing reinforcement learning mechanisms that 
allow models to adjust generation strategies based on 
actual execution outcomes will significantly enhance 
the quality and practicality of generated code (Ziegler, 
2022). 

Multi-Language and Cross-Platform Code 
Generation: Current large-scale pre-trained models 
mainly focus on a few mainstream languages (such as 
Python and JavaScript). Future research can explore 
support for more programming languages and cross-
platform code generation technologies to meet the 
needs of different development scenarios. Multi-
language support can help developers achieve a more 
seamless development experience in multi-language 
mixed projects (Yin, 2022). 

Improving Model Interpretability: Most current 
code generation models operate as "black boxes," 
making it difficult for developers to fully understand 
the internal logic of the generated code. Enhancing 
the interpretability of models will allow developers to 
understand the decision-making process of models, 
increasing trust in the generated code and facilitating 
more precise debugging and improvements. Future 
research can combine interpretable machine learning 
techniques, such as model introspection and 
visualization analysis, to help developers better 
understand the generation logic and potential errors 
(Doshi-Velez, 2017). 

6 CONCLUSIONS 

This paper reviews and analyzes code generation and 
completion technologies based on machine learning 
and large-scale pre-trained models, summarizing the 
advantages and shortcomings of both approaches. 
Machine learning-based methods perform well in 
handling simple code snippets but face limitations in 
understanding complex contexts and semantic 
reasoning. In contrast, large-scale pre-trained models 
show strong potential for code generation, 
particularly in semantic understanding and cross-
language code generation. However, the high 
computational cost and lack of evaluation standards 
restrict their widespread application in real-world 
development. 

Future research should focus on optimizing the 
computational efficiency of large models, 
establishing unified evaluation standards for code 
generation, enhancing the models' reasoning 
capabilities in complex contexts, and improving the 
functional accuracy and maintainability of generated 
code. As these issues are gradually addressed, code 
generation technology will play an increasingly 
important role in the field of software development, 
promoting the intelligent and automated evolution of 
software engineering. 

Advancements and Prospects in Machine Learning-Driven Code Generation and Completion

395



REFERENCES 

Allamanis, M., Barr, E. T., Devanbu, P., & Sutton, C. 2018. 
A survey of machine learning for big code and 
naturalness. ACM Computing Surveys, 51(4), 1-37. 

Chen, L., Guo, Q., Jia, H., Zeng, Z., Wang, X., Xu, Y., ... 
& Zhang, S. 2024. A Survey on Evaluating Large 
Language Models in Code Generation Tasks. arXiv 
preprint arXiv:2408.16498. 

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. D. O., 
Kaplan, J., ... & Zaremba, W. 2021. Evaluating large 
language models trained on code. arXiv preprint 
arXiv:2107.03374. 

Doshi-Velez, F., & Kim, B. 2017. Towards a rigorous 
science of interpretable machine learning. arXiv 
preprint arXiv:1702.08608. 

Hendrycks, D., Burns, C., Basart, S., Zou, A., Mazeika, M., 
Song, D., & Steinhardt, J. 2020. Measuring massive 
multitask language understanding. arXiv preprint 
arXiv:2009.03300. 

Jimenez, M., Papadakis, M., & Le Traon, Y. 2016. 
Vulnerability prediction models: A case study on the 
linux kernel. In 2016 IEEE 16th International Working 
Conference on Source Code Analysis and Manipulation. 
1-10. 

Li, Y., Choi, D., Chung, J., Kushman, N., Schrittwieser, J., 
Leblond, R., ... & Vinyals, O. 2022. Competition-level 
code generation with alphacode. Science, 378(6624), 
1092-1097. 

Yin, P., Neubig, G., Allamanis, M., Brockschmidt, M., & 
Gaunt, A. L. 2018. Learning to represent edits. arXiv 
preprint arXiv:1810.13337. 

Zeng, Z., Tan, H., Zhang, H., Li, J., Zhang, Y., & Zhang, L. 
2022. An extensive study on pre-trained models for 
program understanding and generation. In Proceedings 
of the 31st ACM SIGSOFT international symposium on 
software testing and analysis. 39-51. 

Ziegler, D. M., Stiennon, N., Wu, J., Brown, T. B., Radford, 
A., Amodei, D., ... & Irving, G. 2019. Fine-tuning 
language models from human preferences. arXiv 
preprint arXiv:1909.08593. 

 
 

MLSCM 2024 - International Conference on Modern Logistics and Supply Chain Management

396


