
Advancements and Challenges of Large Language Model-Based Code
Generation and Completion

Zheer Wang
College of Engineering, University of Kentucky, Lexington, Kentucky, 40506-0107, U.S.A.

Keywords: Large Language Models, Code Generation, Code Completion.

Abstract: This paper provides an in-depth review of the recent advancements and applications of large language models
(LLMs) in the field of code generation and code completion. Since deep learning and transformer architectures
have advanced so quickly, LLMs have shown previously unheard-of powers in producing source code from
natural language, revolutionizing software development procedures. The underlying ideas of these models are
first explained in the review, with particular attention to how large models such as Generative Pre-trained
Transformer (GPT)-3 and Codex use pre-training and fine-tuning techniques to produce sophisticated code
from descriptions in simple language. These models produce high-quality outputs by autonomously learning
programming syntax and semantics and using attention techniques to capture contextual dependencies in code,
contrasting with conventional rule-based or heuristic approaches. This paper also demonstrates how well
LLMs perform in a variety of applications, including code translation, code completion, and error detection,
as well as how effectively they function in multi-language programming environments. Additionally, models
like PolyCoder and Program and Language Bidirectional and Auto-Regressive Transformers (PLBART) are
emphasized because they outperform traditional methods, particularly in cross-language tasks. Although
LLMs show great promise, the study also discusses some of their current drawbacks, such as their high
memory consumption, opaque training data, and difficulties with generalizing to new codebases. In summary,
while LLMs provide unparalleled prospects for software engineering advancement, further investigation is
required to overcome current obstacles and expand their relevance to broader fields.

1 INTRODUCTION

In today's digital world, code generation is growing
more and more significant and is essential to driving
innovation across a range of sectors. These days,
programming is a crucial component of many other
technical domains and is not only the technical
expertise of software engineers. Fast and effective
code development is becoming more and more
necessary as many sectors need automated processes
to handle massive volumes of data and increase
productivity. This has led to the creation of cutting-
edge technologies, particularly large language models
(LLMs) that automate coding operations. With the
use of Transformer architecture and deep learning
technology, LLMs have pushed advancements in the
field of code generation, allowing machines to
comprehend and produce language that is comparable
to that of humans. These models can interpret natural
language instructions and translate them into
executable code; well-known examples of these

models include Generative Pre-Trained (GPT)-3 and
Codex. Compared to traditional programming
methods, which call for the manual creation of certain
grammars, grammatical rules, and algorithms, this
change is very different. LLMs can automate
complicated programming jobs by learning
programming languages in a manner akin to human
learning through the training of vast amounts of data.

 In particular, LLMs are capable of carrying out a
wide range of activities previously assigned to human
programmers. These jobs include code translation,
which is translating code between different
programming languages, and code completion, which
is the model's prediction and recommendation of the
subsequent line or segment of code based on
contextual prompts. Furthermore, LLMs have
demonstrated noteworthy outcomes in debugging and
mistake detection, significantly decreasing the time
and effort needed for human error checks. Large
models can handle difficult tasks with little human
intervention, which eases the burden on developers

208
Wang, Z.
Advancements and Challenges of Large Language Model-Based Code Generation and Completion.
DOI: 10.5220/0013271800004558
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 1st International Conference on Modern Logistics and Supply Chain Management (MLSCM 2024), pages 208-213
ISBN: 978-989-758-738-2
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

and makes it possible for non-professionals to
generate functional code using natural language
input. This is one of the key benefits of employing
large models for code generation. In addition to their
versatile applications, LLMs show remarkable
flexibility in handling multiple programming
languages. Global development environments can
benefit greatly from the accuracy of code translations
provided by models such as Program and Language
Bidirectional and Auto-Regressive Transformers
(PLBART) and PolyCoder, which are well-suited for
cross-language work. These models can also be
adjusted for particular domains, which improves their
accuracy in particular tasks. Because of their
scalability and versatility, LLMs are essential tools
for software engineers.

In summary, this paper examines the design and
capabilities of the big language model and reviews its
evolution in the field of code generation. This
evaluation looks at these models' benefits and
drawbacks as well as how they might be used to
further the field of programming.

2 LLM-BASED CODE
GENERATION

The automatic production of code fragments or entire
programs from a high-level specification—like plain
language descriptions—is referred to as code
generation. Significant advancements in automating
this procedure have been made possible by deep
learning and large-scale language models. First, large
language models have shown impressive new
abilities to generate natural language text and to solve
a rapidly expanding set of modeling and reasoning
tasks. Second, over the past decade, machine learning
approaches have been applied to source code text to
yield a variety of new tools to support software
engineering (Austin, 2021). Unlike traditional
methods that require manual coding of specific rules
and grammar, large models learn to generate code by
understanding large amounts of data. With the help of
tokenized datasets, large language models for code
generation may efficiently capture the syntax and
semantics of many programming languages without
the need for explicit programming, and this method
allows these models to handle a variety of complex
coding tasks with minimal human intervention.

LLMs have significantly advanced in automating
the generation of source code from natural language
descriptions. These models, often referred to as Code
LLMs. Transformer-based models have

demonstrated significant progress in handling
complex code generation tasks, surpassing earlier
rule-based systems and heuristics, allowing models to
handle complex code generation tasks more
effectively (Jiang, 2024). These models have
demonstrated the capability to not only generate code
that meets functional requirements but also to learn
from feedback and improve over time, as seen with
techniques such as reinforcement learning. The self-
attention mechanism enables the transformer model
to focus on different parts of the input sequence,
understanding both the context and the relationships
between words, regardless of their distance (Chen,
2024). By using attention ratings to give varying
levels of priority, this technique enables each word or
token in the input sequence to consider every other
word or character. Practically speaking, this means
that the model can assess the connections between
words in a phrase regardless of where they are located,
which is essential for comprehending intricate
directives and subtle contextual cues. This approach,
when used in conjunction with code generation,
allows the model to comprehend the context of a
variable or function definition and how it will be used
later in the code. By capturing these dependencies,
the model can generate code that is not only
syntactically correct but also logically coherent,
ensuring that the generated code adheres to the
intended functionality and structure. Typically, a
multi-stage process is involved in the transformer-
based LLM code generation workflow to fully utilize
these models. The first phase is called pre-training,
Transformer models use pre-training on large datasets
of source code to learn general programming patterns,
which can be further fine-tuned for specific tasks
(Chen, 2024). To help the model learn typical
programming patterns and syntax, this training
involves exposing it to a variety of programming
languages, coding styles, and problem-solving
techniques. The model is adjusted to more precise
activities or situations during fine-tuning. For
example, a model can be tailored especially for
Structured Query Language (SQL) query generation
or Python scripting by utilizing datasets that include
code samples that match descriptions in plain
language. Through this process, the model can
become more specialized and enhance its relevance
and accuracy when producing particular kinds of code.
Lastly, the model uses its learnt representations to
translate natural language inputs into executable code
during the generation phase. To produce the intended
result, this phase entails applying learnt programming
logic in addition to comprehending the input context.
The generated code can range from simple utility

Advancements and Challenges of Large Language Model-Based Code Generation and Completion

209

functions to more complex algorithms, depending on
the input provided.

A significant example of using the Transformer
model is the PLBART model, which is a unified pre-
training model specially designed for program
understanding and generation tasks. PLBART
employs denoising sequence-to-sequence pre-
training, where the model is trained to recover
corrupted input sequences, helping it learn syntax and
semantics across programming languages (Ahmad,
2021). The pre-training involves a denoising
autoencoding approach, where the model is trained to
reconstruct original input sequences that have been
corrupted by random noise. In the pre-training phase,
the model is trained to recover original input
sequences that have been tainted by random noise
using a denoising autoencoding technique. This
method helps in the model's acquisition of
programming language syntax and semantics, as well
as their correspondence with descriptions of natural
language, allowing it to function successfully in a
variety of tasks.

The application of large models in code
generation has also become an important field in
machine learning research. These models are
primarily categorized into three types: language
models, transducer models, and multimodal models.
Language models, like natural language processing
(NLP), are made to represent the process of creating
code as a sequence prediction issue. These models,
which include neural network-based and n-gram
models, forecast the subsequent token in a series
depending on the tokens that came before it.
Programming language syntax and structure can be
effectively learned by language models, allowing
them to carry out operations like code completion.
However, the assumption made by n-gram models
simplifies the dependency on context, thus failing to
handle long-range dependencies, making them
ineffective in capturing information such as variable
scoping in code generation (Allamanis, 2018).

Transducer models, which are based on statistical
machine translation, are used to translate code
between different programming languages or from
pseudocode to source code, among other
representations. These models are inspired by
statistical machine translation, map code between
different languages or representations, making them
ideal for tasks such as code migration or refactoring
because they learn mappings between various
syntactic or semantic components in code (Allamanis,
2018).

Multimodal models combine natural language and
code production with different modalities. The goal

of these models is to produce code from a variety of
inputs, including written descriptions, visual clues,
and other non-code data. For instance, the assumption
made by n-gram models simplifies the dependency on
context, thus failing to handle long-range
dependencies, making them ineffective in capturing
information such as variable scoping in code
generation.

Direct translation of natural language instructions
into executable code is a major capability of large
models. Developers that work with traditional
programming typically need to be fluent in
programming languages and possess in-depth
understanding of algorithms. However, complicated
code can be generated by users even without
programming skills thanks to huge models. These
models, such as OpenAI’s GPT-3, have demonstrated
the capacity to generate human-like text, including
programming code, by training on vast datasets of
human language. In order to comprehend the syntax
and semantics needed for diverse programming tasks,
the procedure usually entails training a model on a
sizable corpus of code and related textual data. With
the use of natural language descriptions, these models
may produce code snippets, find and repair errors in
existing code, and even recommend code completions.
These models' performance in code generation tasks
is frequently assessed in three different learning
scenarios: zero-shot, one-shot, and few-shot. Zero-
shot learning involves the model generating code
without any examples given during the job; one-shot
learning provides one example; and few-shot learning
provides a small number of instances. GPT-3
achieves promising results in the zero- and one-shot
settings, and in the few-shot setting is sometimes
competitive with or even occasionally surpasses
state-of-the-art (Mann, 2020). A major discovery in
the research on huge language models, such as GPT-
3, is that these models can function as effective meta-
learners. That implies they don't need a lot of
retraining to swiftly adjust to new jobs, which is
especially useful for code generation. The feature
known as "in-context learning" allows these models
to make use of their substantial pre-training by
inserting examples right into the input context,
enabling them to comprehend and produce relevant
replies.

MLSCM 2024 - International Conference on Modern Logistics and Supply Chain Management

210

3 LLM-BASED CODE
COMPLETION

Code completion is an automatic code generation
approach that is based on context and aims to foresee
and finish code fragments that a developer is
currently typing.

Code completion can take one of the following
forms, depending on the level of operation:

Token-level completion: In this case, code
completion suggests for the next line of code based
on a partially entered word or symbol by the
developer. For example, the tool may propose the
entire variable name after you type the first few letters.

Line-level completion: This is anticipating and
finishing a line of code from the partially written code
and the context of the current line. For example,
depending on a conditional phrase entered, it might
automatically finish a semicolon or closing bracket.

Block-level completion: Code completion can
anticipate and inserting more complex code, such
loops, methods, or whole class hierarchies. A deeper
comprehension of the logic and structure of code is
necessary for this kind of completion.

Deep learning approaches for sequence prediction
are typically the foundation of code completion
algorithms. Take Codex as an illustration. Codex is
trained on large-scale public datasets containing code,
mainly sourced from GitHub repositories, and is
evaluated on its ability to complete or generate code
based on natural language descriptions (Chen, 2021).
With its transformer architecture, large-scale
sequence data processing is possible. The model
learns the syntax, organization, variable
dependencies, and common programming patterns of
the code by being trained on vast amounts of code
data that are made available on open-source platforms
like GitHub. Code completion tasks are especially
well-suited for the language model's auto-regression
generation method since the logic and structure of the
code are comparable to those of natural language. The
code must be transformed into a format that the model
can understand for it to be able to complement the
code. Millions of code repositories on GitHub
provide the training data, which has been
preprocessed, cleaned, and copied to create a sizable
code base. Most of the training data in Codex is
Python code, and each code file has been tokenized to
enable the model to recognize and learn every
element in the code, including function names,
variable names, operator names, etc. In this manner,
Codex can gradually produce code fragments while
learning the syntax, variable binding, function calling,
and other patterns of other languages. Code

completion relies on a model that utilizes the input
portion of the code to anticipate the next most likely
code fragment. Codex generates code in a recursive
manner, producing one or more tokens each time. It
then keeps predicting the next token by using the
created content that has already been produced. This
procedure keeps going until the terminator, which
could be a comment symbol, a newline character, or
the function's ending symbol.

Codex will produce several potential completion
techniques for user-inputted code fragments
depending on the current situation. The model learns
common programming patterns during training, like
function declaration, loop structure, conditional
judgment, etc., on which these completions are
typically based. For instance, Codex might
automatically finish the function's parameters, body,
and even return value if the user only enters the
function definition's beginning. Nevertheless, it is
challenging to further enhance or apply models like
Codex to other sectors because their internal
workings and training data are not publicly available.
The PolyCoder model fills many of the gaps in the
existing research when compared to the Codex model.
Based on the GPT-2 architecture, PolyCoder is a
model with 2.7B parameters, 249GB of training data,
and support for 12 programming languages (Xu,
2020). PolyCoder even outperformed Codex in the C
language code creation task, exhibiting superior
performance in a particular language. PolyCoder's
multilingual training data set, which includes C, C++,
Python, Java, JavaScript, and other languages, is one
of its advantages. Because of its multilingual training,
PolyCoder is better able to handle multiple
programming languages and benefit from this shared
characteristic. Besides, researchers and developers
can utilize PolyCoder's model parameters and
training data without restriction because it is an
entirely open-source model. By studying more about
their model architecture, data selection, and training
procedure, researchers can enhance and optimize
code completion technology in subsequent studies.

Recent advancements in code completion are
driven by the integration of large-scale language
models, such as those used in neural-based code
suggestion systems. Traditional approaches have
limitations due to their high memory consumption
and difficulty generalizing across new codebases or
unseen APIs. Current methods for code completion
use neural models in conjunction with static analysis
to increase prediction accuracy and memory
efficiency. These models optimize code completion
by reranking suggestions rather than generating
completions from scratch, allowing for faster

Advancements and Challenges of Large Language Model-Based Code Generation and Completion

211

predictions with a lower memory footprint. The best
neural reranking model consumes just 6 MB of RAM,
19× less than previous models, and achieves 90%
accuracy in its top five suggestions (Svyatkovskiy,
2021). Furthermore, recent advancements in
sequence-to-sequence (Seq2Seq) models, including
Sequence Span Rewriting (SSR), indicate the
possibility of improving code completion even more.
SSR bridges the gap between pre-training and fine-
tuning, because many downstream Seq2Seq tasks like
summarization and paraphrase generation are
naturally sequence span rewriting tasks (Zhou, 2021).
By training models to rewrite machine-generated
imperfect spans into ground truth text, SSR improves
earlier text-infilling techniques. This method works
particularly well with smaller models or in limited
contexts since it not only widens the range of learning
signals in the model but also narrows the gap between
pre-training and fine-tuning.

4 DISCUSSIONS

The discussion of this paper highlights both the
strengths and limitations of LLMs in code generation.
Significant progress has been made by these models,
especially in automating debugging, translation, and
code completion activities while lowering the need
for human participation. Software development has
been transformed by its capacity to produce high-
quality code from natural language inputs,
particularly for non-experts. Nevertheless, LLMs
continue to encounter significant obstacles, such as
excessive memory consumption, ambiguous training
data, and trouble generalizing to unknown codebases.
Their wide application and scalability are restricted
by these problems. Future studies need to concentrate
on overcoming these restrictions. Important next
stages include increasing the transparency of LLMs'
training procedures and strengthening their capacity
to manage a variety of unfamiliar programming
settings. Reducing the computational resources
needed for these models will also enhance their
usability and facilitate their incorporation into
different programming workflows. LLMs can reach
even higher potential in software engineering and
other fields by overcoming these obstacles.

5 CONCLUSIONS

This paper has provided an in-depth review of LLMs
in the field of code generation, highlighting their

methods, results, and future potential. Deep learning
and transformer architectures underpin models like
GPT-3 and Codex, which have demonstrated
impressive efficacy in automating code completion,
translation, and debugging activities. These models
can efficiently learn the syntax and semantics of
several programming languages by employing pre-
training and fine-tuning procedures, producing
executable code from natural language inputs. The
findings show that LLMs considerably decrease the
amount of time needed for manual debugging and
error detection, and they increase coding efficiency,
particularly in multilingual situations. However,
LLMs still face notable limitations. Challenges to
their wider implementation include high memory
usage, opaque training data, and difficulty in
generalizing to new and unfamiliar codebases. These
problems restrict their use in a variety of specialized
programming contexts and impede their scalability.
In the future, research should concentrate on lowering
the processing power needed by LLMs and enhancing
the clarity of their training procedures. Increasing
their applicability will need improving their capacity
to adapt to new programming languages and
environments. With further development, LLMs
could completely transform automated software
development and become indispensable to
programming in the future.

REFERENCES

Ahmad, W. U., Chakraborty, S., Ray, B., & Chang, K. W.
2021. Unified pre-training for program understanding
and generation. arXiv preprint arXiv:2103.06333.

Allamanis, M., Barr, E. T., Devanbu, P., & Sutton, C. 2018.
A survey of machine learning for big code and
naturalness. ACM Computing Surveys (CSUR), 51(4),
1-37.

Austin, J., Odena, A., Nye, M., Bosma, M., Michalewski,
H., Dohan, D., ... & Sutton, C. 2021. Program synthesis
with large language models. arXiv preprint
arXiv:2108.07732.

Chen, L., Guo, Q., Jia, H., Zeng, Z., Wang, X., Xu, Y., ...
& Zhang, S. 2024. A Survey on Evaluating Large
Language Models in Code Generation Tasks. arXiv
preprint arXiv:2408.16498.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. D. O.,
Kaplan, J., ... & Zaremba, W. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Jiang, J., Wang, F., Shen, J., Kim, S., & Kim, S. 2024. A
Survey on Large Language Models for Code
Generation. arXiv preprint arXiv:2406.00515.

Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P.,
Neelakantan, A., ... & Amodei, D. 2020. Language

MLSCM 2024 - International Conference on Modern Logistics and Supply Chain Management

212

models are few-shot learners. arXiv preprint
arXiv:2005.14165, 1.

Svyatkovskiy, A., Lee, S., Hadjitofi, A., Riechert, M.,
Franco, J. V., & Allamanis, M. 2021. Fast and memory-
efficient neural code completion. In 2021 IEEE/ACM
18th International Conference on Mining Software
Repositories, 329-340.

Xu, F. F., Alon, U., Neubig, G., & Hellendoorn, V. J. 2022.
A systematic evaluation of large language models of
code. In Proceedings of the 6th ACM SIGPLAN
International Symposium on Machine Programming, 1-
10.

Zhou, W., Ge, T., Xu, C., Xu, K., & Wei, F. 2021.
Improving sequence-to-sequence pre-training via
sequence span rewriting. arXiv preprint
arXiv:2101.00416.

Advancements and Challenges of Large Language Model-Based Code Generation and Completion

213

