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Abstract: This paper provides an in-depth review of the recent advancements and applications of large language models 
(LLMs) in the field of code generation and code completion. Since deep learning and transformer architectures 
have advanced so quickly, LLMs have shown previously unheard-of powers in producing source code from 
natural language, revolutionizing software development procedures. The underlying ideas of these models are 
first explained in the review, with particular attention to how large models such as Generative Pre-trained 
Transformer (GPT)-3 and Codex use pre-training and fine-tuning techniques to produce sophisticated code 
from descriptions in simple language. These models produce high-quality outputs by autonomously learning 
programming syntax and semantics and using attention techniques to capture contextual dependencies in code, 
contrasting with conventional rule-based or heuristic approaches. This paper also demonstrates how well 
LLMs perform in a variety of applications, including code translation, code completion, and error detection, 
as well as how effectively they function in multi-language programming environments. Additionally, models 
like PolyCoder and Program and Language Bidirectional and Auto-Regressive Transformers (PLBART) are 
emphasized because they outperform traditional methods, particularly in cross-language tasks. Although 
LLMs show great promise, the study also discusses some of their current drawbacks, such as their high 
memory consumption, opaque training data, and difficulties with generalizing to new codebases. In summary, 
while LLMs provide unparalleled prospects for software engineering advancement, further investigation is 
required to overcome current obstacles and expand their relevance to broader fields. 

1 INTRODUCTION 

In today's digital world, code generation is growing 
more and more significant and is essential to driving 
innovation across a range of sectors. These days, 
programming is a crucial component of many other 
technical domains and is not only the technical 
expertise of software engineers. Fast and effective 
code development is becoming more and more 
necessary as many sectors need automated processes 
to handle massive volumes of data and increase 
productivity. This has led to the creation of cutting-
edge technologies, particularly large language models 
(LLMs) that automate coding operations. With the 
use of Transformer architecture and deep learning 
technology, LLMs have pushed advancements in the 
field of code generation, allowing machines to 
comprehend and produce language that is comparable 
to that of humans. These models can interpret natural 
language instructions and translate them into 
executable code; well-known examples of these 

models include Generative Pre-Trained (GPT)-3 and 
Codex. Compared to traditional programming 
methods, which call for the manual creation of certain 
grammars, grammatical rules, and algorithms, this 
change is very different. LLMs can automate 
complicated programming jobs by learning 
programming languages in a manner akin to human 
learning through the training of vast amounts of data. 

 In particular, LLMs are capable of carrying out a 
wide range of activities previously assigned to human 
programmers. These jobs include code translation, 
which is translating code between different 
programming languages, and code completion, which 
is the model's prediction and recommendation of the 
subsequent line or segment of code based on 
contextual prompts. Furthermore, LLMs have 
demonstrated noteworthy outcomes in debugging and 
mistake detection, significantly decreasing the time 
and effort needed for human error checks. Large 
models can handle difficult tasks with little human 
intervention, which eases the burden on developers 
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and makes it possible for non-professionals to 
generate functional code using natural language 
input. This is one of the key benefits of employing 
large models for code generation. In addition to their 
versatile applications, LLMs show remarkable 
flexibility in handling multiple programming 
languages. Global development environments can 
benefit greatly from the accuracy of code translations 
provided by models such as Program and Language 
Bidirectional and Auto-Regressive Transformers 
(PLBART) and PolyCoder, which are well-suited for 
cross-language work. These models can also be 
adjusted for particular domains, which improves their 
accuracy in particular tasks. Because of their 
scalability and versatility, LLMs are essential tools 
for software engineers.  

In summary, this paper examines the design and 
capabilities of the big language model and reviews its 
evolution in the field of code generation. This 
evaluation looks at these models' benefits and 
drawbacks as well as how they might be used to 
further the field of programming. 

2 LLM-BASED CODE 
GENERATION 

The automatic production of code fragments or entire 
programs from a high-level specification—like plain 
language descriptions—is referred to as code 
generation. Significant advancements in automating 
this procedure have been made possible by deep 
learning and large-scale language models. First, large 
language models have shown impressive new 
abilities to generate natural language text and to solve 
a rapidly expanding set of modeling and reasoning 
tasks. Second, over the past decade, machine learning 
approaches have been applied to source code text to 
yield a variety of new tools to support software 
engineering (Austin, 2021). Unlike traditional 
methods that require manual coding of specific rules 
and grammar, large models learn to generate code by 
understanding large amounts of data. With the help of 
tokenized datasets, large language models for code 
generation may efficiently capture the syntax and 
semantics of many programming languages without 
the need for explicit programming, and this method 
allows these models to handle a variety of complex 
coding tasks with minimal human intervention. 

LLMs have significantly advanced in automating 
the generation of source code from natural language 
descriptions. These models, often referred to as Code 
LLMs. Transformer-based models have 

demonstrated significant progress in handling 
complex code generation tasks, surpassing earlier 
rule-based systems and heuristics, allowing models to 
handle complex code generation tasks more 
effectively (Jiang, 2024). These models have 
demonstrated the capability to not only generate code 
that meets functional requirements but also to learn 
from feedback and improve over time, as seen with 
techniques such as reinforcement learning. The self-
attention mechanism enables the transformer model 
to focus on different parts of the input sequence, 
understanding both the context and the relationships 
between words, regardless of their distance (Chen, 
2024). By using attention ratings to give varying 
levels of priority, this technique enables each word or 
token in the input sequence to consider every other 
word or character. Practically speaking, this means 
that the model can assess the connections between 
words in a phrase regardless of where they are located, 
which is essential for comprehending intricate 
directives and subtle contextual cues. This approach, 
when used in conjunction with code generation, 
allows the model to comprehend the context of a 
variable or function definition and how it will be used 
later in the code. By capturing these dependencies, 
the model can generate code that is not only 
syntactically correct but also logically coherent, 
ensuring that the generated code adheres to the 
intended functionality and structure. Typically, a 
multi-stage process is involved in the transformer-
based LLM code generation workflow to fully utilize 
these models. The first phase is called pre-training, 
Transformer models use pre-training on large datasets 
of source code to learn general programming patterns, 
which can be further fine-tuned for specific tasks 
(Chen, 2024). To help the model learn typical 
programming patterns and syntax, this training 
involves exposing it to a variety of programming 
languages, coding styles, and problem-solving 
techniques. The model is adjusted to more precise 
activities or situations during fine-tuning. For 
example, a model can be tailored especially for 
Structured Query Language (SQL) query generation 
or Python scripting by utilizing datasets that include 
code samples that match descriptions in plain 
language. Through this process, the model can 
become more specialized and enhance its relevance 
and accuracy when producing particular kinds of code. 
Lastly, the model uses its learnt representations to 
translate natural language inputs into executable code 
during the generation phase. To produce the intended 
result, this phase entails applying learnt programming 
logic in addition to comprehending the input context. 
The generated code can range from simple utility 
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functions to more complex algorithms, depending on 
the input provided.  

A significant example of using the Transformer 
model is the PLBART model, which is a unified pre-
training model specially designed for program 
understanding and generation tasks. PLBART 
employs denoising sequence-to-sequence pre-
training, where the model is trained to recover 
corrupted input sequences, helping it learn syntax and 
semantics across programming languages (Ahmad, 
2021). The pre-training involves a denoising 
autoencoding approach, where the model is trained to 
reconstruct original input sequences that have been 
corrupted by random noise. In the pre-training phase, 
the model is trained to recover original input 
sequences that have been tainted by random noise 
using a denoising autoencoding technique. This 
method helps in the model's acquisition of 
programming language syntax and semantics, as well 
as their correspondence with descriptions of natural 
language, allowing it to function successfully in a 
variety of tasks.  

The application of large models in code 
generation has also become an important field in 
machine learning research. These models are 
primarily categorized into three types: language 
models, transducer models, and multimodal models. 
Language models, like natural language processing 
(NLP), are made to represent the process of creating 
code as a sequence prediction issue. These models, 
which include neural network-based and n-gram 
models, forecast the subsequent token in a series 
depending on the tokens that came before it. 
Programming language syntax and structure can be 
effectively learned by language models, allowing 
them to carry out operations like code completion. 
However, the assumption made by n-gram models 
simplifies the dependency on context, thus failing to 
handle long-range dependencies, making them 
ineffective in capturing information such as variable 
scoping in code generation (Allamanis, 2018). 

Transducer models, which are based on statistical 
machine translation, are used to translate code 
between different programming languages or from 
pseudocode to source code, among other 
representations. These models are inspired by 
statistical machine translation, map code between 
different languages or representations, making them 
ideal for tasks such as code migration or refactoring 
because they learn mappings between various 
syntactic or semantic components in code (Allamanis, 
2018). 

Multimodal models combine natural language and 
code production with different modalities. The goal 

of these models is to produce code from a variety of 
inputs, including written descriptions, visual clues, 
and other non-code data. For instance, the assumption 
made by n-gram models simplifies the dependency on 
context, thus failing to handle long-range 
dependencies, making them ineffective in capturing 
information such as variable scoping in code 
generation. 

Direct translation of natural language instructions 
into executable code is a major capability of large 
models. Developers that work with traditional 
programming typically need to be fluent in 
programming languages and possess in-depth 
understanding of algorithms. However, complicated 
code can be generated by users even without 
programming skills thanks to huge models. These 
models, such as OpenAI’s GPT-3, have demonstrated 
the capacity to generate human-like text, including 
programming code, by training on vast datasets of 
human language. In order to comprehend the syntax 
and semantics needed for diverse programming tasks, 
the procedure usually entails training a model on a 
sizable corpus of code and related textual data. With 
the use of natural language descriptions, these models 
may produce code snippets, find and repair errors in 
existing code, and even recommend code completions. 
These models' performance in code generation tasks 
is frequently assessed in three different learning 
scenarios: zero-shot, one-shot, and few-shot. Zero-
shot learning involves the model generating code 
without any examples given during the job; one-shot 
learning provides one example; and few-shot learning 
provides a small number of instances. GPT-3 
achieves promising results in the zero- and one-shot 
settings, and in the few-shot setting is sometimes 
competitive with or even occasionally surpasses 
state-of-the-art (Mann, 2020). A major discovery in 
the research on huge language models, such as GPT-
3, is that these models can function as effective meta-
learners. That implies they don't need a lot of 
retraining to swiftly adjust to new jobs, which is 
especially useful for code generation. The feature 
known as "in-context learning" allows these models 
to make use of their substantial pre-training by 
inserting examples right into the input context, 
enabling them to comprehend and produce relevant 
replies. 
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3 LLM-BASED CODE 
COMPLETION 

Code completion is an automatic code generation 
approach that is based on context and aims to foresee 
and finish code fragments that a developer is 
currently typing.  

Code completion can take one of the following 
forms, depending on the level of operation:  

Token-level completion: In this case, code 
completion suggests for the next line of code based 
on a partially entered word or symbol by the 
developer. For example, the tool may propose the 
entire variable name after you type the first few letters.  

Line-level completion: This is anticipating and 
finishing a line of code from the partially written code 
and the context of the current line. For example, 
depending on a conditional phrase entered, it might 
automatically finish a semicolon or closing bracket. 

Block-level completion: Code completion can 
anticipate and inserting more complex code, such 
loops, methods, or whole class hierarchies. A deeper 
comprehension of the logic and structure of code is 
necessary for this kind of completion. 

Deep learning approaches for sequence prediction 
are typically the foundation of code completion 
algorithms. Take Codex as an illustration. Codex is 
trained on large-scale public datasets containing code, 
mainly sourced from GitHub repositories, and is 
evaluated on its ability to complete or generate code 
based on natural language descriptions (Chen, 2021). 
With its transformer architecture, large-scale 
sequence data processing is possible. The model 
learns the syntax, organization, variable 
dependencies, and common programming patterns of 
the code by being trained on vast amounts of code 
data that are made available on open-source platforms 
like GitHub. Code completion tasks are especially 
well-suited for the language model's auto-regression 
generation method since the logic and structure of the 
code are comparable to those of natural language. The 
code must be transformed into a format that the model 
can understand for it to be able to complement the 
code. Millions of code repositories on GitHub 
provide the training data, which has been 
preprocessed, cleaned, and copied to create a sizable 
code base. Most of the training data in Codex is 
Python code, and each code file has been tokenized to 
enable the model to recognize and learn every 
element in the code, including function names, 
variable names, operator names, etc. In this manner, 
Codex can gradually produce code fragments while 
learning the syntax, variable binding, function calling, 
and other patterns of other languages. Code 

completion relies on a model that utilizes the input 
portion of the code to anticipate the next most likely 
code fragment. Codex generates code in a recursive 
manner, producing one or more tokens each time. It 
then keeps predicting the next token by using the 
created content that has already been produced. This 
procedure keeps going until the terminator, which 
could be a comment symbol, a newline character, or 
the function's ending symbol.  

Codex will produce several potential completion 
techniques for user-inputted code fragments 
depending on the current situation. The model learns 
common programming patterns during training, like 
function declaration, loop structure, conditional 
judgment, etc., on which these completions are 
typically based. For instance, Codex might 
automatically finish the function's parameters, body, 
and even return value if the user only enters the 
function definition's beginning. Nevertheless, it is 
challenging to further enhance or apply models like 
Codex to other sectors because their internal 
workings and training data are not publicly available. 
The PolyCoder model fills many of the gaps in the 
existing research when compared to the Codex model. 
Based on the GPT-2 architecture, PolyCoder is a 
model with 2.7B parameters, 249GB of training data, 
and support for 12 programming languages (Xu, 
2020). PolyCoder even outperformed Codex in the C 
language code creation task, exhibiting superior 
performance in a particular language. PolyCoder's 
multilingual training data set, which includes C, C++, 
Python, Java, JavaScript, and other languages, is one 
of its advantages. Because of its multilingual training, 
PolyCoder is better able to handle multiple 
programming languages and benefit from this shared 
characteristic. Besides, researchers and developers 
can utilize PolyCoder's model parameters and 
training data without restriction because it is an 
entirely open-source model. By studying more about 
their model architecture, data selection, and training 
procedure, researchers can enhance and optimize 
code completion technology in subsequent studies. 

Recent advancements in code completion are 
driven by the integration of large-scale language 
models, such as those used in neural-based code 
suggestion systems. Traditional approaches have 
limitations due to their high memory consumption 
and difficulty generalizing across new codebases or 
unseen APIs. Current methods for code completion 
use neural models in conjunction with static analysis 
to increase prediction accuracy and memory 
efficiency. These models optimize code completion 
by reranking suggestions rather than generating 
completions from scratch, allowing for faster 
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predictions with a lower memory footprint. The best 
neural reranking model consumes just 6 MB of RAM, 
19× less than previous models, and achieves 90% 
accuracy in its top five suggestions (Svyatkovskiy, 
2021). Furthermore, recent advancements in 
sequence-to-sequence (Seq2Seq) models, including 
Sequence Span Rewriting (SSR), indicate the 
possibility of improving code completion even more. 
SSR bridges the gap between pre-training and fine-
tuning, because many downstream Seq2Seq tasks like 
summarization and paraphrase generation are 
naturally sequence span rewriting tasks (Zhou, 2021). 
By training models to rewrite machine-generated 
imperfect spans into ground truth text, SSR improves 
earlier text-infilling techniques. This method works 
particularly well with smaller models or in limited 
contexts since it not only widens the range of learning 
signals in the model but also narrows the gap between 
pre-training and fine-tuning. 

4 DISCUSSIONS 

The discussion of this paper highlights both the 
strengths and limitations of LLMs in code generation. 
Significant progress has been made by these models, 
especially in automating debugging, translation, and 
code completion activities while lowering the need 
for human participation. Software development has 
been transformed by its capacity to produce high-
quality code from natural language inputs, 
particularly for non-experts. Nevertheless, LLMs 
continue to encounter significant obstacles, such as 
excessive memory consumption, ambiguous training 
data, and trouble generalizing to unknown codebases. 
Their wide application and scalability are restricted 
by these problems. Future studies need to concentrate 
on overcoming these restrictions. Important next 
stages include increasing the transparency of LLMs' 
training procedures and strengthening their capacity 
to manage a variety of unfamiliar programming 
settings. Reducing the computational resources 
needed for these models will also enhance their 
usability and facilitate their incorporation into 
different programming workflows. LLMs can reach 
even higher potential in software engineering and 
other fields by overcoming these obstacles. 

5 CONCLUSIONS 

This paper has provided an in-depth review of LLMs 
in the field of code generation, highlighting their 

methods, results, and future potential. Deep learning 
and transformer architectures underpin models like 
GPT-3 and Codex, which have demonstrated 
impressive efficacy in automating code completion, 
translation, and debugging activities. These models 
can efficiently learn the syntax and semantics of 
several programming languages by employing pre-
training and fine-tuning procedures, producing 
executable code from natural language inputs. The 
findings show that LLMs considerably decrease the 
amount of time needed for manual debugging and 
error detection, and they increase coding efficiency, 
particularly in multilingual situations. However, 
LLMs still face notable limitations. Challenges to 
their wider implementation include high memory 
usage, opaque training data, and difficulty in 
generalizing to new and unfamiliar codebases. These 
problems restrict their use in a variety of specialized 
programming contexts and impede their scalability. 
In the future, research should concentrate on lowering 
the processing power needed by LLMs and enhancing 
the clarity of their training procedures. Increasing 
their applicability will need improving their capacity 
to adapt to new programming languages and 
environments. With further development, LLMs 
could completely transform automated software 
development and become indispensable to 
programming in the future. 
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