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Abstract: Stock market prediction has long been a topic of significant interest due to its potential financial rewards and 
the inherent complexity of financial markets. This study investigates the application of two machine learning 
models, Random Forest (RF) and Long Short-Term Memory networks (LSTM), in predicting the closing 
prices of the Standard & Pooler’s 500 Index (S&P 500) and the Shanghai Shenzhen 300 Index (CSI 300) 
indices using historical data from 09/08/2021 to 08/08/2024 by various indicators, respectively. A sliding 
window method was used to make predictions based on historical data points. The evaluation metrics 
including R2, Mean Absolute Error (MAE), and Root Mean Squared Error (RMSE) were used to assess the 
models' performance. According to the data, LSTM outperforms RF in CSI 300 prediction while RF performs 
better in S&P 500 prediction. This study shows the applicability of various models and offers empirical 
support for optimizing asset price prediction models. 

1 INTRODUCTION 

The Efficient Market Hypothesis (EMH), proposed 
by Fama (1970), suggests that stock prices fully 
reflect all available information and follow a random 
walk, implying that future price movements are 
unpredictable (Fama, 1970). However, critics of 
EMH argue that there are inefficiencies in the market 
that can be exploited using advanced analytical 
techniques, such as machine learning (Daniel, 
Hirshleifer & Subrahmanyam, 1998; Bondt & Thaler, 
1990). 

In recent years, numerous studies have explored 
the application of various methods in stock price 
prediction, including classifier ensembles (Basak, 
Kar, Saha, Khaidem, & Dey, 2019; Lohrmann & 
Luukka, 2019; Singh & Malhotra, 2023), support 
vector machines (Sedighi, Jahangirnia, Gharakhani, 
& Fard, 2019), neural networks (Baek & Kim, 2018; 
Das, Sadhukhan, Chatterjee, & Chakrabarti, 2024), 
and deep learning (Dang, Sadeghi-Niaraki, Huynh, 
Min, & Moon, 2018; Patil, Parasar, & Charhate, 
2023; Rath, Das, & Pattanayak, 2024). These studies 
provide multiple technical approaches to improve 
prediction accuracy. Ensemble methods like Random 
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Forest and deep learning models like Long Short-
Term Memory Networks (LSTM) have shown 
promise in this domain (Kumbure M. M., Lohrmann, 
Luukka, & Porras, 2022). Given the evolving and 
complex nature of market environments, especially in 
the United States and China, significant challenges 
remain in stock price forecasting. 

Thus, this study predicts the closing price of two 
leading market indices (S&P 500 and CSI 300) by RF 
and LSTM among different predictors (Close price, 
10,50,100-days Moving Averages, Daily Change, 
and Log Difference) using a sliding window 
approach. This technique involves using a fixed 
window of previous data points (in this case, 1, 60, 
120, 240, 360, and 480 days) to predict the next day 
closing price. The results demonstrate that the 
effectiveness of prediction models is closely tied to 
the characteristics of the financial market being 
analyzed. While RF proves to be more consistent and 
effective for the S&P 500, particularly with smaller 
window sizes, LSTM shows its strength in capturing 
long-term dependencies, making it more suitable for 
predicting the CSI 300 with moderate window sizes. 
These insights underscore the importance of carefully 
selecting both the model and the window size based 
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on the unique attributes of the data and the objectives 
of the analysis. 

2 DATA  

2.1 Dataset 

The datasets of the S&P 500 and the CSI 300 Index 
come from the Yahoo Finance website, which 
captures the daily High, Low, Close price, and 
Volume of each index from 09/08/2021 to 
09/08/2024.  

Table 1 and Table 2 show the basic information 
of the datasets with an additional 5 columns MA10, 
MA50, MA100, Daily Change, and Log Diff that 
were added manually. 

The S&P 500’s combination of lower Close 
standard error (std) but higher mean Close price and 
higher Daily Change std suggests a market that is 
generally stable in the long run but more reactive and 
possibly more liquid daily. In contrast, the CSI 300 
might reflect a market with more significant long-
term uncertainty but less short-term sensitivity. 
Meanwhile, the average daily change for the S&P 500 
is positive, meaning that the overall price for this 

index is appreciating, while the CSI 300 is 
depreciating.  

The moving average (MA) establishes a 
continuously updated average price to smooth out 
price data. It reduces noise on a price chart and 
provides information about the overall direction of 
prices. The amount of lag is determined by the 
moving average period selected; longer durations 
result in more lag. Investors and traders often follow 
the 10-, 50- and 100-day moving averages as 
significant trading signals. As shown in Figure 1, the 
best value to measure the MA is between 10 and 50 
days because it still captures trends in the data without 
noise. 

Log Difference is a logarithmic transformation of 
the ratio of consecutive closing prices. It is calculated 
as: 𝐿𝑜𝑔𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝑙𝑜𝑔 ൬ Close Pricetoday

Close Priceyesterday
൰ . It is 

often used to stabilize variance and to make the time 
series more stationary. In financial time series, prices 
tend to exhibit heteroskedasticity (Nelson & Daniel, 
1991), meaning the variance of the returns can change 
over time. By taking the log difference, the models 
can better capture the relative price movements in a 
way that is less influenced by large, erratic price 
jumps.  

Table 1: S&P500 Overview. 

 High Low Close Volume MA10 MA50 MA100 Log Diff 

Count 755 755 755 755 746 706 666 754 

Mean 4465.80256 4411.63341 4439.88951 4.20392e+09 4434.64056 4403.96094 4373.04579 0.00024 

Std 465.89983 473.36562 469.50128 8.49080e+08 463.73393 425.87432 392.43195 0.01104 

Min 3608.34009 3491.58008 3577.03003 1.63950e+09 3642.97698 3787.07001 3850.07701 -0.04420 

25% 4114.92505 4061.65002 4090.39499 3.72544e+09 4067.82249 4025.43906 4016.92924 -0.00602 

50% 4422.62012 4371.97022 4398.95020 4.49526e+09 4400.65544 4393.39830 4385.53238 0.00041 

75% 4706.50513 4661.23999 4686.00000 4.02095e+09 4666.10402 4611.87985 4565.25610 0.006838 

Max 5669.66992 5639.02002 5667.20020 9.35428e+09 5598.21006 5449.65120 5320.81369 0.05395 

Table 2: CSI 300 Overview. 

 High Low Close Volume MA10 MA50 MA100 Log Diff 

Count 728 728 728 728 719 679 639 727 

Mean 4037.96092 3985.41449 4012.18025 1.3354+e09  4010.22511 4000.76741 3986.66531 -0.00055 

Std 486.18919 479.72145 483.21358 36499.76036 474.73090 443.35882 396.40565 0.01024 

Min 3233.85010 3108.35010 3179.62988 64800.00000 3254.78899 3325.35061 3429.25860 -0.05068 

25% 3633.92743 3601.185056 3615.13245 107700.00000 3619.50148 3618.68899 3682.73260 -0.00678 

50% 3976.05994 3927.41003 3953.83496 127900.00000 3945.06694 3949.38198 3947.04989 -0.00112 

75% 4261.972657 4191.29504 4225.83997 152025.00000 4215.83750 4197.76730 4167.85590 0.00558 

Max 5143.83984 5079.72998 5083.799801 326700.00000 5007.33501 4913.34303 4905.59002 0.04234 
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Figure 1: S&P 500 visualization with different MA (above), CSI 300 visualization with different MA (below). 

2.2 Data Preprocessing 

Normalization is an important preprocessing step in 
machine learning, especially for LSTM that is 
sensitive to the scale of input feature (Patro & Sahu, 
2015). It ensures that all features make an equal 
contribution to the model training process. Min-Max 
Scaler is a simple and effective data normalization 
technique that preserves the relationships between the 
original data points. The scaling is performed 
according to the formula: 𝑋௦௖௔௟௘ௗ = ௑ି௑min௑maxି௑min

 , 𝑤ℎ𝑒𝑟𝑒 𝑋  is the original feature value, and the 
minimum and maximum values of the feature in the 
dataset are represented by 𝑋min and 𝑋max. By applying 
this transformation, the values of each characteristic 
are mapped to 0 and 1, respectively. 

3 METHODOLOGIES 

3.1 Random Forest 

The foundation of Random Forest is to create many 
decision trees during training and produce the average 

forecast of each tree separately. The model's 
robustness and predictive performance are enhanced 
by this ensemble technique (Breiman, 2001). Figure 
2below is a flow map for RF. 

Randomness is introduced in two keyways. 
Firstly, Bootstrap Aggregating (1): For each tree, a 
subset of the training data is chosen. This step ensures 
that every tree is trained on different subsets of data, 
adding variability and reducing overfitting. Secondly, 
Feature Randomness (2): A random subset of features 
is taken into consideration for splitting at each 
decision tree node. Finally averages the n predictions 
made by individual trees. 

Grid Search is a popular tuning parameter 
technique that improves model performance. It works 
through multiple combinations of hyperparameter 
values from giving parameter space. It is effective 
when the parameter space is manageable, and thus 
can be applied to RF. The GridSearchCV from Scikit-
learn uses cross-validation, which reduces 
overfitting. 
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Figure 2: Flow map for Random Forest Regression 

3.2 Long Short-Term Memory 
Network (LSTM) 

LSTM is a deep learning method used to identify 
long-term dependencies in sequential data 
(Hochreiter & Schmidhuber, 1997). It is ideally suited 
for time series forecasting, which includes stock price 
prediction because it makes use of memory cells to 
store information over time. The forget gate, input 
gate, and output gate are components of the 
architecture of the LSTM model (Hochreiter & 
Schmidhuber, 1997). 

Key formulas for LSTM are: 
Forget Gate 𝑓௧: selects which data from the cell 

state should be discarded. Takes 𝑥௧  and ℎ௧ିଵ as 
inputs, processes them through weight matrices and 
bias, and then applies sigmoid activation. 𝑓௧ = 𝜎൫𝑊௙ ⋅ ሾℎ௧ିଵ, 𝑥௧ሿ ൅ 𝐵௙൯ (1) 

Input Gate 𝑖௧: Selects the new data to be stored in 
the cell state. 

𝑖௧ = 𝜎ሺ𝑊௜ ⋅ ሾℎ௧ିଵ, 𝑥௧ሿ ൅ 𝐵௜ሻ (2) 
Cell State Update 𝑐௧ .: Uses the sigmoid function 

to regulate information and filters values using the 
inputs ℎ௧ିଵ  and 𝑥௧ . The tanh function is used to 
generate a vector. 𝑐௧ = 𝑓௧ ⋅ 𝑐௧ିଵ ൅ 𝑖௧ ⋅ 𝑡𝑎𝑛ℎሺ𝑊௖ ⋅ ሾℎ௧ିଵ, 𝑥௧ሿ൅ 𝐵௖ሻ (3) 

Output Gate 𝑜௧: Selects the appropriate output in 
accordance with the cell state. Sigmoid function to 
regulate information. 𝑜௧ = 𝜎ሺ𝑊௢ ⋅ ሾℎ௧ିଵ, 𝑥௧ሿ ൅ 𝑏௢ሻ (4) 

Where: ℎ௧ = 𝑜௧ ⋅ 𝑡𝑎𝑛ℎሺ𝑐௧ሻ is the hidden state 𝑥௧ 
is the input at time step 𝑡. 𝑊௙,𝑊௜,𝑊௖ ,𝑊௢ are weight 
matrices. 𝐵௙,𝐵௜ ,𝐵௖ ,𝐵௢  are bias terms. 𝜎  is the 
sigmoid function.  

These gates enable LSTMs to selectively retain 
important information over extended periods, making 
them effective for processing and predicting 
sequential data (Lin, Tino, & Giles, 1996). 
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4 RESULTS 

Apply each model to 6 predictors (Close Price, 
MA10, MA50, MA100, Daily Change, Log 
Difference) individually across 6 different window 
sizes (1, 60, 120, 240, 360, 480) for two indexes (S&P 
500 and CSI 300). So, for each model, 72 estimations 
are obtained, and evaluated by RMSE, MAE, and R2. 

4.1 Random Forest 

Table 3 shows the ratio between the evaluation 
metrics of the model with the best parameter found by 
GridSearchCV and the model with default value. 

The average performance for RMSE and MAE 
reduced by around 75% to 94%, which means the 
model does improve pretty much. Then table 4 
displays the information on evaluation metrics 
applying the RF model. 

With a mean R2 value of 0.9869, the model can 
account for approximately 98.69% of the variation 
observed in the target variable. This is an excellent 
result that demonstrates how well the model explains 
the variance in the data. Meanwhile, the std is very 
low (0.0185), and the minimum R2 value (0.8864), 
indicates consistent performance across different 
predictors and window sizes. 

RMSE penalizes larger errors more than MAE, 
making it susceptible to outliers. The mean RMSE is 
42.95, which is higher than the MAE, suggesting that 
the model may struggle with outliers. Let’s further 
analyze the large variance in RMSE graphically. 

As showing in Figure, increasing the window size 
results in a decrease in RMSE, indicating that using 
more historical data leads to better predictions. 
However, the gradient for such diminishing is slower 
for window sizes larger than 360, and large window 
sizes are computationally exhaustive, hence 360 is a 
preferable window size. 

Table 3: Improvements after Grid Search. 

 S&P 500 CSI 300 
 Close MA10 MA50 MA100 Daily Change Log Diff Close MA10 MA50 MA100 Daily Change Log Diff 

RMSE 0.941 0.791 0.797 0.805 0.942 0.838 0.845 0.763 0.792 0.881 0.825 0.877 
MAE 0.936 0.838 0.830 0.841 0.882 0.821 0.862 0.754 0.839 0.946 0.813 0.903 

R2 1.001 1.009 1.048 1.075 1.001 1.003 1.002 1.013 1.044 1.009 1.006 1.002 

Table 4: Evaluation Metric for Random Forest. 

 mean std min 25% 50% 75% max 
R2 0.986987 0.018553 0.886376 0.99003 0.993367 0.995382 0.998121 

RMSE 42.951008 31.303382 18.878831 28.464084 35.197097 46.129500 214.560327 
MAE 32.053035 21.676995 15.001533 21.865735 27.430513 32.413918 145.967554 

 
Figure 3: Total RMSE for RF across different window sizes. 
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Figure 4: Total RMSE for RF across different predictors. 

Table 5: Evaluation Metric for LSTM 

 mean std min 25% 50% 75% max 
R2 0.818179 0.140656 0.335637 0.773241 0.873154 0.913501 0.960913 

RMSE 45.817748 22.295338 11.849076 29.754566 40.982957 50.408349 132.253446 
MAE 37.133658 20.818579 10.880780 23.272937 30.825190 43.859155 123.335092 

 
Figure 4 shows that the predictors MAs appear to be 
less effective for smaller window sizes. Still, for 
larger window sizes, the Close RMSE is quite small, 
which is only half of the mean value. Other indicators 
like Close Price, Daily Change, and Log Diff have 
more consistent performance across different window 
sizes but are still improved.  

The S&P 500 and the CSI 300 indices show 
similar trends in RMSE across different indicators 
and window sizes, suggesting that the model's 
behavior is consistent. 

4.2 Long Short-Term Memory 

Similarly, the evaluation metrics for LSTM are 
presented as below in Table 5. 

On average, the LSTM model explains 
approximately 81.82% of the variance in the target 
variable, which is a good predictive capability. The 
variance in R² (0.141) and the minimum R² (0.336) 
suggests that the model is poor in some cases. 
However, the interquartile Range (IQR), 0.773 to 

0.914, indicates that the model performs quite well in 
most cases. 

The gap in RMSE and MA suggests that there 
might be some outliers, leading to occasional large 
errors. Noticeably, the high values in the std of RMSE 
and MAE suggest that the error magnitude varies 
considerably across different predictions, thus more 
exploration based on RMSE is done (Figure 5). 

From Figure 5, there is an initial decrease in 
RMSE as the model has access to more historical 
data. For window sizes 60 to 120, the RMSE 
stabilizes with minor fluctuations, suggesting that 
additional historical data does not necessarily lead to 
substantial improvements in predictions. There is a 
slight increase in RMSE as the window size extends 
beyond 240 days. This could indicate that the model 
is starting to overfit the training data as the window 
size increases. From Figure 6, RMSE for MA10 and 
MA50 is generally lower compared to other 
predictors, which is consistent with the conjecture by 
Figure 1, that the best value for MA is between 10 and 
50 days. Still, Daily Change, and Log Difference have 
a consistent performance across different window 
sizes. 
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Figure 5: Total RMSE for LSTM across different window sizes. 

 
Figure 6: Total RMSE for LSTM across different predictors 

The model's performance is generally better on the 
CSI 300 index compared with the S&P 500, 
indicating potential market-specific differences that 
could be due to the model's sensitivity to certain 
market conditions (analysis by Table 1 and Table 2) 

4.3 Comparison Between RF and 
LSTM 

In the above section, the model performance is 
analyzed individually. It is also important to compare 
the two models together to make further conclusions.  
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Figure 7: Comparison between RF and LSTM among different predictors (left), Comparison between RF and LSTM among 
different window sizes (right). 

From Table 4 and table 5 the LSTM tends to have a 
higher mean and IQR prediction errors, but it also has 
the potential to make more precise predictions in its 
best cases, the lowest RMSE is 11.849. This suggests 
that LSTM outperforms RF in its best scenarios. On 
the other hand, RF with a lower mean and a narrower 
IQR of RMSE shows a more consistent performance. 
From Figure 7 (left), LSTM shows strengths in 
handling indicators like MA10 and MA500, while RF 
generally performs better with indicators like Close 
and M100. The performance differences between the 
two models vary depending on the index, suggesting 
that model effectiveness might be market specific. 
For the S&P 500, RF is generally better among all 
predictors, while LSTM is better for the CSI 300. 
From Figure 7 (right), LSTM excels in very short-
term predictions, due to high RMSE in RF predicted 
by window size 1 (Figure 3). For median window 
sizes (60-240 days), the different performance among 
the two models depends on the index, in specific, RF 
is better for the S&P 500 and the LSTM is better for 
CSI 300, which is similar to different indicators as 
above. For extreme long-term predictions, RF gains 
an advantage as the window size increases. 

5 CONCLUSIONS 

This paper explored the application of RF and LSTM 
models in predicting the closing prices of the S&P 
500 and CSI 300 indices using various financial 
indicators. The performance of these models is 
contingent on the characteristics of the specific 
dataset being analyzed. For the S&P 500 index, RF 
consistently outperforms LSTM, particularly for 

small window sizes. This suggests that RF's ability to 
capture complex interactions between features 
without relying on sequential dependencies makes it 
better suited for the S&P 500. On the other hand, 
LSTM excels in predicting the CSI 300 index for 
moderate window sizes which is more 
computationally efficient than large window sizes. 
This indicates the CSI 300 benefit from LSTM’s 
strength in capturing long-term dependencies in time 
series data。 Also, the choice between LSTM and RF 
should be guided by the specific needs of the 
prediction task. If avoiding large errors is crucial, 
LSTM may be preferable. However, if consistency is 
prioritized, RF might be the better choice. Moreover, 
increasing the window size does not always enhance 
model performance. Moreover, the diminishing 
returns observed for larger windows in the LSTM 
suggest that the choice of window size should be 
carefully tailored to the specific market and data 
characteristics. 

Hybrid approaches that combine different 
machine learning models to increase prediction 
accuracy may be investigated in future studies. 
Additionally, incorporating more market data and 
external factors, such as macroeconomic indicators 
and international political events, could enhance the 
models’ applicability and generalizability. 
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