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Abstract: With the continuous deepening of artificial intelligence applications in multi-agent systems, the accuracy and 
efficiency of motion prediction have become key research challenges. This paper proposes a novel neural 
network model based on Kolmogorov-Arnold Networks (KANs) aimed at enhancing the generalization ability 
and prediction accuracy of models in multi-agent motion prediction tasks. The study first analyses the 
limitations of existing behavioural cloning methods and Generative Adversarial Imitation Learning (GAIL) 
in handling complex dynamic interactions and nonlinear feature data. To address these issues, this paper 
introduces KANs, a model that replaces the weight parameters in traditional multi-layer perceptron with 
learnable univariate spline functions, thereby enhancing the model's nonlinear feature extraction capability 
and adaptability. In the experiments, this paper adopts the Wusi dataset proposed by Zhu et al. in 2024, which 
contains historical motion sequences of multiple participants. The model designed in this study combines 
Transformer encoders and decoders, along with KANs, to process local and global features and generate 
motion predictions for all participants in future time periods. Through feature fusion nodes and multi-level 
strategy networks, the model can generate more natural and accurate motion sequences. The experimental 
results show that compared with traditional Transformer-based models, the model in this paper has 
significantly improved prediction accuracy and training efficiency. Moreover, the model demonstrates better 
generalization ability on unseen complex patterns, providing new perspectives and methods for the practical 
application of multi-agent systems. 

1 INTRODUCTION 

Social motion prediction is an active and challenging 
research topic in the field of artificial intelligence, 
involving the understanding and prediction of human 
behaviour patterns in social environments. This 
research is not only crucial for applications such as 
autonomous driving and team sports but also has 
profound implications for improving machine 
interaction capabilities and intelligence levels. The 
anticipatory ability demonstrated by humans in social 
activities enables them to make rapid and accurate 
responses in complex environments. Current research 
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mainly focuses on motion prediction in simple 
interaction scenarios, with limited capability to 
capture complex and fine-grained human behaviours. 
To overcome these limitations, the main research 
method of this paper includes the adoption of an 
innovative deep learning framework to improve the 
accuracy and generalization ability of multi-agent 
motion prediction. The core of the research method is 
the introduction of Kolmogorov-Arnold Networks 
(KANs), a novel neural network model that enhances 
the model's flexibility and adaptability by replacing 
traditional weight parameters with univariate spline 
functions. The learnable activation functions of 
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KANs can adjust adaptively according to the training 
data, thereby better capturing nonlinear relationships 
in the data (Helbing, & Molnar, 1995). 

The study also employs the Transformer model, 
which consists of encoders and decoders, to process 
local and global features. Each Transformer contains 
three layers and eight attention heads, and the strategy 
network parameters are shared. KANs are introduced 
into the Transformer encoders and decoders to 
enhance the model's ability to capture complex 
dynamic interactions. In addition, the study also 
adjusts the model's dimensions to adapt to a specific 
dataset—the Wusi dataset, proposed by Zhu et al. in 
2024, which includes historical motion sequences of 
multiple participants. 

By combining KANs and Transformers, the study 
aims to generate more natural and accurate future 
motion predictions while improving the model's 
adaptability to unseen complex patterns (Alahi, Goel, 
Ramanathan, et al, 2016). The proposal of this new 
algorithm aims to address the limitations of existing 
algorithms in handling highly nonlinear and periodic 
data, as well as the problem of overfitting to training 
data (Guo, Bennewitz, 2019). 

2 METHOD  

2.1 Dataset 

This study cites the first large-scale multiplayer 3D 
sports dataset, Wusi (Wusi Basketball Dataset), 
proposed in 2024 by Zhu et al (Zhu, Qin, Lou, et al, 
2024). The Wusi dataset shows advantages when 
faced with the task of multiplayer sports prediction, 
outperforming other datasets in terms of size 
(duration and number of people) and intensity of 
interactions. 

The input data is composed of historical 
movement sequences from multiple participants. 
Given Ρ participants，the movement history of each 
participant 𝑝 may be represented as a time series of 
length Τ, where each time step 𝑡  records the body 
posture of the participant in 3D space: ൛𝒳ఛఘൟ1 ≤ 𝑡 ≤Τ, 1 ≤ 𝑝 ≤ P . The output data consists of motion 
predictions for all participants in the future time 
period, and the goal of the output is to predict the 
sequence of postures from time Τ to Τ+ Τᇱ. For each 
participant 𝑝, the sequence of predicted future poses 
is represented as: ൛𝒳௧௣ൟΤ ≤ 𝑡 ≤ Τ+ Τᇱ, 1 ≤ 𝑝 ≤ Ρ . 𝒳௧௣ represents the 3D pose at time step 𝑡. 

 

2.2 Existing Algorithm 

The motion prediction model in the study was 
modelled using Markov Decision Process (MDP). 
Behavioural cloning uses expert demonstration data 
to train the model by supervised learning, which 
minimizes the discrepancy between the model-
generated actions and the expert's behaviours. 
Behavioural cloning methods excel in terms of 
computational and sample efficiency (Caude, 
Behavioural, 2010), but there are some problems; the 
strategies tend to overfit the presentation of the expert 
in the region of the state space, limiting the ability to 
generalize (Borui, Ehsan, Hsu, 2019). To address 
these problems, Generative Adversarial Imitation 
Learning (GAIL) (Jonathan and Stefano, 2016) was 
introduced. The policy network is regularized by 
adversarial training to match its distribution of state-
action pairs with that of the policy of the expert, while 
a specific cognitive hierarchy model is used to 
express the recursive reasoning process (Colin, Ho, 
and Chong, 2004). 

2.3 Limitations of Baseline 

During the algorithmic implementation of the 
baseline, multiple performance bottlenecks limit the 
accuracy and training efficiency of the model. 

In multi-agent motion prediction tasks with input 
data having complex dynamic interactions and 
potentially nonlinear features, the nonlinear feature 
extraction capability of the model is crucial for 
prediction accuracy. Transformer models are known 
for their expertise in identifying semantic correlations 
(Alharthi, & Mahmood, 2024), but Transformer-
based deep learning model performs obvious 
limitations when dealing with highly nonlinear and 
periodic data (Nie, et al, 2022; Zeng, et al, 2023). This 
study argues that when the input data contains 
complex dynamic interactions, the prediction 
accuracy of the model decreases significantly due to 
its inability to effectively capture these nonlinear 
relationships. Meanwhile, due to the inability of the 
model to adequately capture the complex interaction 
characteristics between the participants, the generated 
motion sequences do not behave naturally enough in 
certain scenarios. This phenomenon not only affects 
the generative ability of the model, but also reduces 
its credibility in practical applications. 

As the model underperforms under complex 
models, Transformer-based deep learning models 
may perform overfitting on the data, which means 
that the model performs well on the training data but 
generalizes poorly on the validation or test dataset. 
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This phenomenon reveals that the model is poorly 
adapted to unseen complex patterns, limiting its 
potential for application in different scenarios. 

2.4 Kolmogorov-Arnold Networks 

Kolmogorov-Arnold Networks (KANs) (Liu, Wang, 
Vaidya, 2024) is an innovative neural network model 
that challenges the Multilayer Perceptron (MLP). The 
MLP occupies almost all the non-embedded 
parameters in the Transformer (Ashish, 2017) model 
and is often hard to interpret in the lack of post-
analysis tools as compared to the Attention Layer 
(Hoagy, Aidan, Logan, 2023). KANs replace each 
weight parameter with a univariate spline function. 
The learnable activation function will adaptively 
adjust and learn based on the training data, showing 
higher flexibility and adaptability compared to fixed 
activation functions. 

The study implements training and testing on the 
Wusi dataset using the proposed framework. This 
study uses Transformer encoder for local and global 
state encoding, while Transformer decoder is used for 
policy network. Each Transformer consists of three 
layers and eight attention heads, while sharing the 
policy network parameters ∅ሺଵሻ ⋯∅ሺ఑ሻ . The study 
introduces KANs in the pair of Transformer encoder 
and decoder, while the dimensionality of the model is 
adjusted. 

 

 
Figure 1: Framework overview(Photo/Picture credit: 
Original). 

Figure 1 shows an overview of the framework. 
For the p-th agent, two state encoders are responsible 

for processing local and global state features 𝑠௟௣ and 𝑠௚, after integration by feature fusion nodes, the fused 
features are passed to the KANs. The processed 
enhanced features are passed to the Level-0 policy 
network to generate the initial action 𝑎ሺ଴ሻ௣ . The Level-
K policy network is based on 𝑠௟௣ and the joint actions 
of the previous level 𝑎ሺ௞ିଵሻ to produce action 𝑎ሺ௄ሻ௣ . 

3 EXPERIMENTS 

3.1  Setup 

Evaluation metrics: This study calculates the Mean 
Per Joint Position Error (MPJPE) between the 
prediction of future motion and the ground truth. The 
trajectory prediction and position prediction results 
are distinguished by counting the mean root position 
error and the mean local position error (MPJPE after 
root alignment). Results are reported in millimetres. 

3.2 Evaluation and Comparison 

In this study, the proposed model is tested to evaluate 
the performance of the existing model against the 
optimized model in this study. Table 1 reveals that the 
optimized model in this study achieved competitive 
results with the SOTA method. It is worth noting that 
the baseline model is very similar to the optimized 
model in this study in terms of long-term motion 
prediction accuracy. However, the baseline model is 
limited in short-term and root trajectory motion 
prediction. In contrast, the optimized model in this 
study significantly outperforms the baseline model in 
short-term and root-trajectory motion prediction, 
which implies that the optimized model in this study 
demonstrates an advantage in capturing motion 
patterns and trends in the short-term, while it is able 
to demonstrate a high quality of motion prediction 
when dealing with complex motion scenarios. The 
copyright form is located on the authors’ reserved 
area. 

3.3 Ablation Study 

Table 2 shows the ablation study of model size and 
architectural design. The dimensionality of the model 
is adjusted in this study. By comparing the models 
with different dimensions, model dimensions that are 
too large lead to overfitting of the model, which 
cannot be generalized  well to  new data, while  the 
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Table 1: Performance comparison with the baseline method. 

milliseconds Global Local Root 
 400 600 800 1000 400 600 800 1000 400 600 800 1000 

Baseline 54.6 86.2 119.3 152.5 43.7 60.8 74.6 86.6 41.7 66.9 94.8 124.0 
Ours 54.5 86.4 119.4 152.4 42.8 60.7 75.7 88.3 40.0 64.5 91.6 119.9 

Table 2: Ablation study of model dimensions and architectural designs. 

Milliseconds Global Local Root 
 400 600 800 1000 400 600 800 1000 400 600 800 1000 

(a) D_ 
model = 128 61.3 92.5 124.8 157.6 48.4 65.2 79.1 90.6 43.9 68.6 96.0 124.9 

(b) D_ 
model = 256 55.0 86.8 120.0 153.7 43.3 60.6 75.1 87.3 40.8 65.6 93.3 122.7 

(c) D_ 
model = 1024 60.9 92.9 126.0 158.9 47.3 64.2 78.3 90.1 44.7 70.1 98.0 126.9 

(d) D_ 
model = 512 54.5 86.4 119.4 152.4 42.8 60.7 75.7 88.3 40.0 64.5 91.6 119.9 

computational cost of the model increases 
significantly. Model dimensions that are too small 
lead to higher errors, which cannot effectively capture 
complex features in the data and have limitations on 
generalization to new data. In (d), the model 
performance is the best in terms of error performance, 
excelling in both short-term and long-term 
predictions, showing good generalization to unseen 
data, especially outperforming the other dimensions 
in terms of root position error. 

4 CONCLUSIONS 

The method proposed in this study outperforms the 
baseline model in terms of average root position error. 
The model in this study shows an advantage in the 
prediction accuracy of the core parts of human 
movement, and the accurate prediction of root 
position effectively reduces the accumulation of 
errors caused by unstable postures. In comparison 
with the baseline model, the performance of the 
model is similar to that of the baseline model at 
different time steps, but the method proposed in this 
study has improved short-term prediction ability. The 
model proposed in this study is able to respond 
quickly and accurately capture sudden changes and 
short-term dynamics in motion, providing accurate 
short-term prediction results. 

Although the model performs well in short-term 
prediction, the performance at long time steps still 
needs to be improved. It needs to be ensured that the 
model is not excessively complex for further 
enhancement of the expressive power of the model. 

The current model's main application is in motion 
prediction, showing limitations in multi-domain 
applications. Future research could try to extend to 
more domains to explore the optimization directions 
and challenges of the model architecture. 
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