
A Fractional Mathematical Model of Influenza: Meningitis 
Coinfection Using Caputo Derivatives 

Muhammad Rifki Nisardi a, Hartina Husain b, Kusnaeni c, Muh. Ikhsan Amar d, 
Muh Fadhil Nurahmad and Nur Rahmi e 

Bacharuddin Jusuf Habibie Institute of Technology, Parepare, Indonesia 

Keywords: Fractional Model, Influenza, Meningitis, Predictor-Corrector Product Integration Method. 

Abstract: This study examines a mathematical model involving the influenza infection on the spread of meningitis 
within a population. This research extends previous studies by formulating the model in Caputo fractional 
derivative with order 𝛼. Based on this model, we determined the equilibrium points of the system and their 
stability conditions are determined. We also employ the Next Generation Matrix method to calculate the basic 
reproduction number ሺ𝑅଴ሻ. Subsequently, the model solution is addressed through a numerical simulation 
scheme for the fractional model, specifically the Predictor-Corrector Product Integration Rule (PECE-PI) 
method. The result of this study showed that Different values of the fractional order indicated varying speeds 
of reaching a steady state or endemic level while the changes of both influenza and meningitis transmission 
rate and quarantine rate have an impact to transmission dynamics.  

1 INTRODUCTION 

Influenza is one of the diseases that can be transmitted 
through airborne droplets and infect the respiratory 
tract (Beauchemin & Handel, 2011). The 
transmission rate of influenza is relatively high, thus 
a susceptible person should maintain a distance of at 
least one meter from an infected individual to 
minimize the risk of infection (Jonnalagadda, 2022). 
The infection caused by this virus typically lasts 
around one week and is characterized by symptoms 
such as fever, headache, pharyngitis, cough, and 
fatigue. Generally, influenza infection affects the 
nose, throat, bronchi, and even the lungs (Zhou & 
Guo, 2012). In recent years, influenza has been found 
in several different strains. In 2009, the H5N1 strain 
caused avian flu infections, which were later followed 
by the H1N1 strain that marked the onset of swine flu 
(Kharis & Arifudin, 2017). 

In addition to influenza, meningitis is a 
contagious disease caused by the bacterial infection 
of meningococcus (Neisseria meningitidis) 
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(Widyastuti et al., 2023). The infection process of 
meningitis occurs through the transmission of 
bacteria via airborne droplets from an infected 
individual to a susceptible person. Additionally, the 
use of personal items contaminated with bacteria can 
also cause meningitis infection. The Neisseria 
meningitidis bacteria infect the meninges, which are 
thin layers that provide protection to the brain and 
spinal cord (Abdullahi Baba et al., 2020; Musa et al., 
2020; Sulma et al., 2020; Türkün et al., 2023). After 
infection, an individual may be asymptomatic or may 
exhibit symptoms. Symptoms that can appear in an 
infected individual include high fever, headache, stiff 
neck, vomiting, and skin rash. Meningitis infection 
requires prompt and accurate treatment, as untreated 
meningitis can lead to fluid swelling around the brain 
and spinal cord, potentially causing disability or death 
(Bashir et al., 2003; Musa et al., 2020). 

In terms of their transmission, both influenza and 
meningitis spread from person to person through 
coughing, sneezing, or airborne droplets. Several 
symptoms caused by these diseases are similar, 
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necessitating clinical tests for accurate identification. 
The similar patterns of spread and symptoms make it 
possible for an individual infected with meningitis to 
be influenced by influenza or vice versa (Cartwright 
et al., 1991; Salomon et al., 2020). Previous research 
has extensively studied the mathematical models of 
influenza transmission only (Aulia & Kharis, 2016; 
Goswami & Shanmukha, 2016; Kanyiri et al., 2018; 
Wu & Cowling, 2011) and meningitis only 
(Abdullahi Baba et al., 2020; Asamoah et al., 2018; 
Buonomo & Della Marca, 2024; Peter et al., 2022). 
However, there is still a lack of studies examining the 
transmission dynamics of co-infection models for 
influenza and meningitis. Therefore, mathematical 
models are one of the methods that can be used to 
explore the transmission dynamics of these co-
infection models. 

A previous study that examined the influenza-
meningitis co-infection model is that of Varshney et 
al., who constructed a mathematical model of the 
spread of influenza and meningitis co-infection. This 
model was developed using an integer-order 
mathematical model to understand the dynamics of 
the co-infection spread (Varshney & Dwivedi, 2021). 
Based on this model, the present study develops the 
influenza-meningitis co-infection model using a 
fractional-order mathematical model to yield a better 
understanding of the transmission dynamics of the 
influenza-meningitis co-infection spread. 

2 MODEL FORMULATION AND 
PROPERTIES 

2.1 Model Formulation 

The model formulated in this study is divided into six 
subpopulations: Susceptible 𝑆ሺ𝑡ሻ, influenza-infective 
only 𝐼௙ሺ𝑡ሻ , meningitis-infective only 𝐼௠ሺ𝑡ሻ , 
influenza-meningitis coinfectives 𝐼௙௠ሺ𝑡ሻ, quarantine 
of influenza 𝑄ሺ𝑡ሻ , and recovered 𝑅ሺ𝑡ሻ . The 𝑆ሺ𝑡ሻ 
compartment increases by the birth rate Λ . 
Individuals who come into contact with those infected 
with influenza or those with influenza-meningitis 
coinfection will move to the 𝐼௙ሺ𝑡ሻ compartment at a 
contact rate 𝛽ଵ. The proportion of individuals infected 
with influenza or coinfected with influenza and 
meningitis moving to the 𝐼௙ compartment is 
represented by the force of infection of influenza 𝑓ଵ ൌఉభ൫ூ೑ାூ೑೘൯ே , where 𝑁  is the number of total 
populations. Similarly, susceptible individuals move 
to the 𝐼௠ሺ𝑡ሻ  compartment due to contact with 
individuals infected with meningitis or those with 

influenza-meningitis coinfection at a contact rate 𝛽ଶ, 
with the force of infection of meningitis 𝑓ଶ ൌఉమ൫ூ೘ାூ೑೘൯ே . Additionally, the 𝑆ሺ𝑡ሻ  compartment 
decreases due to natural death at a rate 𝜇. 

The 𝐼௙  compartment decreases due to several 
factors: natural death, death caused by influenza 
infection at a rate 𝑑ଵ, individuals infected with 
influenza being quarantined at a rate 𝜏ଵ, individuals 
who experience coinfection with meningitis (with a 
force of infection 𝑓ଶ) moving to the 𝐼௙௠ 
compartment, and individuals who recover naturally 
at a rate 𝛾ଵ. Similarly, the 𝐼௠ compartment decreases 
due to natural death, death caused by meningitis at a 
rate 𝑑ଵ, secondary influenza infection (with a force of 
infection 𝑓ଶ) leading to a transition to the 𝐼௙௠ 
compartment, and individuals who recover naturally 
at a rate 𝛾ଷ. 

Subsequently, the  𝐼௙௠ compartment increases 
due to secondary infection of individuals in the 𝐼௙ and 𝐼௠ compartments. This compartment decreases due to 
natural death, death from coinfection at a rate 𝑑ଷ, and 
natural recovery at a rate 𝛾ଶ. The 𝑄ሺ𝑡ሻ compartment 
increases when individuals infected with influenza 
are quarantined at a rate 𝜏ଵ, preventing them from 
spreading the disease to susceptible individuals. The 𝑄ሺ𝑡ሻ  compartment decreases due to natural death, 
death from influenza infection, and recovery of 
individuals at a rate 𝜓 . The 𝑅ሺ𝑡ሻ  compartment 
increases as individuals recover and decreases due to 
natural death and loss of immunity at a rate 𝜃, leading 
to a transition back to the 𝑆ሺ𝑡ሻ  compartment. The 
interactions among these compartments are 
illustrated in Figure 1. 

 
Figure 1. Flowchart of Model. 

In this study, we developed the deterministic 
model of influenza-meningitis coinfection from 
Varshney & Dwivedi (Varshney & Dwivedi, 2021) 
into fractional differential system. The model divided 
into six compartments as follows 
 

BICAME 2024 - Borneo International Conference

6



𝐷௧ఈ଴஼ 𝑆ሺ𝑡ሻ = Λఈ + 𝜃ఈ𝑅 − ሺ𝑓ଵ + 𝑓ଶ + 𝜇ఈሻ𝑆, 𝐷௧ఈ଴஼ 𝐼௙ሺ𝑡ሻ = 𝑓ଵ𝑆 − ሺ𝜇ఈ + 𝑑ଵఈ + 𝜏ଵఈ + 𝛾ଵఈ + 𝜙𝑓ଶሻ𝐼௙, 𝐷௧ఈ଴஼ 𝐼௠ሺ𝑡ሻ = 𝑓ଶ𝑆 − ሺ𝜇ఈ + 𝑑ଶఈ + 𝛾ଷఈ + 𝜔𝑓ଵሻ𝐼௠, 𝐷௧ఈ଴஼ 𝐼௙௠ሺ𝑡ሻ = 𝜙𝑓ଶ𝐼௙ + 𝜔𝑓ଵ𝐼௠ − ሺ𝜇ఈ + 𝑑ଷఈ +𝛾ଶఈሻ𝐼௙௠, 𝐷௧ఈ଴஼ 𝑄ሺ𝑡ሻ = 𝜏ଵఈ𝐼௙ − ሺ𝜇ఈ + 𝑑ଵఈ + 𝜓ఈሻ𝑄, 𝐷௧ఈ଴஼ 𝑅ሺ𝑡ሻ = 𝛾ଵఈ𝐼௙ + 𝛾ଶఈ𝐼௙௠ + 𝛾ଷఈ𝐼௠ + 𝜓ఈ𝑄 −ሺ𝜇ఈ + 𝜃ఈሻ𝑅. 
 

(1) 

We apply the Caputo fractional derivative in 
the left-hand side of the model (1) The adjustment to 
fractional system implies the change of dimension 𝑡 
into 𝑠ିఈ  dimension for 0 < 𝛼 ≤ 1  (Barros et al., 
2021). Therefore, we set all parameters with power of 𝛼 to accommodate dimensional changes 

2.2 Positivity and Boundedness 

Let us consider the closed set Ω defined as Ω = ൛൫𝑆, 𝐼௙ , 𝐼௠, 𝐼௙௠,𝑄,𝑅൯ ∈ 𝑅ା଺ |𝑆, 𝐼௙ , 𝐼௠, 𝐼௙௠,𝑄,𝑅 ≥0ൟ is the biologically feasible region for system (1).  
 
Theorem 1 The solution of fractional model of 
Influenza Meningitis coinfection starting in 𝑅ା଺  along 
with initial conditions are positive invariant and 
bounded for all time 𝑡 ≥ 0. 
 

Proof. We have to show that the set Ω is a positive 
invariant. From the system (1) we obtained. 𝐷௧ఈ଴஼ 𝑆ሺ𝑡ሻ = Λఈ + 𝜃ఈ𝑅 ≥ 0 𝐷௧ఈ଴஼ 𝐼௙ሺ𝑡ሻ = 𝑓ଵ𝑆 ≥ 0 𝐷௧ఈ଴஼ 𝐼௠ሺ𝑡ሻ = 𝑓ଶ𝑆 ≥ 0 𝐷௧ఈ଴஼ 𝐼௙௠ሺ𝑡ሻ = 𝜙𝑓ଶ𝐼௙ + 𝜔𝑓ଵ𝐼௠ ≥ 0 𝐷௧ఈ଴஼ 𝑄ሺ𝑡ሻ = 𝜏ଵఈ𝐼௙ ≥ 0 𝐷௧ఈ଴஼ 𝑅ሺ𝑡ሻ = 𝛾ଵఈ𝐼௙ + 𝛾ଶఈ𝐼௙௠ + 𝛾ଷఈ𝐼௠+ 𝜓ఈ𝑄 ≥ 0 

(2)

The Equation (2) hold for all points in Ω and using 
Lemma 1 show that the set Ω is positive invariant of 
model (1). 

Next, we derived the boundedness of Ω. If all of 
the equations in model (1) are added then we obtained 
the total population as follows  𝐷௧ఈ଴஼ 𝑁ሺ𝑡ሻ = Λఈ − 𝜇ఈ൫𝑆 + 𝐼௙ + 𝐼௠ + 𝐼௙௠ + 𝑄 + 𝑅൯− 𝑑ଵఈ𝑄 − 𝑑ଵఈ𝐼௙ − 𝑑ଶఈ𝐼௠− 𝑑ଷఈ𝐼௙௠. 
This gives 𝐷௧ఈ଴஼ 𝑁ሺ𝑡ሻ ≤ Λఈ − 𝜇ఈ𝑁. 
By using Lemma 9 in Choi et al., (2014) we get 𝑁ሺ𝑡ሻ ≤ Λఈ𝑡ఈ𝐸ఈ,ఈାଵሺ−𝜇ఈ𝑡ఈሻ + 𝑁଴𝐸ఈ,ଵሺ−𝜇ఈ𝑡ఈሻ 𝑁ሺ𝑡ሻ ≤ Λఈ𝜇ఈ ቀ𝜇ఈ𝑡ఈ𝐸ఈ,ఈାଵሺ−𝜇ఈ𝑡ఈሻ + 𝐸ఈ,ଵሺ−𝜇ఈ𝑡ఈሻቁ 

where 𝐸ఈ,ఈାଵ  is Mittag-Leffler function. Using 
Theorem 5.1 in Haubold et al., (2011) we obtained 

𝑁ሺ𝑡ሻ ≤ Λఈ𝜇ఈ ൭ 1Γ(1) − 𝐸ఈ,ଵ(−𝜇ఈ𝑡ఈ) + 𝐸ఈ,ଵ(−𝜇ఈ𝑡ఈ)൱ 

𝑁(𝑡) ≤ Λఈ𝜇ఈ ൬ 1Γ(1)൰ ≤ Λఈ𝜇ఈ . 
Since the total population is bounded so the 
subpopulations are also bounded and this complete 
the proof. 

2.3 Normalized Model of  
Influenza-Meningitis Coinfection 
Model 

By assuming new dimensionless variables, 𝑥ଵ =ௌே , 𝑥ଶ = ூ೑ே , 𝑥ଷ = ூ೘ே , 𝑥ସ = ூ೑೘ே , 𝑥ହ = ொே , 𝑥଺ = ோே , the 
dimensionless model is obtained as follows 𝐷௧ఈ଴஼ 𝑥ଵ(𝑡) = 𝜇ఈ + 𝜃ఈ𝑥଺ − (𝑓ଵ + 𝑓ଶ + 𝜇ఈ)𝑥ଵ, 𝐷௧ఈ଴஼ 𝑥ଶ(𝑡) = 𝑓ଵ𝑥ଵ − (𝜇ఈ + 𝑑ଵఈ + 𝜏ଵఈ + 𝛾ଵఈ+ 𝜙𝑓ଶ)𝑥ଶ, 𝐷௧ఈ଴஼ 𝑥ଷ(𝑡) = 𝑓ଶ𝑥ଵ − (𝜇ఈ + 𝑑ଶఈ + 𝛾ଷఈ+ 𝜔𝑓ଵ)𝑥ଷ, 𝐷௧ఈ଴஼ 𝑥ସ(𝑡) = 𝜙𝑓ଶ𝑥ଶ + 𝜔𝑓ଵ𝑥ଷ− (𝜇ఈ + 𝑑ଷఈ + 𝛾ଶఈ)𝑥ସ, 𝐷௧ఈ଴஼ 𝑥ହ(𝑡) = 𝜏ଵఈ𝑥ଶ − (𝜇ఈ + 𝑑ଵఈ + 𝜓ఈ)𝑥ହ, 𝐷௧ఈ଴஼ 𝑥଺(𝑡) = 𝛾ଵఈ𝑥ଶ + 𝛾ଶఈ𝑥ସ + 𝛾ଷఈ𝑥ଷ + 𝜓ఈ𝑥ହ− (𝜇ఈ + 𝜃ఈ)𝑥଺. 

(3) 

 
where 𝑓ଵ = 𝛽ଵఈ(𝑥ଶ + 𝑥ସ)  and 𝑓ଶ = 𝛽ଶఈ(𝑥ଷ + 𝑥ସ)  and 
the initial values of system (3) is nonnegative 𝑥ଵ(0) ≥ 0, 𝑥ଶ(0) ≥ 0, 𝑥ଷ(0) ≥ 0, 𝑥ସ(0) ≥0, 𝑥ହ(0) ≥ 0, 𝑥଺(0) ≥ 0. 
3 RESULT AND DISCUSSION 

3.1 Equilibrium Point of  
Influenza-Meningitis Coinfection 
Fractional Model 

We obtained the disease-free equilibrium (DFE) point 
of the system by setting all the equation equal to zero 
and providing that  𝑥ଶ଴ = 𝑥ଷ଴ = 𝑥ସ଴ = 0. We denoted 
the DFE point as follows 𝑋௙௠଴ = (1,0,0,0,0,0) 

On the other side, the endemic equilibrium (EE) 
point is denoted by 𝑋௙௠∗ = (𝑥ଵ∗, 𝑥ଶ∗, 𝑥ଷ∗, 𝑥ସ∗, 𝑥ହ∗, 𝑥଺∗) . 
The EE point exists when  𝑥ଶ = 𝑥ଷ = 𝑥ସ ≠ 0 which 
means that the disease persists among the community. 
By making all equations in (3) equal to zero and 
performing some algebraic manipulation, we obtain 
EE point for influenza meningitis coinfection model 
as follows. 
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𝑥ଵ∗ = 𝜇ఈ + 𝜃ఈ𝑥଺𝑓ଵ + 𝑓ଶ + 𝜇ఈ ; 𝑥ଶ∗ = 𝑓ଵ𝑥ଵ𝜇ఈ + 𝑑ଵఈ + 𝜏ଵఈ + 𝛾ଵఈ + 𝜙𝑓ଶ ; 𝑥ଷ∗ = 𝑓ଶ𝑥ଵ𝜇ఈ + 𝑑ଶఈ + 𝛾ଷఈ + 𝜔𝑓ଵ ; 𝑥ସ∗= ሼ𝜙(𝜇ఈ + 𝑑ଶఈ + 𝛾ଷఈ + 𝜔𝑓ଵ) + 𝜔(𝜇ఈ + 𝑑ଵఈ + 𝜏ଵఈ + 𝛾ଵఈ + 𝜙(𝜇ఈ + 𝑑ଷఈ + 𝛾ଶఈ)(𝜇ఈ + 𝑑ଵఈ + 𝜏ଵఈ + 𝛾ଵఈ + 𝜙𝑓ଶ)(𝜇ఈ + 𝑑ଶఈ𝑥ହ∗= 𝜏ଵఈ𝑓ଵ𝑥ଵ(𝜇ఈ + 𝑑ଵఈ + 𝜓ఈ)(𝜇ఈ + 𝑑ଵఈ + 𝜏ଵఈ + 𝛾ଵఈ𝑥଺∗ = 𝛾ଵఈ𝑥ଶ + 𝛾ଶఈ𝑥ସ + 𝛾ଷఈ𝑥ଷ + 𝜓ఈ𝑥ହ(𝜇ఈ + 𝜃ఈ) ; 

(4)

3.2 Basic Reproduction Number 

The Next generation Matrix method (Dreessche & 
Watmough, 2002) is employed to obtain the 
reproduction number of influenza – meningitis 
coinfection. First, we consider the disease class 𝑋 = (𝑥ଶ, 𝑥ଷ, 𝑥ସ, 𝑥ହ) in 𝐹 and 𝑉 

 

𝐹 = ൮𝑓ଵ𝑥ଵ𝑓ଶ𝑥ଵ00 ൲,   
𝑉 = ⎝⎜

⎛ (𝜇ఈ + 𝑑ଵఈ + 𝜏ଵఈ + 𝛾ଵఈ + 𝜙𝑓ଶ)𝑥ଶ(𝜇ఈ + 𝑑ଶఈ + 𝛾ଷఈ + 𝜔𝑓ଵ)𝑥ଷ−𝜙𝑓ଶ𝑥ଶ − 𝜔𝑓ଵ𝑥ଷ + (𝜇ఈ + 𝑑ଷఈ + 𝛾ଶఈ)𝑥ସ−𝜏ଵఈ𝑥ଶ + (𝜇ఈ + 𝑑ଵఈ + 𝜓ఈ)𝑥ହ ⎠⎟
⎞

 

We evaluate the matrices 𝐹 and 𝑉 at 𝑋଴ 

𝐹 = ൦𝛽ଵఈ 0 𝛽ଵఈ 00 𝛽ଶఈ 𝛽ଶఈ 00 0 0 00 0 0 0൪    (5) 

And 

𝑉 = ⎣⎢⎢
⎡𝑘1 0 0 00 𝑘ଶ 0 00 0 𝑘ଷ 00 0 0 𝑘ସ⎦⎥⎥

⎤
  (6) 𝑘ଵ = 𝜇𝛼 + 𝑑1𝛼 + 𝜏1𝛼 + 𝛾1𝛼 𝑘ଶ = 𝜇ఈ + 𝑑ଶఈ + 𝛾ଷఈ 𝑘ଷ =  𝜇ఈ + 𝑑ଷఈ + 𝛾ଶఈ 𝑘ସ = 𝜇ఈ + 𝑑ଵఈ + 𝜓ఈ 

The matrix 𝐹𝑉ିଵ becomes as 

𝐹𝑉ିଵ = ⎣⎢⎢⎢
⎢⎡ఉభഀ௞భ 0 ఉభഀ𝑘3 00 ఉమഀ𝑘2 ఉమഀ𝑘3 00 0 0 00 0 0 0⎦⎥⎥

⎥⎥⎤  (7)

Then, we obtained the corresponding eigen values of 
the next matrix generation 𝐹𝑉ିଵ are 𝑅ଵ = 𝛽ଵఈ𝜇ఈ + 𝑑ଵఈ + 𝜏ଵఈ + 𝛾ଵఈ ,𝑅ଶ = 𝛽ଶఈ𝜇ఈ + 𝑑ଶఈ + 𝛾ଷఈ . 
Thus, the reproduction number is  𝑅଴ = 𝑚𝑎𝑥ሼ𝑅ଵ,𝑅ଶሽ.  
3.3 Local Stability Analysis of DFE 

We begin the local-stability analysis by forming a 
Jacobian Matrix respect to 𝑋௙௠଴  as follows. 𝐽(𝐸଴)

=
⎣⎢⎢
⎢⎢⎡
−𝜇ఈ −𝛽ଵఈ −𝛽ଶఈ −𝛽ଵఈ − 𝛽ଶఈ 0 𝜃ఈ0 −𝑘ଵ 0 0 0 00 0 −𝑘ଶ 0 0 00 0 0 −𝑘ଷ 0 00 𝜏ଵఈ 0 0 −𝑘ସ 00 𝛾ଵఈ 𝛾ଷఈ 𝛾ଶఈ 𝜓ఈ −(𝜇ఈ + 𝜃ఈ)⎦

⎤
(8) 

From Equation (8), we obtained a characteristic 
polynomial 

 (𝜆 + 𝜇ఈ)(𝜆 + 𝜇ఈ + 𝑑ଵఈ + 𝜏ଵఈ + 𝛾ଵఈ)(𝜆+ 𝜇ఈ + 𝑑ଶఈ + 𝛾ଷఈ)(𝜆+ 𝜇ఈ + 𝑑ଷఈ + 𝛾ଶఈ)(𝜆+ 𝜇ఈ + 𝑑ଵఈ + 𝜓ఈ)(𝜆+ 𝜇ఈ + 𝜃ఈ) = 0 

(9) 

 
Based on Equation (9) we obtained the eigen values 𝜆ଵ = −𝜇ఈ; 𝜆ଶ = −(𝜇ఈ + 𝑑ଵఈ + 𝜏ଵఈ + 𝛾ଵఈ); 𝜆ଷ = −(𝜇ఈ + 𝑑ଶఈ + 𝛾ଷఈ); 𝜆ସ = −(𝜇ఈ + 𝑑ଷఈ + 𝛾ଶఈ  ) 𝜆ହ = −(𝜇ఈ + 𝑑ଵఈ + 𝜓ఈ) 𝜆଺ = −(𝜇ఈ + 𝜃ఈ) 
Because we have all parameters 𝜇,𝑑ଵ,𝑑ଶ,𝑑ଷ, 𝜏ଵ, 𝛾ଵ, 𝛾ଶ, 𝛾ଷ,𝜓,𝜃 > 0 , it implies 𝜆௜,௜ୀଵ…଺ < 0 and |arg (𝜆௜)| = 𝜋. Therefore, it can be 
guaranteed that  |arg(𝜆௜)| > ఈగଶ  for all 0 < 𝛼 ≤ 1 
and 𝑋௙௠଴  is local asymptotically stable ∎ 

3.4 Numerical Simulation Findings  

This section shows various numerical simulation of 
Influenza and Meningitis coinfection model to 
analyse the transmission dynamics. The initial 
conditions are set to be 𝑥ଵ(0) =  0.7, 𝑥ଶ(0) = 0.1 , 𝑥ଷ(0) = 0.1  , 𝑥ସ(0) = 0.05  , 𝑥ହ(0) = 0.001 , 𝑥଺(0) = 0.049 and the parameter values are provided 
in Table 1. 
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Table 1. Parameters of the Model. 

Parameters Description Value Source 𝜇 Natural 
birth/death rate 

0.02 (Varshney & 
Dwivedi, 
2021) 𝜃 Loss of 

Immunity 
0.00735 (Kotola & 

Mekonnen, 
2022) 𝛽ଵ Influenza 

contact Rate 
2.343 (Varshney & 

Dwivedi, 
2021) 𝛽ଶ Meningitis 

Contact rate 
0.9 (Kotola & 

Mekonnen, 
2022) 𝑑ଵ Influenza only 

caused death 
rate 

0.001 (Jonnalagadd
a, 2022) 𝜏ଵ The rate of 

discovered 
influenza moved 
to quarantine 

0.5 – 2 (Varshney & 
Dwivedi, 
2021) 𝛾ଵ Natural 

Recovery rate of 
Influenza only 

0.14 (Jonnalagadd
a, 2022) 𝑑ଶ Meningitis only 

caused death 
rate 

0.002 (Kotola & 
Mekonnen, 
2022) 𝑑ଷ Influenza and 

Meningitis co 
infection death 
rate 

0.2 (Varshney 
& Dwivedi, 
2021) 𝛾ଶ Recovery rate of 

Influenza and 
Meningitis co 
infection 

0.04 Assumed 

𝛾ଷ Natural 
recovery rate of 
Meningitis only 

0.02 (Kotola & 
Mekonnen, 
2022) 𝜙 Modification 

parameter 
1 Assumed 𝜔 Modification 

parameter 
1 Assumed 𝜓 The average 

spent in 
isolation 

0.244 (Varshney 
& Dwivedi, 
2021) 

 
We employ the Predictor-corrector (PECE) with 

Product Integration (PI) rules method developed by 
Garrappa (Garrappa, 2018) in MATLAB to perform 
numerical simulation for several values of fractional 
order 𝛼. It aims to analyse the dynamical behaviour 
of each population. By using PECE-PI method we get 
numerical expression to solve the system (3) as 
follows 

𝑥௜௡௣ = 𝑇௠ିଵሾ𝑥௜; 𝑡଴ሿ(𝑡௡) +ℎఈ ∑ 𝑏௡ି௝ିଵ(ఈ) 𝑔௜ ቀ𝑡௝ , 𝑥௜௝ቁ௡ିଵ௝ୀ଴   
(10) 

𝑥௜௡ = 𝑇௠ିଵሾ𝑥௜; 𝑡଴ሿ(𝑡௡) + ℎఈ ቀ𝑎෤௡(ఈ)𝑔௜(0) +∑ 𝑎௡ି௝(ఈ) 𝑔௜ ቀ𝑡௝, 𝑥௜௝ቁ௡ିଵ௝ୀଵ + 𝑎଴(ఈ)𝑔௜(𝑡௡, 𝑥௜௡௣)ቁ  

(11) 

Where 𝑖 = 1,2, … 6,  𝑏௡(ఈ) = ((௡ାଵ)ഀି௡ഀ)୻(ఈାଵ) ,   𝑎෤௡(ఈ) = (௡ିଵ)ഀశభି௡ഀ(௡ିఈିଵ)୻(ఈାଶ)  , 
and 

 𝑎௡(ఈ) = ቐ ଵ୻(ఈାଶ) , 𝑛 = 0(௡ିଵ)ഀశభିଶ௡ഀశభା(௡ାଵ)ഀశభ୻(ఈାଶ) , 𝑛 = 1,2, … 

 
Figure 2 illustrates the dynamics of the proportion 

of individuals in the susceptible compartment with 
various fractional orders. In this simulation, the four 
alpha values exhibit different dynamics. At the 
beginning of the simulation, all four show a decrease 
in proportion. It is evident that the fractional orders 
closer to 1 have a graph that tends to be more 
fluctuating before reaching the endemic equilibrium 
point. Figure 3 demonstrates the dynamics of the 
compartment of individuals infected with influenza 
with different fractional orders. The results indicate 
that during the first 1-5 days, the population infected 
with influenza shows an increase, followed by a 
decrease in the number of infections due to 
individuals recovering, receiving quarantine 
measures, or acquiring secondary infections and 
moving to the influenza-meningitis co-infection 
compartment. The larger the fractional order, the 
faster the approach to the endemic point.   

Figure 4 shows the simulation results for the 
proportion of individuals infected with meningitis for 
several different fractional orders. During the first 2-
3 days, the proportion of infected individuals 
increases and then decreases due to individuals 
acquiring secondary infections or recovering. The 
different fractional orders exhibit varying behaviours. 
The fractional order α=0.95 tends to be more 
fluctuating compared to the other fractional orders. 

 Figure 5 illustrates the dynamics of the 
proportion of individuals in the influenza-meningitis 
co-infection compartment. The simulation results 
indicate an increase in cases during the first 10 days 
of the simulation. Subsequently, the proportion of 
individuals in the co-infection compartment 
decreases towards the endemic equilibrium point. It 
is observed that smaller fractional orders have 
relatively smaller fluctuations compared to other 
fractional orders, and therefore tend to reach the 
endemic equilibrium point more slowly. 
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Figure 2: Behaviour of Susceptible Population with 
different values of 𝛼. 

 
Figure 3: Behaviour of Infected Influenza Only with 
different values of 𝛼. 

 
Figure 4: Behaviour of Infected Meningitis Only with 
different values of 𝛼. 

 
Figure 5: Behaviour of Influenza-Meningitis Coinfection 
with different values of 𝛼. 
 

Figure 6 shows the dynamics of the proportion of 
individuals with influenza who are quarantined with 
various fractional orders α. In the initial days, the 

proportion of quarantined individuals increases in 
line with the rising number of influenza infections. 
Subsequently, the proportion of quarantined 
individuals decreases due to the recovery of 
individuals or the decreasing number of influenza 
infections 

 
Figure 6: Behaviour of Quarantine Population with 
different values of 𝛼. 
 
 

 
 
 
 
 
 
 
 
 
Figure 7: Behaviour of Recovered Population with different 
values of 𝛼. 
 

Figure 7 presents the simulation results depicting 
the recovered subpopulation with different fractional 
orders α. In the first 30 days, the number of recoveries 
increases before reaching a relatively stagnant phase. 
It is observed that smaller fractional orders α reach a 
steady state condition relatively faster due to the 
memory effect of the susceptible population 

Figures 8, 9, 10, and 11 illustrate various contact 
rates for infected influenza (β₁) and infected 
meningitis (β₂) on the populations infected with 
influenza only and meningitis only. Figure 8 shows 
that the larger the contact rate for infected influenza, 
the higher the proportion of individuals who will be 
infected with influenza. Figure 9 shows an inverse 
result: an increase in the contact rate for infected 
influenza reduces the proportion of individuals 
infected with meningitis. This is because more 
individuals progressing to the influenza compartment 
reduces the proportion of susceptible individuals, 
thereby lowering the proportion of individuals 
infected with meningitis. Figures 10 and 11 exhibit 
similar behavior to the previous cases, where an 
increase in the contact rate for infected meningitis 
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increases the proportion of individuals infected with 
meningitis (Figure 11) but, on the other hand, 
decreases the proportion of individuals infected with 
influenza (Figure 10). 

 
 
 
 
 
 
 
 
 
 
 
Figure 8: Infected Influenza Only with different contact rate 𝛽ଵ. 
 

 
 
 
 
 
 
 
 
 
Figure 9: Infected Meningitis Only with different contact 
rate 𝛽ଵ. 

 
Figure 10: Infected Influenza Only with different contact 
rate 𝛽ଶ. 

 
Figure 11:Infected Meningitis Only with different contact 
rate 𝛽ଶ. 

Figures 12, 13, and 14 present simulation 
results for various quarantine rates. The higher the 
quarantine rate for influenza, the lower the increase in 

the proportion of individuals infected with influenza 
only (Figure 12). This is consistent with the lower 
increase in the proportion of co-infected individuals 
when the quarantine rate for influenza-infected 
individuals rises (Figure 14). However, an increase in 
the quarantine rate does not reduce the proportion of 
individuals infected with meningitis. A high 
quarantine rate for influenza-infected individuals 
reduces the spread of influenza, which gradually 
increases the proportion of meningitis infections in 
the population (Figure 13). 
 
 
 
 
 
 
 

 
 
 
 
Figure 12: Infected Influenza - Only with different 
quarantine rate. 

 
Figure 13: Infected Meningitis - Only with different 
quarantine rate. 

 
Figure 14: Influenza - Meningitis Coinfection with different 
quarantine rate. 

A Fractional Mathematical Model of Influenza: Meningitis Coinfection Using Caputo Derivatives

11



4 CONCLUSIONS 

This research extended the deterministic model of 
Influenza-Meningitis coinfection transmission 
dynamics to a generalized Caputo fractional 
derivative to consider the memory effect of a 
biological system. We demonstrated the qualitative 
properties of the model to ensure its biological 
relevance, specifically focusing on coinfection 
transmission. Using the next-generation method, we 
obtained two equilibrium points and computed the 
basic reproduction number for Influenza-Meningitis 
coinfection. Furthermore, we analysed the local 
stability condition of the disease-free equilibrium. 
Additionally, we performed numerical simulations 
with several values of fractional order, influenza 
transmission rate, meningitis transmission rate, and 
quarantine rate to explore their effects to the 
transmission. Different values of the fractional order 
indicated varying speeds of reaching a steady state or 
endemic level. 
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