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Abstract: Reinforcement Learning (RL) has become a groundbreaking approach in machine learning, significantly 
impacting healthcare by providing solutions to intricate decision-making challenges. This comprehensive 
review examines the current state of RL in healthcare, focusing on dynamic treatment protocols, automated 
diagnostic systems, resource allocation, as well as privacy and security issues. RL's ability to adapt and 
optimize treatment plans dynamically, enhance diagnostic accuracy, and manage healthcare resources 
efficiently underscores its potential to revolutionize clinical practices. However, the implementation of RL in 
healthcare is fraught with challenges, including the need for extensive, high-quality datasets, difficulties in 
interpreting complex models, and significant data privacy concerns. To mitigate these challenges, recent 
innovations have been introduced. Transitional Variational Autoencoders (tVAEs) are used to generate 
realistic patient data, enhancing the simulation capabilities of RL models. Federated learning frameworks 
have been developed to ensure data privacy by enabling collaborative model training without sharing raw 
data. Additionally, transfer learning and domain adaptation techniques improve the generalization of RL 
models across diverse healthcare settings. This review provides a thorough analysis of these advancements 
and their implications for healthcare, offering a detailed understanding of RL's current applications and 
limitations. Future research directions are proposed to address existing challenges, aiming to ensure the robust, 
transparent, and ethical integration of RL technologies into clinical settings, thereby maximizing their 
potential to improve healthcare outcomes. 

1 INTRODUCTION 

Reinforcement Learning (RL) is an approach within 
the field of machine learning based on reward 
mechanisms, which has gained widespread attention 
and application in the healthcare sector in recent 
years. RL interacts with the environment to 
continuously adjust strategies to achieve the goal of 
maximizing long-term rewards. Its unique features 
make it particularly suitable for addressing complex 
decision-making problems in healthcare, such as 
optimizing disease diagnosis and treatment plans (Yu, 
Liu, Nemati & Yin, 2021; Coronato et al., 2020). In 
healthcare, RL applications range from dynamic 
treatment regimens to automated medical diagnosis. 
For example, in chronic disease management and 
intensive care, RL can help optimize treatment plans 
by dynamically adjusting drug dosages and treatment 
strategies to improve therapeutic outcomes (Yu, Liu, 
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Nemati & Yin, 2021; Coronato et al., 2020). 
Additionally, RL is used in medical image analysis 
and disease prediction, such as early detection of lung 
cancer and vessel centerline tracking (Yu, Liu, 
Nemati & Yin, 2021; Yang et al. 2024). 

Despite the promising prospects of RL in 
healthcare, several challenges and gaps remain in 
current research. First, training RL models often 
relies on large amounts of high-quality data, which 
are costly and ethically challenging to obtain in the 
healthcare domain (Yu, Liu, Nemati & Yin, 2021). 
Second, existing RL models exhibit limitations in 
handling multi-class imbalanced data, which may 
lead to poor predictive performance for minority 
classes in practical applications (Yang et al. 2024). 
Moreover, the application of RL in healthcare faces 
issues with model generalization. Many current 
models perform well on specific datasets but have not 
been validated across different patient populations 
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and medical settings (Yu, Liu, Nemati & Yin, 2021). 
Additionally, data privacy and security are crucial 
research directions, especially when using distributed 
learning methods like federated learning (Otoum et 
al. 2021). 

To address these research gaps, recent studies 
have proposed several improvements. For instance, 
Transitional Variational Autoencoders (tVAEs) are 
used to generate more realistic patient trajectories, 
enhancing the model's ability to simulate patient data. 
Furthermore, RL frameworks combined with 
federated learning are explored to strengthen data 
protection and confidentiality measures in healthcare 
IoT systems. This method allows model training 
without sharing raw data, thereby protecting patient 
privacy (Otoum et al. 2021). 

This paper endeavours to offer an exhaustive 
analysis of the main research findings and recent 
advancements in the application of RL in healthcare. 
This paper explores a wide range of RL applications, 
including dynamic treatment regimes, automated 
medical diagnosis, and healthcare resource 
management. The review includes a detailed 
examination of existing models, their limitations, and 
the innovative solutions proposed to address these 
challenges. Additionally, this review is structured to 
explore the different facets and impacts of RL in 
healthcare, With the aspiration of offering an all-
encompassing overview pertaining to the current 
framework and prospective developments of RL 
research in this significant sector. 

2 METHODS 

2.1 Introduction to Reinforcement 
Learning 

Reinforcement learning, representing a sophisticated 
branch within the broader domain of machine 
learning, emphasizes enabling an agent to learn 
optimal decision-making through interactions with its 
environment. The fundamental principle involves the 
agent performing actions in different states with the 
aim of optimizing aggregate rewards over an 
extended period. Through the acquisition of feedback 
in the guise of rewards or penalties corresponding to 
its actions, the agent is steered towards formulating 
an optimal policy. 

Reinforcement Learning challenges are 
commonly framed within the construct of Markov 
Decision Processes (MDPs), which are defined by the 
following key tuple 𝑆,𝐴,𝑃,𝑅, 𝛾 (Amparore et al., 
2013): 

- 𝑠: A set of states 
- 𝑎: A set of actions 
-  𝑃 : A transition likelihood matrix 𝑃(𝑠′|𝑠,𝑎) , 

defining the likelihood of shifting to states from state 𝑠 after executing an action 𝑎. 
-  𝑅 : A reward function 𝑅(𝑠,𝑎) , providing the 

instantaneous reward after action 𝑎 in state 𝑠. 
- 𝛾 : A discount factor gamma in  [0, 1] , which 

quantifies the significance of future rewards. 
The agent's paramount goal is to devise a 

strategy 𝜋(𝑠)  that maximizes the anticipated 
aggregated reward, commonly known as the return. 
This return is calculated as the sum of discounted 
rewards accrued over time, reflecting both immediate 
and future benefits: 𝐺௧ = 𝑅௧ାଵ + 𝛾𝑅௧ାଶ + 𝛾ଶ𝑅௧ାଷ + ⋯ =∑ 𝛾௞𝑅௧ା௞ାଵஶ௞ୀ଴                                                        (1) 

A commonly employed algorithm in RL is Q-
learning, which updates the value of state-action pairs 
(Q-values) using the Bellman equation: 𝑄(𝑠,𝑎) ←𝑄(𝑠,𝑎) + 𝛼[𝑅 + 𝛾𝑚𝑎𝑥௔ᇱ 𝑄(𝑠′,𝑎′) −𝑄(𝑠,𝑎)]                                                                     (2)  

where 𝛼 is the learning rate. 
Through continuous interaction with its 

environment, the agent progressively learns to select 
actions that maximize long-term cumulative rewards. 
This ability renders RL especially effective for 
handling complex decision-making tasks across 
various fields, such as healthcare. 

2.2 Dynamic Treatment Regimes 

2.2.1 Enhancing DRL with Transitional 
Variational Autoencoders 

In their study, Baucum and Khojandi introduce 
Transitional Variational Autoencoders (tVAEs) to 
improve Deep Reinforcement Learning (DRL) 
applications in healthcare. Temporal Variational 
Autoencoders (tVAEs) are sophisticated generative 
neural network models designed to create an explicit 
correlation between the configurations of clinical 
parameters across sequential temporal intervals, 
utilizing retrospective patient data. These models 
facilitate the accurate reconstruction of temporal 
patterns in clinical datasets by capturing the 
underlying distributional dynamics over time. One 
significant benefit of the tVAE model is its minimal 
reliance on distributional assumptions while 
maintaining consistent training and testing 
architectures. By utilizing tVAEs, researchers can 
create more realistic patient trajectories, facilitating 
the development of effective treatment policies 
(Baucum et al., 2020). 
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2.2.2 Closed-Loop Healthcare Processing 
with DRL and Human Body 
Simulators 

Dai et al. propose a closed-loop healthcare processing 
method using DRL combined with Deep Neural 
Networks (DNNs) to build human body simulators. 
These simulators can dynamically accept 
interventions and produce observations. By 
integrating conceptual embedding techniques with 
DRL, the study investigates effective healthcare 
strategies. The system specifically consists of a 
virtual human physiological simulator seamlessly 
integrated with an advanced Deep Reinforcement 
Learning (DRL)-driven therapeutic intervention 
module. The treatment module diagnoses latent 
health states from high-dimensional radiographic 
observations and selects therapeutic actions to restore 
the simulated physiological model to an optimal 
healthy condition, creating a highly adaptive, 
autonomously self-regulating healthcare informatics 
architecture (Dai et al., 2022). 

2.2.3 Personalized Healthcare 

Coronato et al. provide a comprehensive review of 
RL's role in healthcare, emphasizing its potential to 
support personalized treatments in precision 
medicine. The document explores several RL 
applications, such as Dynamic Treatment Regimes 
(DTRs) for chronic illnesses like HIV, oncology, 
hypertension, and anemia. Utilizing the Sequential 
Multiple Assignment Randomized Trial (SMART) 
approach, RL aids in developing DTRs by employing 
sequential decision-making processes that consider 
patient responses at each stage of treatment. This 
approach aims to personalize drug dosages and 
treatment schedules to maximize therapeutic 
outcomes and minimize adverse effects (Coronato et 
al., 2020). 

2.2.4 Dual-Agent RL Model for Optimizing 
Dynamic Treatment Regimes 

Blumrosen et al. propose a Dual-Agent 
Reinforcement Learning (DaRL) model utilizing 
medical and natural agents to optimize healthcare 
interventions. The medical agent employs external 
data and sensors to adjust treatments, while the 
natural agent's rewards are based on internal 
biological states like neural circuits and dopamine 
levels. This integration enhances treatment accuracy 
and efficiency, dynamically adjusting drug dosages 
and reducing incorrect interventions by continuously 
monitoring patient health (Blumrosen et al., 2019). 

2.3 Automated Medical Diagnosis 

2.3.1 Automated Diagnosis with Machine 
Learning Models 

Structured medical data, such as physiological 
signals, images, and lab tests, benefit from RL 
methods for tasks like feature extraction and image 
segmentation. Key techniques include Q-learning for 
prostate segmentation in ultrasound images, Trust 
Region Policy Optimization (TRPO) for surgical 
gesture segmentation, and Deep Q-Network (DQN) 
for automatic landmark detection in MRI and CT 
images, achieving robustness and accuracy. 
Unstructured medical data, such as clinical notes and 
reports, use RL techniques for diagnosis inference. 
Key methods include DQN to improve diagnosis 
accuracy using external evidence, adaptive online 
learning combining supervised learning for risk 
assessment and RL for decision making, and 
symptom checking systems using DQN to enhance 
efficiency and accuracy in diagnosis (Yu, Liu, Nemati 
& Yin, 2021). 

2.3.2 Deep Reinforcement Learning for IoT-
Enabled Smart Healthcare Systems 

Jagannath et al. present a novel IoT-enabled smart 
healthcare system that utilizes DRL to automate 
medical diagnosis and decision-making. The system 
architecture is composed of four tiers: patient data 
acquisition, edge processing, data conveyance, and 
cloud computation. Patient data is gathered through 
various sensors in a Body Area Network (BAN) and 
sent to data centers using IoT protocols. DRL 
algorithms, like Deep Q-Network (DQN), are utilized 
to conduct intricate data analysis and formulate 
sophisticated diagnostic and therapeutic 
determinations. The system was evaluated with 
synthetic data from BAN sensors, showing high 
accuracy in estimating hidden health states and 
making decisions that closely align with those of a 
physician. This method not only improves diagnostic 
accuracy but also provides an efficient telemedicine 
solution (Jagannath et al., 2022). 

2.3.3 Dueling Double Deep Q-Network for 
Multi-Class Imbalance in Healthcare 
Applications 

Yang, EI-Bouri et al. introduce a dueling double deep 
Q-network (D-DDQN) to tackle the issue of multi-
class imbalance in reinforcement learning, 
particularly for healthcare applications. The Q-value 
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function is optimized through policy iteration. The 
dueling architecture separates value and advantage 
estimation, enabling better state-action 
representation. Double deep Q-learning mitigates 
overestimation by using separate networks for action 
selection and value estimation. This approach is 
particularly beneficial in healthcare for optimizing 
resource allocation and improving diagnostic 
accuracy in class-imbalanced medical datasets (Yang 
et al., 2024). 

2.4 Health Resources Allocation and 
Scheduling and Health 
Management 

2.4.1 Enhanced Intelligent Clustering-
Oriented Routing Framework for 5G-
Integrated Smart Healthcare Solutions 

Ahad et al. introduce an sophisticated Clustering-
based Routing Protocol (CRP-GR) that integrates 
game theory with reinforcement learning to improve 
resource allocation within a 5G-driven smart 
healthcare paradigms. This protocol is designed to 
optimize energy usage and extend network lifespan 
by selecting energy-efficient cluster heads and 
determining the optimal multipath routes for data 
transmission. By using reinforcement learning, the 
protocol adapts to the heterogeneous and dynamic 
nature of smart healthcare networks, improving the 
quality of service (QoS) and ensuring efficient use of 
resources (Ahad et al., 2021). 

2.4.2 EPRAM: Enhancing Smart Healthcare 
with Fog Computing 

Talaat et al. introduce the Effective Prediction and 
Resource Allocation Method (EPRAM) within fog 
computing architectures for advanced cognitive 
healthcare applications enhances real-time resource 
management and prediction using deep reinforcement 
learning and probabilistic neural networks. EPRAM 
achieves low latency, high resource utilization, and 
effective load balancing, outperforming traditional 
algorithms (Talaat et al., 2022). 

2.5 Security and Privacy 

2.5.1 Federated Reinforcement Learning-
Augmented Intrusion Detection 
Framework for IoT-Enabled 
Healthcare Ecosystems 

Otoum et al. discuss the implementation of an  

Intrusion Detection System (FRL-IDS) which is 
grounded in Federated Reinforcement Learning 
designed to enhance security and privacy in IoT-
enabled healthcare systems. The proposed model 
leverages federated learning to maintain data privacy 
by ensuring that data remains localized while only 
sharing model parameters. This approach helps in 
detecting and mitigating cyber intrusions without 
compromising patient data. The system processes 
data from multiple healthcare entities and updates the 
global detection model collaboratively, ensuring 
robust and secure data communication across the 
network (Otoum et al., 2021). 

2.5.2 Reinforcement Learning-Based 
Trajectory Design for WPT-Enabled 
UAV Healthcare Delivery 

Merabet et al. explore the deployment of 
reinforcement learning methodologies to enhance the 
security and efficiency of healthcare delivery systems 
utilizing Unmanned Aerial Vehicles (UAVs). The 
proposed system employs Wireless Power Transfer 
(WPT) technology, enabling UAVs t to replenish 
their power reserves mid-mission, thereby extending 
their operational range. The RL algorithm is used to 
design optimal UAV trajectories that minimize travel 
time and energy consumption while ensuring secure 
data transmission during deliveries. By implementing 
RL, the system can dynamically adapt to changing 
environmental conditions and potential security 
threats, providing a reliable and secure healthcare 
delivery solution (Merabet et al., 2022). 

3 DISCUSSIONS 

3.1 Limitations and Challenges 

3.1.1 Interpretability 

RL models, particularly deep reinforcement learning, 
are often termed "opaque systems" owing to the 
intricate and enigmatic nature of their decision-
making processes, which are not easily interpretable 
by humans. In healthcare, interpretability is crucial as 
medical professionals need to trust and understand the 
reasoning behind a model's recommendations. The 
lack of transparency can impede the adoption of RL 
in clinical settings, as practitioners may be hesitant to 
trust systems they cannot fully understand. This 
challenge necessitates the development of methods 
that can elucidate the internal workings of RL models, 
making them more accessible and trustworthy. 
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3.1.2 Applicability 

The application of RL in healthcare is still in its 
infancy, and its practical use is limited by several 
factors. Firstly, RL requires extensive amounts of 
data to train models effectively, which can be a 
significant barrier in medical domains where data is 
often scarce and sensitive. Secondly, healthcare 
environments are highly complex and dynamic, 
making it difficult to design RL algorithms that can 
adapt to such variability. Finally, the integration of 
RL systems into existing healthcare workflows 
presents another layer of complexity, as these systems 
must be seamlessly incorporated into routine 
practices without disrupting care delivery. 

3.1.3 Privacy 

Patient data privacy is a paramount concern in 
healthcare. RL models require substantial amounts of 
data, which raises significant privacy issues. Ensuring 
that patient information is protected while using it to 
train RL models is a complex task. Methods such as 
data anonymization and secure data sharing protocols 
are necessary but may not be sufficient to address all 
privacy concerns. Additionally, the potential for data 
breaches and the misuse of sensitive information are 
ongoing risks that need to be continually managed 
and mitigated. 

3.2 Future Prospects 

3.2.1 The Solutions for Interpretability 

To address the interpretability challenge, integrating 
expert systems with RL can provide a framework 
where the decision-making process is more 
transparent. Expert systems utilize heuristic-based 
methodologies to emulate the cognitive judgment 
capabilities of a domain-specific specialist. By 
combining this with RL, it is possible to create 
systems that not only learn from data but also 
incorporate domain-specific knowledge that is easier 
for practitioners to understand. Approaches such as 
SHapley Additive exPlanations (SHAP) and Local 
Interpretable Model-agnostic Explanations (LIME) 
present promising methods for interpreting the 
outputs of complex models. SHAP assigns an 
importance value to each feature for a specific 
prediction, thereby elucidating the influence of each 
feature on the model's output. LINE approximates the 
model locally with a simpler interpretable model, 
providing insights into how the original model works 
in the vicinity of the instance being predicted. These 
methods can help demystify the decisions made by 

RL algorithms, thereby increasing their acceptance 
and trust among healthcare professionals. 

3.2.2 The Solutions for Applicability 

Cross-domain knowledge transfer and domain 
specific adaptation hold significant potential for 
enhancing the applicability of RL in healthcare. 
Transfer learning entails using a model pre-trained in 
one domain and fine-tuning it for a related but 
different domain, thus reducing the data needed for 
training in the new domain. This is especially 
beneficial in healthcare, where data is frequently 
scarce and costly to acquire. Domain adaptation, on 
the other hand, helps models generalize across 
various settings by aligning the data distributions 
between the source and target domains. This ensures 
that RL models can perform well even when there are 
differences between the training data and the real-
world data they encounter in deployment. By 
applying these techniques, RL models can become 
more robust and effective in various healthcare 
environments, from hospitals in urban centers to rural 
clinics with different patient demographics. 

3.2.3 The Solutions for Privacy 

Federated learning offers a solution to the privacy 
challenge by enabling the training of RL models 
across multiple institutions without sharing raw data. 
This approach allows models to learn from a broader 
dataset while maintaining patient confidentiality. In 
federated learning, data remains localized at each 
institution, and only the model updates (gradients) are 
shared and aggregated to improve the global model. 
This decentralized approach to training models 
mitigates the risks associated with centralized data 
storage, such as data breaches and privacy violations. 
By aggregating insights from decentralized data 
sources, federated learning can help create more 
comprehensive and accurate RL models. For 
example, hospitals in different regions can 
collaborate to train an RL model on patient treatment 
outcomes without exposing sensitive patient data. 
This collective learning process can result in more 
effective and generalized healthcare solutions, 
potentially accelerating the adoption of reinforcement 
learning in the healthcare sector. 

4 CONCLUSIONS 

To summarize, this paper has provided a thorough 
analysis of RL applications, including dynamic 
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treatment protocols, automated diagnostic systems, 
resource allocation, as well as privacy and security 
measures. The primary contribution of this study lies 
in highlighting RL's ability to enhance healthcare 
outcomes. However, RL faces significant limitations, 
such as data scarcity, model interpretability, and 
privacy concerns. Future research should aim to 
integrate expert systems for improved 
interpretability, leverage transfer learning to enhance 
applicability, and employ federated learning to 
address privacy issues. These advancements will be 
crucial in fully realizing the potential of RL in 
healthcare, ensuring robust, transparent, and ethical 
deployment in clinical settings. 
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