
Machine Learning for Smart Cities: LSTM Model-Based Taxi OD 
Demand Forecasting in New York 

Ziyan Chen a 
Information Management and System, Shanghai University, Jiading, Shanghai, China 

Keywords: Taxi OD Demand Forecasting, LSTM Model, Machine Learning, Model Optimization. 

Abstract: This study delves into the realm of advanced machine learning techniques, with a particular focus on 
employing the Long Short-term Memory Network (LSTM) model for forecasting Taxi Origin-Destination 
(OD) demand in New York City. In the quest for the most accurate predictive model, this paper conducted a 
comparative analysis between the Decision Tree (DT), Random Forest (RF), and the aforementioned LSTM 
model. The findings of this study reveal that the LSTM model outperforms its counterparts in both prediction 
accuracy and generalization capability. The model's coefficient of determination (R²) stands at an impressive 
0.9657, signifying that it captures a substantial 96.57% of the variance within the dataset. Through model 
optimization, this study has further minimized the error index, highlighting the sensitivity of the model to its 
configuration and the potential for enhanced performance. As looking towards the horizon, future research 
endeavors will concentrate on overcoming current limitations and bolstering the robustness and applicability 
of the LSTM model. The further study plans to extend its application to various urban settings and integrate 
real-time data streams to augment its predictive prowess. Additionally, examining the model's efficacy in a 
multi-modal traffic context and exploring the synthesis of LSTM with other machine learning algorithms to 
forge hybrid models could lead to the development of more sophisticated and precise demand forecasting 
tools. These advancements will be instrumental in facilitating smarter urban transport planning and 
management, thereby revolutionizing the way approaching Taxi OD demand forecasting in the era of machine 
learning.

1 INTRODUCTION 

The progression of smart city development has 
positioned the sophistication and efficacy of urban 
transportation systems as key performance indicators 
of urban advancement. In the vibrant epicenter of 
global economic and cultural activity that is New 
York City, the fine-tuning of its transportation 
infrastructure is of utmost importance. Since the turn 
of the decade, there has been a discernible downturn 
in the prevalence of the iconic yellow taxis, while the 
adoption of app-based ride-hailing services has 
experienced a meteoric rise, culminating in a record 
92.5 million passengers in 2016 (New York City 
Government, 2017). This surge is mirrored by a 
twofold increase in the registration of rental vehicles, 
including both taxis and private car services, which 
underscores the burgeoning demand for a multiplicity 
of rental vehicle services. These data collectively 
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delineate a trend where the sharing economy and the 
proliferation of mobile technology are propelling a 
pronounced preference for the convenience and 
efficiency of online ride-hailing services. 

The forecasting of Taxi Origin-Destination (OD) 
demand is a pivotal component of intelligent 
transportation systems, tasked with the precision 
prediction of taxi service demand at specific temporal 
and spatial junctures. Traditional forecasting 
methodologies have demonstrated efficacy in the 
analysis of linear time series data but have 
encountered limitations when confronted with the 
intricacies of nonlinear relationships and the 
amalgamation of multi-source datasets. The incursion 
of machine learning into this domain has heralded a 
new epoch of forecasting approaches. For instance, 
Guo et al. adeptly harnessed the Gradient Boosting 
Decision Tree (GBDT) model to predict future taxi 
demand trends with considerable success (Guo and 
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Shen, 2018). Similarly, Saadi et al. have integrated a 
plethora of external factors (Saadi and Wang, 2017), 
such as pricing and meteorological conditions, into 
their predictive models, employing a diverse array of 
algorithms including decision trees, ensemble 
decision trees, and random forests. The foray of deep 
learning into this realm has marked a significant leap 
in forecasting capabilities due to their excellent 
performance in many tasks (Lin, 2024; Wang, 2019). 
Ke et al. have adeptly integrated deep learning with 
machine learning techniques, employing Long Short-
Term Memory networks (LSTM) to encapsulate 
temporal dependencies and Convolutional Neural 
Networks (CNN) to model spatial correlations (Ke 
and Zheng, 2017). Li has introduced Radial Basis 
Function (RBF) neural network model, optimized via 
quantum particle swarm optimization, which takes 
into account an array of influencing factors such as 
historical demand, traffic congestion indices, and 
meteorological conditions (Li and Wen, 2018). 

Despite these methodological advancements, the 
ubiquitous challenge of reconciling supply and 
demand in taxi services persists, adversely affecting 
the operational efficiency of transportation systems 
and the commuting experience of urban dwellers. 
This paper aims to address this challenge by 
conducting a comparative analysis of five distinct taxi 
OD demand forecasting methodologies, utilizing data 
analytics and machine learning algorithms, and 
culminating in the identification of the LSTM model 
as the most efficacious predictive instrument. 

The rest of this paper is segmented into three 
chapters, with the principal content of each chapter 
delineated as follows:  the method section details the 
dataset and analytical methods; the results and 
discussion section evaluate the performance of 
Decision Tree (DT), LSTM, and random forest 
models; and the conclusion reviews the research, 
discusses limitations, and suggests future directions. 

2 METHOD 

2.1 Dataset Preparation 

The dataset used in this study is sourced from the 
Microsoft Azure Open Dataset. It encompasses a vast 
collection of taxi trip records from 2009 to 2018, 
totalling approximately 80 million entries 
(TPSearchTool, 2022). Each entry is rich with details 
such as precise latitude and longitude of pick-up and 
drop-off locations, service dates and times, trip 
distances, and fare amounts. The dataset's extensive 
temporal and spatial coverage provides a 

comprehensive view of taxi travel patterns in New 
York City, offering valuable insights for urban 
transportation planning and taxi service optimization. 
The dataset includes several features such as Pickup 
and Dropoff Latitude/Longitude, Passenger Count 
and Payment Type. 

The target variable for this study is the Taxi OD 
demand, which is calculated by grouping data by start 
and end points, demand date, and demand time, and 
counting the number of orders from the same start 
point to the same end point within the same hour. 

This study also conducted a series of data 
preprocessing steps on this dataset to ensure the 
effectiveness of model training and the accuracy of 
predictions. Initially, normalization was implemented 
by applying the MinMaxScaler technique, which 
scales the data to a range suitable for model training, 
typically between 0 and 1. Following this, this paper 
performed a train-test split, dividing the dataset into a 
training set, which accounts for approximately 65% 
of the total data, and a test set, comprising the 
remaining 35%. This division is crucial for evaluating 
the model's generalization capabilities. Additionally, 
this study carried out data cleaning by filtering out 
outliers based on geographical location and logical 
inconsistencies within the data. For instance, records 
with negative values for fare amount or passenger 
count were identified and excluded to ensure the 
quality and consistency of the dataset. Finally, to 
reduce data dimensionality and facilitate model 
training, K-Means clustering was employed. Using 
this algorithm, this paper grouped the geographical 
coordinates into seven distinct classes, streamlining 
the data structure and enhancing the model's 
efficiency in processing the information. This enables 
model to predict Taxi OD demand more accurately 
and provide robust data support for intelligent 
transportation systems and urban planning. 

The preprocessing steps were implemented using 
Python, with libraries such as Pandas for data 
manipulation, Scikit-learn for scaling and splitting the 
dataset, and Matplotlib for visualization. Figures 
illustrating the clustering results before and after 
applying K-Means provide a visual representation of 
the geographic distribution of taxi pick-up and drop-
off points. Figure 1 and Figure 2 below show the 
location visualization after K-means clustering. 
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Figure 1: Distribution of taxi pick-up locations after 
clustering (Photo/Picture credit : Original). 

 

Figure 2: Distribution of taxi drop-off locations after 
clustering (Photo/Picture credit : Original). 

2.2 Machine Learning-based 
Prediction 

This study employed several machine learning 
models to predict Taxi OD demand, including 
Decision Trees, Random Forests, and Long Short-
Term Memory networks. The models were evaluated 
using metrics such as Mean Squared Error (MSE), 
Root Mean Squared Error (RMSE), and Mean 
Absolute Error (MAE) to assess prediction accuracy 
and generalization. The models were implemented 
using popular machine learning libraries such as 
Scikit-learn for DT and Random Forest (RF), and 
TensorFlow for LSTM due to its capability to handle 
complex neural network architectures.                              

Decision Trees shown in Figure 3 is an intuitive 
and non-parametric supervised learning method used 
for both classification and regression. It splits the 
dataset into homogenous subsets recursively, creating 
a tree-like model of decisions. The core principle of 
DT is to partition the data space into regions that are 
as pure as possible with respect to the target variable. 

 
Figure 3: Schematic diagram of Decision tree 
(TPSearchTool, 2022). 

Random Forests shown in Figure 4 is an ensemble 
learning method that constructs multiple DTs and 
merges them to improve prediction accuracy and 
control overfitting. RF reduces the variance of the 
model by averaging the predictions of multiple trees, 
each trained on a different subset of the data. 

 
Figure 4: Schematic diagram of random forest algorithm 
(Lee, 2020). 

Long Short-term Memory network shown in 
Figure 5 is a type of recurrent neural network (RNN) 
capable of learning long-term dependencies. It is 
particularly suited for time series prediction and tasks 
requiring the memory of information over extended 
periods. Critical LSTM hyperparameters 
include units for the number of neurons in the LSTM 
layer, batch_size for the number of samples per 
gradient update, and epochs for the number of times 
the training dataset is fed forward and backward 
through the neural network. 
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Figure 5: Schematic diagram of Long Short-term Memory 
network (Wang, 2024). 

The paper specifies a single LSTM layer in the 
model architecture. The LSTM layer is configured 
with four neurons, which are designed to capture the 
long-term dependencies within the time series data. 
LSTM layers use the hyperbolic tangent or a similar 

function for the cell state activation. The output layer, 
which is a Dense layer with a single output 
dimension, likely uses a linear activation function 
since this is a regression task. The model was 
compiled using the MSE loss function, which is 
standard for regression problems. The Adam 
optimization algorithm was chosen for training the 
LSTM model. Adam is known for its effectiveness in 
handling different kinds of optimization problems 
and is widely used due to its adaptive learning rate 
properties. The model underwent 50 epochs of 
iterative training. Each epoch processes the entire 
dataset once. 

 

 

 
Figure 6: Fitting effect of LSTM model on training set (Photo/Picture credit : Original). 

 
Figure 7: Fitting effect of LSTM model on test set (Photo/Picture credit : Original). 
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3 RESULTS AND DISCUSSION 

The results of this study offer compelling insights into 
the predictive capabilities of the LSTM model for 
forecasting taxi OD demand in New York City. The 
model's performance was rigorously evaluated 
through a series of metrics, including MSE, RMSE, 
and MAE. The LSTM model demonstrated 
outstanding precision, with an MSE of 340.94, an 
RMSE of 18.46, and an MAE of 9.46%. These results 
were graphically represented in Figure 6 and Figure 
7, which illustrate the model's fitting effects on both 
the training and testing datasets, respectively. 

The determination coefficient (R²) of the LSTM 
model was calculated to be 0.9657, indicating that the 
model accounts for approximately 96.57% of the 
variance in taxi OD demand. This high R²  value 
underscores the model's proficiency in capturing the 
complex spatiotemporal dynamics inherent in the 
data. The LSTM model's superior performance over 
the DT and RF models is evident when comparing the 
evaluation metrics. The DT model reported an MSE 
of 6857.76, an RMSE of 82.81, and an MAE of 
50.67%, while the RF model showed an MSE of 
6280.10, an RMSE of 79.25, and an MAE of 48.59%. 
The LSTM model's significantly lower error metrics 
suggest its enhanced ability to model the intricate 
patterns of taxi demand. 

The LSTM model's success can be attributed to its 
architecture, which is adept at uncovering long-term 
dependencies within the data. This is particularly 
beneficial in the context of taxi demand forecasting, 
where understanding patterns that extend over 
extended periods is crucial. The model's ability to 
learn from historical data and adapt to the temporal 
dynamics of demand is a key factor in its predictive 
accuracy. The discussion for drawbacks of decision 
tree and random forest. 

In optimizing the LSTM model, adjustments to 
the hyperparameters, such as the sliding window size 
and the number of iterations, were made. The first 
optimization increased the number of iterations to 
100, resulting in a stable model loss and no significant 
changes in performance metrics. The second 
optimization adjusted the sliding window to 450, 
leading to a slight decrease in MSE, RMSE, and 
MAE, and a final model loss of 6.1441e-04. These 
adjustments highlight the model's sensitivity to its 
configuration and the potential for further refinement. 
Table 1 shows the complete results. 

 
 
 

Table 1: OD demand prediction results of different models. 

Method MSE RMSE MAE 
DT 357.76 19.81 13.63 
RF 373.52 26.25 7.43 
LSTM 340.94 18.46 9.46 

While this study focuses on the application of the 
LSTM model to taxi OD demand in New York City, 
it is worth noting the broader context of demand 
forecasting research. Traditional methods, such as 
time series analysis, have been eclipsed by machine 
learning approaches, which offer more nuanced 
predictions. The LSTM model's performance in this 
study aligns with the growing body of literature that 
supports the use of deep learning for time series 
forecasting, particularly in the transportation sector. 
The LSTM model is superior to RF and DT, possibly 
because LSTM, as a deep learning model, is able to 
capture long-term dependencies in time series data, 
with which OD demand prediction is often correlated. 
This ability of the LSTM model may allow it to more 
accurately capture trends in the data when making 
predictions, thus performing better on the average 
absolute error. If there are large outliers in the 
prediction error, MSE and RMSE will be greatly 
affected because they calculate the square or square 
root of the error. The sensitivity of MAE to outliers is 
low. Also, LSTM may overfit during training, which 
will also result in lower performance on the test set 
than RF and DT. 

The findings of this study lead to the conclusion 
that the LSTM model is a robust tool for predicting 
taxi OD demand. Its high R² value and low error 
metrics indicate a strong correlation between the 
model's predictions and actual demand patterns. The 
model's ability to generalize, as evidenced by its 
performance on the test dataset, suggests that it can 
be effectively applied to other cities and traffic 
scenarios with potential adjustments. 

Future research should consider expanding the 
LSTM model's application to diverse urban 
environments and integrating real-time data streams 
for enhanced predictive power. Additionally, 
exploring the model's performance in a multi-modal 
transportation context could provide a more 
comprehensive understanding of urban mobility 
patterns. The integration of real-time data sources, 
such as traffic flow monitoring, weather changes, and 
major events, could further enhance the model's 
adaptability and accuracy in dynamic traffic 
conditions. Moreover, the potential for combining the 
LSTM model with other machine learning algorithms 
to create hybrid models should not be overlooked. 
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Such hybrid models could leverage the strengths of 
multiple algorithms to improve predictive 
performance. The exploration of these avenues could 
pave the way for more sophisticated and accurate 
demand forecasting tools that can support smarter 
urban transportation planning and management. 

4 CONCLUSIONS 

In conclusion, this study effectively harnesses the 
power of the LSTM model to predict the Origin-
Destination demand for taxis in New York City, 
presenting a notable contribution to the field of urban 
transportation planning. The primary methodology 
used in this study encompasses the utilization of 
sophisticated data analytics techniques and machine 
learning algorithms, culminating in the development 
of an LSTM model that surpasses other models in 
terms of predictive accuracy and generalization 
capability. The results not only validate the LSTM 
model's superior predictive prowess but also highlight 
its ability to capture intricate demand patterns, as 
evidenced by a high R² of 0.9657. 

While the study has made significant strides, it 
also acknowledges the limitations that accompany 
such an advanced model. Among these is the model's 
sensitivity to hyperparameter tuning, which can be a 
complex process requiring extensive computational 
resources and expertise. Additionally, the model's 
performance is contingent upon access to large 
volumes of high-quality historical data, which may 
not always be readily available or up-to-date. In the 
future, efforts will be directed towards improving the 
model's generalizability, enabling it to perform 
effectively across a variety of urban settings with 
diverse traffic patterns and characteristics. This will 
involve testing the model in different cities and under 
various traffic conditions to ensure its predictions 
remain reliable and accurate. 
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