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Abstract: This study investigates improving the performance of genetic algorithms applied to the solution space using
machine learning and knowledge transfer. Genetic algorithms are powerful techniques that have been suc-
cessfully used to explore various problem spaces, such as solution space, program space, and heuristic space.
Recently, researchers have found that transferring knowledge between these spaces can significantly enhance
the quality of solutions and reduce computational costs. While this transfer of knowledge works well in pro-
gram and heuristic spaces due to their indirect nature, it is more challenging in the solution space. This is
because each problem in the solution space has its own unique representation, making it difficult to trans-
fer knowledge effectively. This study explores how machine learning, specifically using classifiers, can help
bridge this gap and facilitate knowledge transfer between different solution spaces. We train two classifiers,
namely, Support Vector Machines and Random Forests, using data consisting of fitness landscape measures
from a source genetic algorithm to determine if a chromosome is a local optimum or not. This information
is then used during the execution of a target genetic algorithm to identify and remove potential local optima
from the population. We tested this approach on two challenging optimization problems: the examination
timetabling problem (ETP) and the capacitated vehicle routing problem (CVRP). Our results show that this
method provides statistically significant improvements over genetic algorithms that do not use knowledge
transfer, both in terms of solution quality and computational efficiency. Moreover, we found that random
forests were more effective than support vector machines for transferring knowledge between the source and
target genetic algorithms.

1 INTRODUCTION

Transfer learning involves transferring knowledge
from a source optimization algorithm to a target opti-
mization algorithm with the aim of improvements in
the target domain (Zhuang et al., 2020). The benefits
include improved quality of solutions in the source
domain, reduced computational cost and a reduction
in data needed to solve the problem in the target do-
main. This study focuses on transfer learning in evo-
lutionary algorithms, in particular genetic algorithms

While transfer learning has been explored in ge-
netic algorithms searching the program (Russell and
Pillay, 2023), heuristic (Scheepers and Pillay, 2021),
and design (Nyathi and Pillay, 2021) spaces, its ap-
plication to genetic algorithms exploring the solution
space for single-objective combinatorial optimization
problems remains largely unexplored. The primary

a https://orcid.org/0000-0002-3504-3700
b https://orcid.org/0000-0003-3902-5582

challenge lies in determining an appropriate mapping
from the source to the target domain, as chromosome
representations in the solution space are problem-
specific and not problem-domain independent, unlike
in program, heuristic, and design spaces.

This study presents a new domain-independent
approach for addressing the challenge of trans-
ferring knowledge between genetic algorithms us-
ing machine learning. Specifically, two classifiers,
namely, Support Vector Machines (SVM) and Ran-
dom Forests (RF) are trained to identify local op-
tima based on fitness landscape measures such as
ruggedness, neutrality, evolvability, and searchabil-
ity collected from the source genetic algorithm. Once
trained, these classifiers are applied to the target ge-
netic algorithm to identify and remove potential lo-
cal optima from its population. The approach was
tested on two complex problems: the examination
timetabling problem (ETP) and the capacitated ve-
hicle routing problem (CVRP). The results indicate
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that this knowledge transfer method improves perfor-
mance compared to standard genetic algorithms, with
Random Forests outperforming Support Vector Ma-
chines in both problem domains.

The key contribution of this study is:

• A machine learning approach for transfer learning
in genetic algorithms exploring the solution space.

Although we focused on combinatorial optimiza-
tion in this paper, the approach can also be applied to
continuous optimization and machine learning prob-
lems. This research can also be seen as contributing to
the growing effort by the computational intelligence
community to use machine learning to improve the
performance of optimization techniques.

2 BACKGROUND AND RELATED
WORK

This section provides brief overview of genetic al-
gorithms, transfer learning, fitness landscape analy-
sis and machine learning techniques for classification.
A discussion on some of the works that have investi-
gated transfer learning in evolutionary algorithms is
also provided.

2.1 Genetic Algorithms

Genetic algorithms (GAs) are optimization methods
inspired by the principles of natural selection (Gold-
berg, 1989). They work by evolving a population of
candidate solutions (which are represented as chro-
mosomes) by iteratively applying the processes of
selection, crossover (recombination), and mutation.
These processes allow for the candidate solutions to
be progressively refined until an optimal or satisfac-
tory result is achieved. For a detailed overview of
GAs, see (Goldberg, 1989). In this study, we used
the generational GA as outlined in Algorithm 1.

2.2 Transfer Learning

Transfer learning (TL) is a technique that involves
transferring knowledge gained from one domain or
task (the source) to improve performance in a differ-
ent but related domain or task (the target) (Zhuang
et al., 2020). This technique is particularly use-
ful when dealing with limited data in the target do-
main, as it leverages the knowledge acquired from the
source domain to enhance the learning process.

In optimization, transfer learning can help by
transferring learned features, patterns, or models from
one optimization problem to another, with the goal

Algorithm 1: Pseudocode for a genetic algorithm.
Data: Population size N
Result: Individual with the highest fitness as

the best solution
Generate a population of individuals of size
N;

Calculate the fitness of each individual in the
population;

while termination criterion is not met do
Select one or two individuals with the

best fitness using a selection method;
Generate new individuals for the next

generation by applying genetic operators
to previously selected individuals;

Evaluate each new individual to
determine its fitness;

Replace all the individuals in the old
population with the new individuals;

end
return Individual with the highest fitness

of improving the convergence times and quality of
the solutions obtained by the optimization algorithms.
TL has been successfully and widely applied in fields
such as image recognition, natural language process-
ing, and more recently, in various optimization al-
gorithms. For an in-depth discussion of TL and its
diverse applications, please refer to (Zhuang et al.,
2020).

2.3 Fitness Landscape Analysis

Fitness landscape analysis (FLA) is an important
technique for understanding how optimization algo-
rithms, such as GAs, solve complex combinatorial op-
timization problems (Zou et al., 2022). The concept,
introduced by Sewall Wright in 1932 (Wright et al.,
1932) and formalized by Stadler (Stadler, 2002), can
be described as follows:

(X ,N, f ) (1)

Where, X represents the set of potential solutions
from the decision variable space, N is the neighbor-
hood operator that defines the relationships between
solutions, and f is a function that maps solutions to
their fitness values.

In general, FLA helps visualize and understand
how different solutions relate to their fitness values.
Each point in the fitness landscape corresponds to a
potential solution, with its height reflecting the so-
lution’s quality. By analyzing this landscape, one
can identify key features such as local and global op-
tima, basins of attraction, and the overall structure of
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the solution space. It also provides insights into the
landscape’s ruggedness, neutrality, searchability, and
evolvability (Zou et al., 2022). Some examples of fit-
ness landscapes are shown in Figure 1.

Figure 1: Some examples of fitness landscapes (Hassan and
Pillay, 2022).

2.4 Machine Learning Techniques for
Classification

Classification is a fundamental task in machine learn-
ing where the goal is to predict the categorical label
of new observations based on training data. Among
the various techniques used for classification, Support
Vector Machines (SVMs) (Cervantes et al., 2020),
(Sen et al., 2020) and Random Forests (RFs) (Schon-
lau and Zou, 2020) are two widely adopted methods
due to their effectiveness and versatility.

2.4.1 Support Vector Machines (SVMs)

Support Vector Machines (SVMs) are a power-
ful classification technique originally developed by
Vladimir Vapnik and his colleagues (Cortes, 1995).
The core idea of SVMs is to find a hyperplane that
best separates different classes in the feature space.
For linearly separable data, this involves identifying a
hyperplane that maximizes the margin—the distance
between the hyperplane and the nearest data points
from each class, known as support vectors. Mathe-
matically, this can be formulated as a quadratic opti-
mization problem:

minimize
1
2
∥w∥2 (2)

subject to yi(wT xi +b)≥ 1 for all i (3)
where w represents the weights, xi are the feature vec-
tors, yi are the class labels, and b is the bias term.

For non-linearly separable data, SVMs use kernel
functions to transform the input space into a higher-
dimensional space where a linear separation is pos-
sible. Common kernel functions include the polyno-
mial kernel and the radial basis function (RBF) ker-
nel:

K(xi,x j) = exp
(
−
∥xi − x j∥2

2σ2

)
(4)

where σ is a parameter that controls the spread of the
kernel function.

SVMs are well-regarded for their generalization
capabilities and have been successfully applied in var-
ious domains such as image recognition, text classifi-
cation, and bioinformatics (Cortes, 1995).

2.4.2 Random Forests (RFs)

Random Forests (RFs) are an ensemble learning
method that combines multiple decision trees to im-
prove classification performance (Breiman and Cut-
ler, 2001). A RF constructs multiple decision trees
during training and outputs the class that is the mode
of the classes (for classification) or the mean predic-
tion (for regression) of the individual trees. Each
tree is built from a bootstrap sample of the training
data, and at each split in the tree, a random subset
of features is considered, which introduces additional
randomness and improves the model’s generalization
ability.

The algorithm can be summarized as follows:

1. Draw B bootstrap samples from the training data.
2. For each bootstrap sample, grow a decision tree

using a random subset of features at each node.
3. Aggregate the predictions of all trees to make the

final classification decision.

The ensemble approach of RFs helps to reduce
variance and prevent overfitting, making them highly
effective for a wide range of classification tasks, in-
cluding those involving large and complex datasets
(Breiman and Cutler, 2001).

2.5 Transfer Learning in Genetic
Algorithms

As mentioned earlier, this paper investigates the appli-
cation of transfer learning in genetic algorithms ex-
ploring the solution space for single-objective com-
binatorial optimization. Specifically, it employs ma-
chine learning, using classification to transfer knowl-
edge between source and target genetic algorithms.
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Previous research on transfer learning in evolution-
ary algorithms has predominantly focused on multi-
objective optimization.

Jiang et al. (Jiang et al., 2020b) introduced
MMTL-DMOEA, a memory-driven manifold transfer
learning-based evolutionary algorithm for dynamic
multi-objective optimization. By integrating memory
mechanisms with manifold transfer learning, their al-
gorithm significantly enhanced solution quality and
reduced computational costs. Jiang et al. (Jiang
et al., 2020a) proposed KT-DMOEA, a knee point-
based imbalanced transfer learning method that trans-
fers predicted knee points to reduce computational
cost, leading to substantial improvements in solution
quality.

Liu and Wang (Liu and Wang, 2021) combined a
population prediction strategy (PPS) with a transfer
learning-based dynamic multi-objective evolutionary
algorithm (Tr-DMOEA) to address dynamic multi-
objective optimization problems (DMOPs). This
hybrid approach outperformed both PPS and Tr-
DMOEA by effectively utilizing historical informa-
tion to initialize populations in new environments.

Jiang et al. (Jiang et al., 2017) presented a frame-
work integrating transfer learning with evolutionary
algorithms to tackle DMOPs. By generating an ini-
tial population pool from past experiences and ap-
plying population-based evolutionary algorithms, this
approach notably enhanced the performance of sev-
eral well-known algorithms on benchmark functions.

Huang et al. (Huang et al., 2023) intro-
duced a transfer learning-based evolutionary algo-
rithm (TLEA) framework for multi-objective opti-
mization problems. This framework decomposes
complex problems into manageable subtasks, opti-
mizing them collaboratively through transfer learn-
ing, and demonstrated superior performance on
benchmark problems.

Zhang et al. (Zhang et al., 2023) transferred
knowledge from an evolutionary algorithm-neural
network hybrid solving low-order problems to the hy-
brid solving high-order functions, utilizing the optima
found by the evolutionary algorithm and neural net-
work model for low-order problems.

Unlike previous works, this study transfers knowl-
edge from a genetic algorithm exploring the solu-
tion space for combinatorial optimization. A classi-
fier is employed to learn and identify local optima in
the source genetic algorithm, which are then removed
from the population in the target genetic algorithm.

3 PROPOSED GA APPROACH
FOR KNOWLEDGE TRANSFER

This section discusses the proposed GA approach
used to solve the ETP and CVRP. We start by dis-
cussing the two problem domains and this is then
followed by a discussion of how the GA was im-
plemented. Finally, we explain how knowledge was
transferred between the GAs to improve performance.

3.1 Problem Domains

This study considered two combinatorial optimization
problems, namely, the examination timetabling prob-
lem (ETP) and the capacitated vehicle routing prob-
lem (CVRP).

3.1.1 Examination Timetabling Problem (ETP)

The ETP is a well-known optimization problem that
involves scheduling exams within specified periods
and rooms while strictly adhering to hard constraints
and minimizing violations of soft constraints. In this
study, we used the ITC 2007 examination timetabling
benchmark set. The hard constraints for the bench-
mark set include:

• Ensuring that no student is scheduled to take more
than one exam at the same time.

• Ensuring that the number of students assigned to
a venue does not exceed its capacity.

• Guaranteeing that the duration of an exam fits
within the allocated period.

• Respecting period-related constraints, such as
scheduling one exam before another in the se-
quence.

• Satisfying room-related constraints, such as as-
signing exams to specific venues.

The soft constraints for the benchmark set include:

• Minimizing instances where students have to take
two exams back-to-back or on the same day.

• Reducing the clustering of exams to ensure a more
even distribution for students.

• Avoiding the scheduling of exams with mixed du-
rations in the same period.

• Preferentially scheduling larger exams later in the
timetable and minimizing the use of specific peri-
ods and rooms.

A feasible timetable is one that satisfies all hard
constraints. The objective value of a timetable is
calculated as the total cost of the violated soft con-
straints, as shown in Equation (5).
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OETP =
nsoft

∑
i=1

Csoft(i) ·S(i) (5)

where, nsoft represents the total number of soft con-
straints, and S(i) represents the number of violations
for soft constraint i.

The goal is to create a timetable that violates no
hard constraints while minimizing the number of soft
constraint violations. The characteristics of the data
instances in the ITC 2007 benchmark set are shown
in Table 1.

Table 1: Characteristics of the ITC2007 ETP benchmark
instances.

Instance Exams Students Periods Conflict Density Rooms

1 607 7891 54 0.05 7
2 870 12743 40 0.01 49
3 934 16439 36 0.03 48
4 273 5045 21 0.15 1
5 1018 9253 42 0.009 3
6 242 7909 16 0.06 8
7 1096 14676 80 0.02 15
8 598 7718 80 0.05 8
9 169 655 25 0.08 3

10 214 1577 32 0.05 48
11 934 16439 26 0.03 40
12 78 1653 12 0.18 50

Conflict Density: number of conflicts / (number of exams)

3.1.2 Capacitated Vehicle Routing Problem
(CVRP)

The CVRP on the other hand involves finding the
most cost-effective set of routes for delivering goods
to a group of customers while meeting strict con-
straints. In the study, we used the Christofides and
Golden benchmark sets. The hard constraints associ-
ated with these benchmarks include:

• The vehicle must start its route at the depot and
return to the depot after completing all deliveries.

• The total demand on a route must not exceed the
vehicle’s capacity.

• Each customer must be visited exactly once on a
route.

• The duration of any route must not exceed a spec-
ified global maximum.

The main objective is to minimize the total cost
of the route set. The objective value of a solution is
calculated by summing the costs of all routes, which
include the distances between customers and the ser-
vice time for each customer, as shown in Equation (6).

OCVRP =
n

∑
i=1

n

∑
j=1

di j +
n

∑
i=1

ti (6)

where n is the total number of customers.

The characteristics of the data instances in the
Golden and Christofides benchmark sets are provided
in Table 2 and Table 3 respectively.

Table 2: Characteristics of the Golden Benchmark set.
Instances Capacity Customers Max. length Service time Vehicles

1 550 240 650 0 10
2 700 320 900 0 10
3 900 400 1200 0 10
4 1000 480 1600 0 12
5 900 200 1800 0 5
6 900 280 1500 0 8
7 900 360 1300 0 9
8 900 440 1200 0 11
9 1000 255 ∞ 0 14

10 1000 323 ∞ 0 16
11 1000 399 ∞ 0 18
12 1000 482 ∞ 0 19
13 1000 252 ∞ 0 27
14 1000 320 ∞ 0 30
15 1000 396 ∞ 0 34
16 1000 480 ∞ 0 38
17 200 240 ∞ 0 22
18 200 300 ∞ 0 22
19 200 360 ∞ 0 33
20 200 420 ∞ 0 41

Table 3: Characteristics of the Christofides Benchmark set.
Instances Capacity Customers Max. length Service time Vehicles

1 160 51 ∞ 0 5
2 140 76 ∞ 0 10
3 200 101 ∞ 0 8
4 200 151 ∞ 0 12
5 200 200 ∞ 0 17
6 160 51 200 10 6
7 140 76 160 10 11
8 200 101 230 10 9
9 200 151 200 10 14

10 200 200 200 10 18
11 200 121 ∞ 0 7
12 200 101 ∞ 0 10
13 200 121 720 50 11
14 200 101 1040 90 11

3.2 Genetic Algorithm for ETP and
CVRP

The GA used in this study is a generational algo-
rithm where offspring replace parents in each genera-
tion (Goldberg, 1989). The pseudocode for the GA is
shown in Algorithm 1.

3.2.1 Chromosome Representation

For the ETP, a chromosome typically represents an
exam schedule, specifying the time slots and rooms
assigned to each exam. In this study, the chromosome
was encoded as an integer sequence with the value for
each gene determined using a simple encoding func-
tion. The length of the chromosome was equal to the
number of exams to be scheduled and these exams
were arranged in ascending order within the chromo-
some. For example, the following chromosome ’10
219 374 362 226 221’ represents an exam schedule
with 6 exams. The first exam is assigned an integer
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value of 10, the second exam a value of 219, the third
exam a value of 374 and so on. The integer values are
obtained by using a simple encoding function shown
in Equation 7 below:

Int Value = rIndex×numPeriods+ tsIndex (7)

where:

• rIndex refers to the index of the most suitable
room for the exam,

• numPeriods represents the total number of avail-
able periods, and

• tsIndex indicates the most appropriate period for
the exam.

The decoding process is as follows: each integer value
in the chromosome is decoded into its corresponding
room and period using Equation 8 and 9. The room
index (rIndex) is calculated by dividing the integer
by the total number of periods, and the time slot index
(tsIndex) is derived from the remainder of this divi-
sion. This decoding allows us to accurately extract
the room and period for each exam, thus reconstruct-
ing the exam schedule from the chromosome.

rIndex =

⌊
Int Value

numPeriods

⌋
(8)

tsIndex = Int Value mod numPeriods (9)
For the Capacitated Vehicle Routing Problem

(CVRP), the chromosome consisted of a vector of in-
tegers of length N, representing the number of cus-
tomers to be served. Each gene in the vector corre-
sponded to a given customer. The sequence of genes
in the vector determined the service order of cus-
tomers, and the set of customers that made up each
route was limited by the capacity of the vehicles. That
is, each customer was assigned to a specific vehicle
and when the vehicle’s capacity was exceeded, a new
route was started. The chromosome structure used is
shown in Figure 2.

Figure 2: Solution encoding scheme using a vector of inte-
gers.

3.2.2 Population Initialization

We used two different approaches to generate the ini-
tial population for the the ETP and CVRP. For the
ETP, the initial population is generated randomly.

However, we implemented a special method called
hard constraint solver, whose sole purpose was to gen-
erate random initial solutions that did not violate any
hard constraints for the problem instances under con-
sideration. This approach helped to significantly re-
duce the runtime for the GA. The pseudocode for the
hard constraint solver is shown in Algorithm 2.

Algorithm 2: Hard Constraint Solver.
Data: List of exams, available rooms,

available periods
Result: Solution satisfying hard constraints
Begin with an empty scheduling solution;
Randomize the order of exams;
while there are unscheduled exams do

Choose an unscheduled exam;
Verify its scheduling feasibility without

violating constraints, prioritizing based
on coincidence and precedence
constraints;

Identify suitable periods and rooms for
scheduling the exam;

Allocate the exam to a period and room;
Update the solution with the scheduled

exam;
end
return The updated scheduling solution

The classical and widely used Clarke-Wright
(Lysgaard, 1997) heuristic method was used to gen-
erate the initial population for the CVRP.

3.2.3 Fitness Evaluation

We used Equation (5) and Equation (6) as fitness
functions for the ETP and CVRP respectively.

3.2.4 Selection Method

Tournament selection (Yadav and Sohal, 2017) was
used to select parents for the genetic operators.

3.2.5 Genetic Operators

We used the two-point crossover operator for the ETP.
This approach was favored for its simplicity in im-
plementation and its ability to introduce increased
diversity among the offspring compared to the one-
point crossover. Additionally, we used the partially-
mapped crossover (PMX) and order crossover (OX)
operators (Ahmed et al., 2023) for the CVRP. For mu-
tation, we used the following operators: Swap, Two-
opt, scramble, inversion and displacement operators.
More information on these mutation operators can be
found in (Daglayan and Karakaya, 2016).

ECTA 2024 - 16th International Conference on Evolutionary Computation Theory and Applications

368



3.2.6 Replacement Strategy

Although elitism is a commonly used strategy in GAs,
it was not used in this studyin orderto maintain focus
on the effects of machine learning-based knowledge
transfer. Future work will explore the incorporation
of elitism to examine its impact on preserving the best
individuals and whether it enhances the GA’s ability
to learn local optima more effectively.

3.2.7 Termination Criteria

For both problems, we set the termination criteria to
be the maximum number of generations. We experi-
mented with various values for this and the best values
are shown in Table 4.

3.3 Knowledge Transfer in the GA
Solution Space

This section describes how knowledge about the local
optima in the solution space was transferred between
the source GA and the target GA.

3.3.1 Fitness Landscape Measures

The following fitness landscape measures: autocorre-
lation, correlation length, neutrality, and evolvability
were used to classify whether a particular element of
the population was a local optimum or not. These
measures were selected because they provide single
numerical values for each solution in the population,
thereby making it easier to quantify each solution in
terms its fitness landscape measures.

• Autocorrelation and Correlation Length (Brandt,
2001), (Merkuryeva and Bolshakovs, 2011):
These measures were used to assess the rugged-
ness of the fitness landscape. Ruggedness refers
to the variability or “roughness” of the fitness
landscape. High ruggedness implies the pres-
ence of many local optima, making it challeng-
ing for optimization algorithms to find the global
optimum. Generally, autocorrelation examines
the similarity between values at different points,
while correlation length measures the distance
over which points are correlated. A rapidly
decaying autocorrelation function suggests high
ruggedness and a high likelihood of local optima.
Conversely, a short correlation length implies a
rugged landscape with frequent local optima, in-
dicating that a solution in such a region is likely
near a local optimum.

• Neutrality: Neutrality refers to the extent to which
small changes in a solution do not result in

changes in fitness. In a neutral landscape, many
neighboring solutions have the same or similar fit-
ness. The Average Neutrality Ratio (ANR) (Van-
neschi et al., 2006) was used to quantify neutral-
ity. The neutrality ratio of a point is the proportion
of neutral neighbors to the total neighbors of that
point, and ANR is the average of these neutrality
ratios across the landscape. Higher ANR values
indicate a more neutral landscape.

• Evolvability: Evolvability reflects the ability of
a population to improve its fitness over genera-
tions. A highly evolvable landscape allows the
algorithm to navigate towards higher fitness re-
gions efficiently. Evolvability was measured us-
ing the Accumulated Escape Probability (AEP)
(Lu et al., 2011), derived from the Fitness Prob-
ability Change (FPC), which is the mean of the
average escape probabilities from different points.
Higher AEP values indicate a more evolvable
landscape.
Local optima are identified by comparing a solu-

tion’s fitness with the fitness of its neighboring so-
lutions within the fitness landscape. A solution is
deemed to be a local optimum if its fitness is lower(in
our case) than that of all its neighbors. This approach
helps the GA avoid being trapped in suboptimal re-
gions of the search space. While this method may
resemble hill-climbing, our focus was on detecting
and eliminating such local optima through the learn-
ing process, rather than performing traditional hill-
climbing.

3.3.2 Source Genetic Algorithm

During execution of the source GA, a dataset was cre-
ated. The dataset was built by collecting solutions
found in the final population at different stages of the
algorithm’s run. We specifically looked at solutions
found after 10, 15, 20, 25, 30, 35, 40, and 45 genera-
tions. Each data instance in this dataset represented a
single solution. It consisted of two parts as shown in
Figure 3:

• Features: A set of independent variable values de-
rived from fitness landscape measures. These fea-
tures described the characteristics of the solution.

• Target: A corresponding target value indicating
whether the solution is a local optimum (yes or
no). We used the following binary values (1 for
local optimum, 0 for not).

3.3.3 Model Training and Testing

The machine learning algorithms (SVM and RF) were
trained using the data obtained after executing the
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Figure 3: Example of a dataset with FLA features.

source Genetic Algorithm (GA) (refer to 3.3.2). The
dataset was then split into training and testing sets
with a 80-20 ratio. The training set was used to train
the models, while the testing set was used to evalu-
ate their performance. Min-Max Normalization was
applied to ensure that all input variables contributed
equally to the model training. Grid search (Sun et al.,
2021) was used to find the optimal hyperparameters
both SVM and RF. The best hyperparameter values
for the two classifiers are listed in Table 4.

Model Evaluation. The performance of the models
was assessed using the following metrics:

• Accuracy. The proportion of correctly predicted
instances out of the total instances.

• Precision. The ratio of true positive predictions
to the total predicted positives.

• Recall (Sensitivity or True Positive Rate). The
ratio of true positive predictions to the total actual
positives. It shows the model’s ability to find all
the positive instances.

• F1 Score. The harmonic mean of precision and
recall, used to balance the trade-off between the
two when they are not equally important

The next section describes how the models produced
were used in the target genetic algorithm.

3.3.4 Target Genetic Algorithm

Knowledge from the source GA was transferred to
the target GA in the form of two classifier mod-
els with each model consisting of FLA10, FLA15,
FLA20, FLA25, FLA30, FLA35, FLA40 and FLA45
sub models. If a solution was determined to be a lo-
cal optimum, it was subsequently eliminated from the
population. This was done in order to allow the tar-
get GA to look for better solutions by avoiding those
solutions that were likely to lead to a local optima. In
addition, by eliminating these solutions from the pop-
ulation, our hope was that the convergence time for
the target GA would be improved as well.

4 EXPERIMENTAL SETUP

This section provides an overview of the experimental
setup used to assess the effectiveness of the GA-FLA.

4.1 Source and Target Problem
Instances

The problem instances in Section 3.1 were divided
into source and target sets. The GA was executed for
each problem instance in the source set, generating
data over 10, 15, 20, 25, 30, 35, 40 and 45 genera-
tions for training the classification models.

For the ETP, we opted for a source domain set
comprising instances that were computationally less
challenging to solve:

• Source set instances: 4, 8, 11, 12
• Target set instances: 1, 2, 3, 5, 6, 7, 9, 10

For the CVRP, we implemented a simple K-Means
clustering method (Sinaga and Yang, 2020) on the
benchmark datasets to group instances sharing com-
mon characteristics. This strategy was preferred over
random selection, as our initial trials showed that
random selection frequently resulted in poor results.
Subsequently, we selected representative instances
from each cluster to bolster the source domain.

• Golden
– Source set instances: 1, 4, 8, 12, 18, 20
– Target set instances: 2, 3, 5, 6, 7, 9, 10, 11, 13,

14, 15, 16, 17, 19
• Christofides

– Source set instances: 3, 4, 9, 10, 13
– Target set instances: 1, 2, 5, 6, 7, 11, 14

4.2 Experiments

In order to evaluate the performance of GA-FLA, the
following two experiments were conducted:

• Experiment 1: GA-FLA Comparison with Data
from Different Generations - Compares the per-
formance of the GA-FLA with the classifier learn-
ing with data from 10, 15, 20, 25, 30, 35, 40,
and 45 generations. We also include an ensem-
ble model which intelligently combines all the sub
models(i.e. 10, 15, 20, 25, 30, 35, 40, and 45 mod-
els) using majority voting.

• Experiment 2: GA and GA-FLA Performance
Comparison - This experiment compares the per-
formance of the genetic algorithm without trans-
fer learning (GA) to the that of the genetic algo-
rithm with transfer learning (GA-FLA ) for both
the problem domains.
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Due to the stochastic nature of the algorithms 30 runs,
each with a different random number generator seed
is performed for each problem instance for both the
source and target GAs.

It is important to note that fairness in computa-
tional budget was ensured by using the same number
of generations (50) for both the standard GA and the
GA-FLA. While additional machine learning-based
steps were introduced for GA-FLA, the overall eval-
uation time included this training and classification
process. Therefore, the reported times reflect the ac-
tual computational cost of both approaches fairly.

4.3 Statistical Tests

We conducted hypothesis testing using the Z statistic
to assess whether there was a significant difference in
the performance between GA-FLA and a basic GA. A
confidence level of 95% (i.e., p-values below 0.05 are
statistically significant) was used for both statistical
tests.

4.4 GA and Classifier Parameters

The GA approach was implemented using the ECJ
(Evolutionary Computation in Java) toolkit (Luke,
1998) while the Weka (Bouckaert et al., 2016) toolkit
was employed for the SVM and RF implementations.

To identify the most effective parameter values,
we adopted an empirical approach involving system-
atic experimentation and iterative adjustment of pa-
rameters. The best parameter values obtained during
the fine-tuning process are listed in Table 4.

Table 4: Best parameter values.
Technique Parameter Value
Parameter Value

GA Population Size 100
Crossover Rate 0.8
Mutation Rate 0.1

Selection Operator Tournament
Tournament Size 3

Crossover Operator Two-Point / OX
Mutation Operator Two-Opt
Max. Generations 50

SVM Kernel Type RBF (Radial Basis Function)
Cost 1.0

Gamma 0.01
Cache Size 100

RF Number of Trees 100
Maximum Depth 0 (unlimited)

Minimum Size for Split 2

4.5 Technical Specifications

The the source and target GAs were executed on
a computing system with the following hardware

configuration: An Intel Core i7 octa-core proces-
sor (clocked at 2.8 GHz), 16GB RAM, NVidia
GeforceRTX 2080 GPU and a 500GB SSD.

5 RESULTS AND DISCUSSION

This section compares the performance of the GA-
FLA on the two experiments outlined in section 4.2.

5.1 Experiment 1: GA-FLA
Comparison with Data from
Different Generations

This section compares the performance of GA-FLA
using classifiers trained with data from different
stages of the source GA. While data was collected at
multiple intervals, specifically at generations 10, 15,
20, 25, 30, 35, 40, and 45, only the results from the
best-performing generations are shown in tables 5 to
10 for clarity and relevance.

Table 5: GA-FLA Comparison with RF for ETP.
Instance Gen30 Ensemble

Best Average Time(secs) Best Average Time(secs)
1 4928 5401 2300 4792 5120 2300
2 482 512 2300 432 490 2300
3 7930 8359 2300 7831 8210 2300
5 2647 2901 3600 2602 2890 3600
6 25926 26870 2300 25730 26640 2300
7 4060 4410 3600 3922 4200 3600
9 972 1080 2300 965 1010 2300
10 13390 14214 3600 13222 14080 3600

Table 6: GA-FLA Comparison with SVM for ETP.
Instance Gen30 Ensemble

Best Average Time(secs) Best Average Time(secs)
1 5170 5860 2300 4930 5310 2300
2 572 599 2300 490 540 2300
3 8190 8730 2300 8002 8480 2300
5 2710 3050 3600 2678 2950 3600
6 26065 26941 2300 25901 26872 2300
7 4100 4560 3600 4042 4431 3600
9 985 1092 2300 974 1040 2300
10 13572 14650 3600 13410 14360 3600

The best objective value and average objective
value over the 30 runs is listed. It is evident from the
tables that the ensemble classifier outperforms the in-
dividual classifiers. This was found to be statistically
significant at a 95% level of confidence for the ETP.
However, for the CVRP, the results were found to be
significant only at the 90% level of confidence. There
is also no difference in computational cost despite the
improvement in performance. These results also indi-
cate that the RF classifier produced better results than
the SVM classifier.

While the maximum number of generations was
set to 50, which may appear conservative for large
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Table 7: GA-FLA Comparison with RF for CVRP Golden
Data Set.

Instance Gen30 Ensemble
Best Average Time(secs) Best Average Time(secs)

2 8591.5 8810.6 372 8560.1 8790.3 372
3 11508.6 12090.3 406 11445.7 11847.5 406
5 7909.5 8330.7 367 7742.5 8120.4 367
6 8872.9 9005.3 405 8765.8 8944.0 405
7 11064.2 11428.1 509 10922.3 11260.2 509
9 710.7 795.2 468 685.4 750.1 468

10 799.8 880.6 490 741.6 830.5 490
11 1103.4 1198.1 578 1024.9 1130.3 578
13 1005.2 1150.7 703 939.1 970.2 703
14 1240.2 1301.4 512 1190.8 1242.8 512
15 1529.8 1608.4 950 1465.7 1550.1 950
16 1689.2 1790.5 1081 1670.2 1710.8 1081
17 1065.3 1102.1 641 920.5 973.2 641
19 1540.5 1608.7 394 1490.2 1580.3 394

Table 8: GA-FLA Comparison with SVM for CVRP
Golden Data Set.

Instance Gen30 Ensemble
Best Average Time (secs) Best Average Time (secs)

2 8760.3 8970.1 372 8630.2 8891.2 372
3 12029.5 12292.7 406 12009.4 12200.9 406
5 8220.6 8430.2 367 8040.1 8310.9 367
6 9001.4 9371.2 405 8937.7 9230.4 405
7 11640.1 11822.5 509 11368.6 11629.8 509
9 790.5 810.4 468 710.6 770.3 468

11 1105.4 1203.6 578 1073.5 1150.7 578
13 1022.1 1085.4 703 957.3 990.6 703
14 1303.8 1392.7 512 1243.3 1347 512
15 1594.3 1640.2 950 1530.6 1597.1 950
16 1684.6 1765.2 1081 1680.3 1740.8 1081
17 1104.6 1197.5 641 933.0 1003.2 641
19 1646.2 1699.5 394 1500.1 1621.6 394

Table 9: GA-FLA Comparison with RF for CVRP
Christofides Data Set.

Instance Gen30 Ensemble
Best Average Time (secs) Best Average Time (secs)

1 651.7 694.1 100 630.7 660.3 100
2 850.3 870.2 270 847.5 864.1 270
5 1420.5 1543.2 430 1399.2 1520.8 430
6 846.8 870.4 220 790.7 843.1 220
7 965.2 970.3 286 960.4 970.1 286
8 920.6 1080.4 301 911.3 1042.1 301

11 1280.8 1450.3 343 1224.4 1408.4 343
12 970.4 1022.1 323 949.2 1000.5 323
14 960.5 990.2 318 928.9 967.1 318

Table 10: GA-FLA Comparison with SVM for CVRP
Christofides Data Set.

Instance Gen30 Ensemble
Best Average Time (secs) Best Average Time (secs)

1 680.2 690.3 100 650.4 667.3 100
2 855.4 890.6 270 852.1 870.5 270
5 1550.1 1599.5 430 1432.4 1499.7 430
6 840.1 877.3 220 822.2 869.4 220
7 970.4 995.7 286 968.3 985.4 286
8 930.1 1010.2 301 915.7 999.6 301

11 1170.5 1255.8 343 1120.6 1245.2 343
12 910.9 1090.1 323 899.4 995.3 323
14 972.4 1008.3 318 962.8 980.5 318

problem instances, this choice was made to assess
the GA’s ability to find better solutions within a lim-
ited computational budget. The results indicate that
the GA-FLA effectively reached better optima within
this constraint. Future work will explore running the

algorithms with higher generation limits to evaluate
whether additional improvements can be achieved.

5.2 Experiment 2: GA and GA-FLA
Performance Comparison

This section compares the performance of the GA,
i.e. the GA without transfer learning to the GA-FLA
with the best classifier, namely, the ensemble, from
the previous section. Tables 11, 12 and 13 compare
the best results obtained by both GA and GA-FLA
for the ETP, CVRP Golden and CVRP Christofides
datasets respectively. The percentage of improvement
(∆(%)), if any, is calculated using Eq. (10).

∆(%) =
bestGA −bestGA−FLA

bestGA
∗100 (10)

Where bestGA is the objective value of the best solu-
tion obtained by the GA approach and bestGA−FLA is
the objective value of the best solution obtained by the
GA-FLA approach

The results indicate that GA-FLA outperforms
GA without an increase in computational cost for both
problems. This result was found to be significant at
the 95% level of significance

Table 11: GA vs. GA-FLA with RF for ETP.
Instance GA GA-FLA ∆(%)

Best Average Time(secs) Best Average Time(secs)) Best
1 6770 7430 2600 4792 5120 2300 29.2
2 793 990 2600 432 490 2300 45.5
3 8769 9320 2600 7831 8210 2300 10.7
5 3413 3802 4000 2602 2890 3600 23.8
6 28330 30450 2600 25730 26640 2300 9.2
7 5535 7020 4000 3822 4200 3600 30.9
9 1092 1580 2600 965 1010 2300 11.6

10 14053 16860 4000 13222 14080 3600 5.9

Table 12: GA vs. GA-FLA with RF for CVRP Golden Data
Set.

Instance GA GA-FLA ∆(%)

Best Average Time(secs) Best Average Time(secs)) Best
2 9560.9 9822.8 975 8560.1 8790.3 372 10.5
3 12251.5 12508.6 992 11445.7 11847.5 406 6.6
5 9005.7 9339.2 696 7742.5 8120.4 367 14
6 9937.7 10154.9 861 8765.8 9154.9 405 11.8
7 12368.6 13629.8 987 10922.3 11860.2 509 11.7
9 1009.0 1115.3 883 685.4 750.1 468 32
10 1001.5 1020.8 889 741.6 830.5 490 26
11 1373.5 1459.5 1017 1024.9 1130.3 578 25.4
13 1342.7 1440.5 1197 939.1 970.2 703 30.1
14 1597.2 1626.5 924 1190.8 1242.8 512 25.4
15 1881.1 1927.4 1130 1465.7 1550.1 950 22.1
16 1761.5 1809.7 1362 1670.2 1710.8 1081 5.2
17 1533.0 1596.8 881 920.5 973.2 641 40
19 1852.2 1921.1 532 1490.2 1580.3 394 19.5

In order to understand the performance improve-
ment achieved through transfer learning, we analyzed
the progression of fitness values for a problem in-
stance from some benchmark sets. Figure 4 and Fig-
ure 5 shows how the fitness values of the two GAs
evolved over generations for the elected instances
from the datasets.
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Table 13: GA vs. GA-FLA with RF for CVRP Christofides
Data Set.

Instance GA GA-FLA ∆(%)

Best Average Time(secs) Best Average Time(secs)) Best
1 788.1 861.4 129 630.7 660.3 100 20
2 963.7 993.7 288 847.5 864.1 270 12
5 1997.3 2061.4 496 1399.2 1520.8 430 30
6 896.1 1008.7 247 790.7 843.1 220 11.8
7 1097.9 1165.8 304 960.4 970.1 286 12.5
8 1366.4 1475.8 325 911.3 1042.1 301 33.3

11 2124.8 2263.1 367 1224.4 1408.4 343 42.4
12 1204.7 1289.4 352 949.2 1000.5 323 21.2
14 1252.2 1321.1 332 928.9 967.1 318 25.8

Figure 4: Comparison of fitness progression of the GAs for
ETP ITC2007 dataset instance 6.

Figure 5: Comparison of fitness progression of the GAs for
Golden dataset instance 14.

From the two figures it is evident that the GA-FLA
reaches a better optimum quicker than the GA, i.e.,
the use of the knowledge transfer approach has en-
abled the GA to move to an area of the search space
with better solutions more quickly.

6 CONCLUSION

The main aim of this study was to investigate the
transfer of knowledge in GAs exploring the solu-
tion space. While the concept of knowledge trans-
fer has been effectively employed in GAs exploring
the heuristic, program and design spaces, this has
not been investigated for genetic algorithms explor-
ing the solution space for single objective discrete op-

timization. The reason for this is the challenge of
the solution space consisting of different representa-
tions for different problem instances. In this study
we turned to machine learning to overcome this chal-
lenge. A classifier was trained on data consisting of
fitness landscape measures from the source GA. This
trained classifier was then used in the during the exe-
cution of the target GA to eliminate solutions lead-
ing to local optima from the population. The pro-
posed approach was evaluated for discrete optimisa-
tion on a benchmark set for the ETP and two bench-
mark sets for the CVRP. For all problem instances for
both problems the GA with knowledge transfer (GA-
FLA) was found to outperform the genetic algorithm
without knowledge transfer (GA) with a reduction in
computational cost. The reason for this performance
was that the GA-FLA was also able to move to an area
with better optima quicker than the GA as it avoided
areas likely to lead to poor results. The study also re-
vealed that using an ensemble of classifiers, trained
on data from different subsets of generations in the
source GA, was the most effective. Furthermore, RF
were found to perform better than SVM. Overall, the
results showed that the incorporation of knowledge
transfer mechanisms in a GA results in improvements
not only in the quality of solutions obtained, but also
the convergence time.

Future work will explore two main areas: (1) the
incorporation of elitism into the genetic algorithm
to investigate whether preserving the best individuals
enhances the ability to find global optima, and (2) the
use of a higher number of generations to assess if fur-
ther improvements can be achieved in both solution
quality and convergence time.
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