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Abstract: We will use the open data utilized in Severson’s research. This data consists of cycle data obtained from
repeated charging and discharging of lithium-ion batteries, which will be analyzed.One issue is that the amount
of cycle data is limited, which could lead to inadequate training. To address this problem, we have adopted a
method that extracts multiple data points from a single battery dataset, thereby improving prediction accuracy.
In this experiment, we compared data from 100 charge-discharge cycles with data from just 1 charge-discharge
cycle.

1 INTRODUCTION

I am surrounded by a wide range of portable elec-
tronic devices, such as smartphones, all of which de-
pend on lithium-ion batteries (LIBs). LIBs have been
in use for about 25 years and are now a common
component in our daily lives due to their high energy
and power density, long lifespan, cost-effectiveness,
and reliable safety compared to other commercially
available batteries. Despite these advantages, the fre-
quency of accidents involving LIBs has been increas-
ing in recent years. To ensure their safe and reliable
use in electric vehicles and other devices, it is essen-
tial to monitor various parameters including voltage,
temperature, state of charge (SOC), state of health
(SOH), remaining capacity, and cycle life. While
parameters like voltage and temperature can be di-
rectly measured with sensors, others such as SOC and
SOH require estimation through algorithms based on
measurement characteristics. Predicting battery cy-
cle life is crucial, but traditional methods for doing
so are complex, relying on physics-based models and
needing to account for a wide range of operating con-
ditions and device variability, even among batteries
from the same manufacturer. Recently, there has been
increasing interest in using machine learning-based
methods to predict battery behavior. These methods
offer the potential for accurate early predictions of
battery cycle life, which not only speeds up the vali-
dation of new manufacturing processes but also helps
end-users detect performance degradation and replace
failing batteries in time.(Schmush, 2018).

2 OBJECTIVE

In the prediction of the lifespan of lithium-ion batter-
ies (LIBs), methods include not only simple empirical
approaches but also physical models that hypothesize
degradation phenomena and numerically solve elec-
trochemical reaction equations. More recently, data-
driven models that use machine learning to predict
lifespan based on charge-discharge cycle data have
emerged. The data-driven method that I am particu-
larly focused on has been highly regarded for its abil-
ity to estimate LIB capacity, remaining life, and cycle
life. However, this method is based on limited empir-
ical or mechanical test data and does not take degra-
dation modes into account.

In Severson’s study, they predicted LIB cycle life
using data from the first 100 cycles, during which
degradation is minimal, achieving a very low test er-
ror of 9.1%. This research demonstrates the potential
of data-driven approaches in predicting the behavior
of complex nonlinear systems. However, a limitation
of this method is that only one piece of data is gen-
erated per battery, leading to a shortage of data. Ad-
ditionally, when predicting the performance of a new
battery, it requires 100 charge-discharge cycles before
a prediction can be made, which is another issue.

Therefore, my goal is to develop a model that can
achieve more accurate predictions with fewer charge-
discharge cycles by training on single-cycle data and
extracting multiple data points from a single bat-
tery, rather than relying on multiple cycles.(Severson,
2019)

418
Fujitaki, Y. and Kobayashi, H.
Development of a Lithium-Ion Battery Lifetime Prediction Model Using Deep Learning for Short-Term Learning.
DOI: 10.5220/0013072100003822
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 21st International Conference on Informatics in Control, Automation and Robotics (ICINCO 2024) - Volume 2, pages 418-422
ISBN: 978-989-758-717-7; ISSN: 2184-2809
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.



3 DATA SPLITTING METHOD

First, the data obtained from charging and discharging
a single battery includes values such as voltage during
charging and discharging, as well as discharge capac-
ity. This data is recorded over the course of hundreds
of charge-discharge cycles. Data collection continues
until the battery’s maximum capacity falls below 80%
of its initial value, indicating significant degradation.
The data obtained in this way is often used for predict-
ing battery life and evaluating performance. By ana-
lyzing the changes in voltage and capacity for each
cycle, degradation trends can be identified.

However, instead of using this dataset as-is, em-
ploying a data splitting method is crucial for efficient
analysis. By appropriately splitting the large amount
of data obtained from a single battery, we can increase
the diversity of data used for training machine learn-
ing models, resulting in more accurate predictions.

Next, the data is divided by each cycle. For exam-
ple, when using cycle data from a battery with a lifes-
pan of 800 cycles, the data from the first cycle is used
as the training data(Figure1). At this time, the corre-
sponding target data for the first cycle is ”800.” This
means that the battery is still capable of 800 more
charge-discharge cycles.

Figure 1: Data Splitting Method.

Similarly, when using the data from the second cy-
cle as training data, the corresponding target data is
”799.” This indicates that at the second cycle, the bat-
tery has 799 charge-discharge cycles remaining. In
this way, for each cycle’s data, the remaining number
of charge-discharge cycles (i.e., the remaining cycle
life) is set as the target data, and the model is trained
accordingly.

By using this method, the data obtained from
a single battery can be split into multiple training

datasets, increasing the overall amount of data. As
a result, the accuracy of the machine learning model
is expected to improve.

4 LEARNING MODELS

In this study, we utilized a one-dimensional convo-
lutional neural network (1D-CNN) to analyze bat-
tery charge-discharge cycle data. The 1D-CNN is
particularly effective for processing time-series data
due to its ability to perform convolutional operations
along a single dimension.(Figure2) This characteris-
tic makes it especially suitable for handling sequential
data, such as the voltage, current, temperature, and ca-
pacity measurements taken during battery cycles. Un-
like traditional two-dimensional convolutional neural
networks (2D-CNN), which are designed for spatial
data, the 1D-CNN focuses on extracting features from
a linear sequence of data points(Pelletier et al., 2019).

Figure 2: 1D-CNN.

The dataset for each cycle is represented as a two-
dimensional array, where one dimension corresponds
to the time steps within the cycle, and the other di-
mension represents various features related to the bat-
tery’s performance. By applying convolutional oper-
ations across the feature dimension, the 1D-CNN ef-
fectively captures and learns significant patterns that
are indicative of battery degradation and remaining
lifespan. This approach allows the model to iden-
tify and understand the temporal dynamics and trends
within the charge-discharge cycles.Table 1 lists the
parameters of the 1D-CNN model used in this study.

Table 1: Model Architecture and Parameters.

Layer (type) Param #
Conv1D (64 filters, kernel size=50) 19,264

MaxPooling1D (pool size=2) 0
Conv1D (64 filters, kernel size=50) 204,864

MaxPooling1D (pool size=2) 0
Flatten 0

Dense (512 units, ReLU) 918,016
Dense (1 unit, Linear) 513

Development of a Lithium-Ion Battery Lifetime Prediction Model Using Deep Learning for Short-Term Learning

419



CNNs, in general, are renowned for their ability
to learn hierarchical features from data. They ex-
cel in recognizing patterns through convolutional lay-
ers, which apply filters to the input data to detect lo-
cal features, followed by pooling layers that reduce
the dimensionality while retaining critical informa-
tion. Fully connected layers then integrate these fea-
tures to perform the final predictive tasks. Although
CNNs are widely used in image processing, their
adaptation to one-dimensional data sequences proves
valuable for predicting battery performance, as they
can capture temporal relationships and nuances in the
data(Simonyan and Zisserman, 2014).

In summary, by employing a 1D-CNN, our re-
search aims to leverage the model’s capability to pro-
cess and analyze time-series data from battery cycles,
thereby enhancing the accuracy of predictions related
to battery degradation and lifespan. This methodol-
ogy offers a promising avenue for improving the re-
liability and efficiency of battery performance assess-
ments.

5 EXPERIMENT

In this study, we used the dataset from the ”Data-
driven prediction of battery cycle life before capac-
ity degradation” (Schmush, 2018). This dataset con-
sists of data from 136 commercial lithium-ion batter-
ies that were cycled between 150 and 2,300 times un-
der 72 different fast-charging conditions, totaling ap-
proximately 96,700 cycles. The dataset includes 15
variables, such as voltage, charge capacity, discharge
capacity, charge energy, discharge energy, and inter-
nal battery temperature(Table 2). The batteries are

Table 2: Data set variables.

Data Point Test Time
Date Time Step Time
Step Index Cycle Index
Current Voltage
Charge Capacity Charge Energy
Discharge Capacity Discharge Energy
dV/dt Temperature
fff Internal Resistance

lithium iron phosphate (LFP)/graphite cells manufac-
tured by A123 Systems (APR18650M1A), cycled us-
ing a 48-channel Alvin LBT potentiometer in a forced
convection temperature chamber set at 30°C. The pur-
pose of this study was to optimize fast charging. All
cells were charged using a one-step or two-step fast
charging policy in the format of ”C1(Q1)-C2.” Charg-
ing was conducted at 1C CC-CV up to 80% SOC,

with upper and lower cutoff voltages set at 3.6V and
2.0V, respectively. All cells were discharged at 4C.

The dataset is divided into three batches, each
based on the ”batch date” and containing approxi-
mately 48 cells per batch. Temperature was measured
using a T-type thermocouple; however, it is important
to note that measurement accuracy varied, and con-
tact may have been lost during cycling. Internal re-
sistance was measured during charging at 80% SOC
using ±3.6C pulses.

Additionally, the data used in this study was ob-
tained from the publicly available Severson dataset,
which contains data from 127 batteries with lifespans
ranging from 450 to 1,325 cycles. The dataset in-
cludes six attributes: voltage, charge capacity, dis-
charge capacity, charge energy, discharge energy, and
internal battery temperature. For training purposes,
data from the first 100 cycles of each battery was
used, yielding a total of 12,700 data points (100 cy-
cles × 127 batteries).

6 COMPARISON

To evaluate the proposed method, we compared it
with the results of a previous study on battery life pre-
diction. In that previous research, one data point was
obtained from each battery using data from cycles 1
to 100. The learning model employed was a CNN, as
in the current study.

In the proposed method, a 1D CNN was used,
but when training on data from cycles 1 to 100, the
convolutional operations on the features remained un-
changed. However, since the current data consists of
two-dimensional data with time steps and 100 cycles,
a 2D CNN was utilized. In the next section, we will
compare the prediction accuracy and data volume be-
tween the previous study and the proposed method.

7 RESULTS

For training data, 84 batteries were used, with 100 cy-
cles of data collected from each battery, resulting in a
total of 8,400 data points. The remaining 43 batter-
ies were used for validation data, yielding a total of
4,300 data points from 100 cycles of data each.The
current study(Figure 3) and the previous study(Figure
4) show graphs with the actual measured life cycles
on the x-axis and the predicted life cycles on the y-
axis.The closer the results are to the red line in the
graph, the better. However, due to the difference in
the amount of data between this study and the previ-
ous one, it may be difficult to discern from the graph.
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Figure 3: Current.

Figure 4: Previous.

To evaluate the battery life prediction results, we
used the Mean Absolute Percentage Error (MAPE).

MAPE =
1
n

n

∑
i=1

∣∣∣∣yi − ŷi

yi

∣∣∣∣×100 (1)

MAPE is an effective metric for assessing prediction
accuracy, as it expresses the error between actual val-
ues and predicted values as a percentage, allowing
us to understand the overall error trend.The results of
the proposed method(table 3) are compared with the
predictions from the previous research described ear-
lier(table 4).

Table 3: Current.

Model 1D-CNN
Number of training samples 8400

Number of charge-discharge cycles 1
Number of features 6

MAPE 8.43%

By examining both the tables, it is evident that the
proposed method in this study provides better accu-
racy compared to the previous approach.

Table 4: Previous.

Model 2D-CNN
Number of training samples 84

Number of charge-discharge cycles 100
Number of features 6

MAPE 17.40%

8 CONCLUSION

The results confirm that the proposed method of ex-
tracting multiple data points from a single battery cy-
cle effectively increases the amount of training data.
This approach also enables high-accuracy predictions
for the lifespan of new batteries, even with a lim-
ited number of charge-discharge cycles. Furthermore,
the improved prediction accuracy compared to con-
ventional methods suggests that this technique could
be highly useful in practical battery management and
lifespan prediction. However, despite the improve-
ment in accuracy, there is still a noticeable gap be-
tween the predicted and actual battery life, as shown
in the graphs.

9 PERSPECTIVES

In future research, we will focus on developing a
hybrid model that combines data-driven approaches
with physics-based models that numerically solve
electrochemical reaction equations, taking battery
degradation mechanisms into account. In this study,
we recognized the limitations of using only a data-
driven approach, which led us to consider integrating
a model-based approach. This hybrid model will in-
corporate predictions from the physics-based model
as auxiliary data, feeding them back into the learn-
ing process of the machine learning model. Since
many studies on model-based lifetime prediction es-
timate changes with each charge-discharge cycle, we
are exploring methods that align with the single-cycle
charge-discharge data proposed in this study. By
doing so, we aim to leverage the strengths of both
the physical and machine learning models to achieve
greater accuracy and broaden the application of bat-
tery lifetime prediction.
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