
Extending DEMO Action Rule Specifications’ Syntax in a Low Code
Platform Based Municipality Hearing System Implementation

David Aveiro1,2,3 a, Vı́tor Freitas1,3 b, Duarte Pinto1,2 c, Valentim Caires1,2 d and
Dulce Pacheco1,2 e

1ARDITI - Regional Agency for the Development of Research, Technology and Innovation, 9020-105 Funchal, Portugal
2NOVA-LINCS, Universidade NOVA de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal

3Faculty of Exact Sciences and Engineering, University of Madeira, Caminho da Penteada 9020-105 Funchal, Portugal

Keywords: DEMO, Action Rules, Business Rules, Low-Code Platform.

Abstract: The current official Design and Engineering Methodology for Organizations (DEMO) Action Rules Specifi-
cation are unnecessarily complex and ambiguous. These specifications are also incomplete, lacking sufficient
ontological details required to derive a fully functional implementation; and complex by containing mostly
unneeded specifications. Additionally, this paper details our progress in developing a metamodel for DEMO’s
Action Model, using an Extended Backus-Naur Form (EBNF) syntax. These advancements were driven by
our experience in implementing a system for the case study on a no-code/low-code platform to support a local
Municipality Hearings Process. This implementation was done on a Low-Code platform supporting the direct
execution of DEMO Models that is being developed by our team. Among our contributions are the models and
patterns generated from this implementation, which provide reusable solutions that can be adopted by other
low-code platforms using a similar approach.

1 INTRODUCTION

A clear specification and implementation of business
rules is essential for effective processes within en-
terprises. The Design and Engineering Methodology
for Organizations (DEMO) claims to have a thorough
and structured approach to modeling organizations,
capturing their essence (Dietz, 2022). However, The
official DEMO Action Rules Syntax has been criti-
cized for its complexity and unclear syntax, which
complicate understanding and hinder smooth imple-
mentation (Aveiro and Freitas, 2023b). In response
to these issues, this paper introduces enhancements
to DEMO’s Action Meta-Model, aiming to provide a
more robust framework for representing action rules
and supporting their implementation in large-scale
systems in a concrete low-code platform being devel-
oped by our team. We iteratively tested and validated
our proposal within a real case of a Hearings Pro-

a https://orcid.org/0000-0001-6453-3648
b https://orcid.org/0009-0002-0667-5749
c https://orcid.org/0000-0002-8451-5727
d https://orcid.org/0000-0002-0871-7212
e https://orcid.org/0000-0002-3983-434X

cess of a local municipality. The proposed improve-
ments to the DEMO Action Rules syntax are articu-
lated using Extended Backus-Naur Form (EBNF) no-
tation (ISO/IEC 14977:1996, 1996) and were guided
by practical requirements encountered during the de-
velopment of a low-code platform based on DEMO.
Through iterative design, implementation, and rigor-
ous testing, we refined the syntax in an attempt to im-
prove the ontological accuracy and implementation
comprehensiveness of the DEMO Action Rules. In
Section 2 we outline the Research Context of the pa-
per focused on relevant theories, tools, related work
and research methodology. In Section 3 we explain
the real use case of the Municipality Hearing Sys-
tem and present the relevant process and fact models.
Section 4 details our proposal for extending DEMO’s
Action Rule Specification Syntax, illustrating it with
concrete cases. Finally, in Section 5 we discuss our
conclusions and future work.

Aveiro, D., Freitas, V., Pinto, D., Caires, V. and Pacheco, D.
Extending DEMO Action Rule Specifications’ Syntax in a Low Code Platform Based Municipality Hearing System Implementation.
DOI: 10.5220/0013068800003838
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 16th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2024) - Volume 2: KEOD, pages 243-251
ISBN: 978-989-758-716-0; ISSN: 2184-3228
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

243



2 RESEARCH CONTEXT

In this section we first present the DEMO Theories
and the DEMO Models, followed by a more detailed
focus on the Action Model, which is the focus of this
paper. We then proceed to the DEMO based Low-
Code Platform being developed, from which the im-
provements proposed to the Action Rules derive. Fi-
nally, we present some relevant Related Work fol-
lowed by the Research Method used.

2.1 DEMO Theories and Models

According to Jan Dietz in his Enterprise Ontology
work, organizations can be seen as a network of ac-
tors (people or roles) who engage in commitments
and follow a structured series of actions known as the
Complete Transaction Pattern (CTP). This pattern in-
cludes a collection of actions like requesting, promis-
ing, executing, declaring, and accepting and also han-
dles the exceptions to the general flow as in rejec-
tions or declines or steps for cancelling commitments
if needed. Actors keep track of their responsibili-
ties through an “actor cycle”, where they constantly
check their ”agenda” or list of tasks (Dietz and Mul-
der, 2020). With Design and Engineering Methodol-
ogy for Organizations (DEMO), Dietz frames organi-
zations in four key perspectives in the so-called as-
pect models and proceeds to detail how each can be
represented. The Cooperation Model (CM) illustrates
the coordination within the organization, detailing the
roles involved in transactions and the actions they ini-
tiate or perform, the facts they handle, and how differ-
ent roles wait or depend on each other. The Process
Model (PM) describes the workflows and interactions
that are triggered by the various actions, showing how
different actors or roles coordinate. The Fact Model
(FM) serves as the semantic model where the types of
facts are defined, such as different types of products,
properties, and attributes, along with the rules to gov-
erning their existence. Lastly, the Action Model (AM)
provides operational guidance by outlining the rules
for task execution, including triggers, conditions, and
how to respond in each step (Dietz and Mulder, 2020).

2.2 Action Model

Since the focus of this paper is on DEMO’s Action
Model, we now present its fundamentals in more de-
tail. DEMO Action Rules Specification (ARS) are
the representation of the Action Model, and sets the
guidelines for managing events to which actors must
react, or business rules as well as work instructions
regarding the execution of production acts (Dietz,

2022). The standard syntax of ARS has evolved over
time, originally starting with a pseudo-algorithmic
language and currently formalized in EBNF. The
representation of an action rule follows the format
<event part> <assess part> <response part>. The
event part (event or collection of concurrent events)
is what triggers the rule. The assess part defines the
validity claims that are being ascertained, and can be
divided into three kinds: the claims to rightness, sin-
cerity, and truth. The response part defines how to
react or comply to the event if the conditions (defined
in the ”assess” part) are met or not. Actors can stray
from the rule if they believe it is acceptable, but they
are also held accountable for it (Dietz, 2022).

These ARS specifications have been argued to be
somewhat ambiguous in (Aveiro and Freitas, 2023b)
because, despite using a structured English syntax, it
does so in a way that lacks some of the necessary on-
tological details needed as the basis for the implemen-
tation of an information system, e.g., the lack of a
method to deal with sets of actions or operators. In
(Aveiro and Freitas, 2023b) it is also argued that the
ARS bring about an unneeded complexity in the as-
sess part of the rule by including many extraneous
details about three different forms of evaluation: fair-
ness, sincerity, and truth. It is mentioned in (Perin-
forma, 2015), on one hand, that action rules written
with the grammar of ”structured English” are incredi-
bly simple, but, on the other hand, it is also stated that
some board members appeared perplexed when an ac-
tion rule with this grammar was presented to them.
This was our situation too in real-life projects we have
been conducting, thus the new alternative of ARS syn-
tax we have been building up. In (Aveiro and Freitas,
2023b), many more detailed arguments can be found
that reinforce our stance.

2.3 DISME Low-Code Platform

The Dynamic Information Systems Modeller and
Executer (DISME) is an open-source no-code/low-
code platform, specifically designed using the DEMO
methodology (Freitas et al., 2022). A distinct advan-
tage of the DISME, besides being based on DEMO, is
its adherence to the principles of the Adaptive Object
Model (AOM) and the Type Square pattern (Yoder
et al., 2001) (Yoder and Johnson, 2002) (Aveiro and
Pinto, 2015). This design allows DISME to immedi-
ately implement changes in real-time in the produc-
tion environment, reflecting them in the operational
system without the typical need for generating static
code, compiling, or deployment, which many con-
ventional low-code platforms require (Freitas et al.,
2022).

KEOD 2024 - 16th International Conference on Knowledge Engineering and Ontology Development

244



The DISME platform is composed of two main
functional interfaces, 1) the system modeler, where
users can define and parameterize the system using
diagrams, models forms and tables and 2) the system
executor that processes the specifications created by
the users at the modeller and runs it (Freitas et al.,
2022).

The system modeller features several key com-
ponents: 1) diagram editor that allows the diagram-
matic specification of DEMO’s PM and FM; 2) the
system parametrization that enables the definition of
users, roles, and other related elements alongside the
PM and FM; 3) the action rules manager where users
can specify, in a graphical way, using an interface
based in Blockly 1, all details of our variant of ARS
of DEMO’s AM 4) the form manager to design lay-
out and other details needed for all user input actions;
and 5) the dynamic query manager which supports the
creation of queries using filters and operators to meet
data processing needs (Freitas et al., 2022).

The system executor has two main functions: a
dashboard that allows users to interact with the sys-
tem and execute processes according to their roles and
permissions, and the execution engine which controls
the flow of the processes according to the current state
of the system’s world, user interactions and runtime
interpretation of the ARS (Freitas et al., 2022).

2.4 Related Work

As far as we know, besides our approach, there’s only
another research line ((Krouwel et al., 2024)) explor-
ing the bridge between thorough enterprise models
and implementation of low-code platform-based sys-
tems, where multiple enterprise modeling languages
are referenced as possible source such as: 4EM
(Lantow et al., 2022), ArchiMate2, BPMN3, MEMO
(Frank, 1999), SBVR4, UML5, among others. But
all these alternatives either only describe a part of the
enterprise or they lack formal semantics (Krouwel,
2023). Furthermore, in (Krouwel et al., 2024), it is
claimed that, in order to be able to transform a model
to an application, the input model must 1) be com-
prehensive, 2) describe all business requirements, 3)
be consistent, and 4) have its semantics fully speci-
fied. For this to be achieved (Krouwel et al., 2024)
states that the source model must include actor roles,
products, processes, information items, and business
rules effectively, and that DEMO ontological models

1https://github.com/google/blockly
2https://www.archimatetool.com/
3https://www.omg.org/spec/BPMN/
4https://www.omg.org/spec/SBVR/
5http://www.uml.org/

are particularly effective for this purpose as they pro-
vide coherent, comprehensive, consistent, and con-
cise models of the organizational essence (Dietz and
Mulder, 2020). (Krouwel et al., 2024) also claims that
because DEMO models are both semantically rich
and well-defined, that makes them a good fit for the
needed transformation.

Regarding source models, we agree and follow the
same principles as (Krouwel et al., 2024) and, thus,
also adopt DEMO as the base language for our bridge
with low-code systems. However, we differ strongly
in the low-code implementation part. (Krouwel et al.,
2024) chose Mendix 6 as their best option and present
a proposal of a mapping from DEMO models to
Mendix elements, for the (automated) creation of a
low-code application that also intrinsically accom-
modates run-time implementation design decisions.
While in (Krouwel et al., 2024) a mapping approach
to the Mendix metamodel is followed, we opt to use
the direct execution of DEMO models, including run-
time interpretation of enriched action rule specifica-
tion by the execution engine of our platform.

Furthermore, some limitations recognized by our
fellow authors in their work and of the current of-
ficial DEMO ARS are quite alarming. Namely, re-
searchers in (Krouwel et al., 2024), while developing
their mapping, identified some significant limitations
with the DEMO metamodel as it is defined in DEMO-
SL (Dietz, 2022). As it is designed from a mod-
eling perspective rather than with an operational or
software development focus, while doing their man-
ual conversion from the models to JSON code needed
for Mendix, some elements that only served visualiza-
tion purposes were omitted, and it became necessary
to include other crucial aspects for software genera-
tion such as application names, mappings and soft-
ware primitives. Those elements along with the Op-
erational Independent Variables (OIVs) were placed
separate from the DEMO conversion in a specific de-
scriptor file. The mapping process also did not in-
clude rules for generalization and specialization of en-
tity types from the DEMO FM. While the conversion
referred to in (Krouwel et al., 2024) was taking place,
researchers also found that the mapping of Derived
Fact Specifications and ARS into Mendix was rather
complex and that the implementation of OIVs within
Medix or even software in general would translate
into a challenging labor-intensive detailing task that
had to be done, not only for each OIV independently,
but also in combinations and that, when combining
several OIVs, the problem increases in its complexity
because it was not clear whether all OIV’s could be
implemented completely independent of others.

6https://www.mendix.com/

Extending DEMO Action Rule Specifications’ Syntax in a Low Code Platform Based Municipality Hearing System Implementation

245



Summarizing, many complexities and manual
steps arise that seem to make the proposed approach
in (Krouwel et al., 2024) unfeasible for large-scale
systems. One of the problems we identify is that, al-
though our colleagues argue that developers should
not be taking implementation decisions, this ends up
happening in their proposed approach, in the many
manual steps that still need to be taken and code in-
volved in the Mendix side, and also many combina-
tions of possible OIVs that need to be configured in
runtime, occurring, partly, due to the unneeded com-
plexities we pointed out that exist in the current offi-
cial DEMO ARS. The approach we follow, which is
presented next, overcomes these limitations.

2.5 Research Method

In (Hevner et al., 2004; Hevner, 2007) A. R. Hevner
presents the Design Science Research. This Informa-
tion Systems Research paradigm is composed by a
collection of three closely related cycles of activities
and regards how a study should be viewed.

Figure 1, illustrates these three cycles. Hevner ar-
gues that these activities should always be used to-
gether in order to provide a solid design of science
research with a reliable result. In regard to the Rele-
vance Cycle in Figure 1, our research has revealed a
lack of conciseness and crucial information in the cur-
rent official syntax of Action Rules in DEMO, as well
as some degree of ambiguity (Andrade et al., 2020)
(Aveiro and Freitas, 2023b).

As a result, in the Design Cycle, in the efforts re-
ported in this paper, we continued to design and build
upon previous work of what we consider to be a more
comprehensive and complete syntax for the DEMO
action rules (Andrade et al., 2020) (Aveiro and Fre-
itas, 2023b). New improvements in the grammar took
place during the last couple of years after multiple it-
erations and thorough design, testing, and validation
of the use and comprehensiveness of the new lan-
guage elements while applying them in the DISME’s
execution engine, with the EU-Rent case, as well as
another more recent case of a neurorehabilitation in-
formation system (Aveiro et al., 2023) and the case
now presented in this paper, from a local municipal-
ity. Thus, the latest version of the ARS hereby pre-
sented, allows for an increased coverage of DEMO’s
AM in specifying thoroughly low-code based systems
for large scale and complex cases. Finally, in regard
to the Rigor Cycle, the DEMO theoretical grounding,
in itself, provides the needed support for the designed
artifact that is our latest grammar proposal.

Figure 1: Design science research cycles (Hevner, 2007).

3 THE MUNICIPALITY
HEARINGS PROCESS

The Municipality Hearing Process (MHP) involves
several steps to ensure efficient citizen engagement.
Before a hearing takes place, each Hearing Officer (an
individual or group of individuals with a position of
responsibility in specific domains inside the munic-
ipality, for example, construction licensing or water
distribution) needs to have their schedule defined.

Traditionally, each Hearing Officer has a specific
day in the week when they provide a certain num-
ber of hearings to the Citizen for them to expose their
claims. Once the scheduling is settled, the Hearing
Officer can be subject to a Hearing Request by the
Citizens.

The traditional way for this to happen is for the
Citizen to go to the municipality’s service desk and
request a hearing. The clerk will then ascertain the
need for said hearing and collect all the relevant in-
formation such as citizen identification, the process,
the subject or relevant observations. These clerks are
trained and follow a set of guidelines allowing them
to determine if a hearing should take place, or not, at a
given time for multiple reasons. For example, if a pre-
vious hearing with the same citizen/theme took place
a short time before, or that the process it pertains to is
too recent.

If a hearing request reason is deemed justifiable to
happen, the clerk fills the request form and then pro-
ceeds to print a PDF file of the accepted request to
give as proof to the citizen. The next step is to define
who (Hearing Officer) is the most relevant to attend
the citizen’s claim in a hearing. In some cases, the
claim may involve multiple departments of the mu-
nicipality and the clerk may not be able to ascertain
the correct individual on the spot, so they can ask the
Hearing Officers themselves or their assistants if they
are indeed the most qualified for that hearing before
proceeding to its scheduling.

Once the correct Hearing Officer has been identi-
fied and selected, a hearing can be scheduled, tradi-
tionally by the clerks, that will then proceed to print

KEOD 2024 - 16th International Conference on Knowledge Engineering and Ontology Development

246



another PDF file with the Hearing details and send it
to the Citizen by email or postal mail.

Between this time and the time of the hearing both
the Citizen and the Hearing Officers can request the
cancellation or rescheduling of the hearing for multi-
ple reasons, like that their schedule has changed, and
they cannot be present at the defined time slot or sim-
ply that the reason for the hearing itself is no longer
valid. Because the Hearings might take some time to
happen, it is often the case that the claim from the
citizen has already been resolved and as such, it is
normal for the Hearing Officers to check their future
scheduled hearings and identify those that no longer
are needed. If that is not the case, the hearing meeting
eventually takes place on the defined or rescheduled
date. After the meeting, the conclusions and observa-
tions are added to the process, and it’s concluded by
the Hearing Official. Besides the main process, there
are additional tasks that need to be performed, like be-
ing able to print the Hearing Officials schedule each
day as well as access the history of all hearings from
a specific citizen.

We will now present the models of the MHP us-
ing an evolved notation of DEMO’s representations
proposed in (Pinto et al., 2021) and (Gouveia et al.,
2021). An explanation of the notation follows suit.
These proposals are being used in DISME, and will
also be used in this paper due to the benefits men-
tioned hereafter. Due to space limitations, a more
detailed version of the New Process Model Repre-
sentation and New Fact Model Representation can
be accessed as an online annex (Aveiro et al., 2024),
alongside some illustrative figures from the MHP case
study.

3.1 New Process Model Representation

In (Pinto et al., 2021) an alternative Process Struc-
ture Diagram (PSD) representation for DEMO’s PM
is proposed which integrates some contents of the
CM, in order to improve the clarity, reduce the redun-
dancies and complexity and increase the transparency
in the representations allowing for a more comprehen-
sive representation of the operational flow of the orga-
nizational processes. These goals are achieved by: 1)
simplifying the nomenclature, 2) enhancing the pro-
cess model diagram and 3) moving the fine details
of the process model to a transaction description ta-
ble but allowing it all to still be easily accessible and
manageable, using the process model diagram as ref-
erence (Pinto et al., 2021). These improvements were
positively validated in (Pacheco et al., 2022b). In the
online annex (Aveiro et al., 2024), there is an exam-
ple of the Process Model Diagram, as well as a more

detailed of explanation of the goals achieved with it.

3.2 New Fact Model Representation

In (Gouveia et al., 2021), the authors address what
they consider to be a set of issues in the current official
DEMO’s FM, namely the complexity and poor us-
ability caused by the over-cluttering of shapes that are
hard to understand by those not specialized in DEMO,
the lack of flexibility to accommodate changes and
updates, and the inadequate visual representations
with multiple symbols that are not intuitive and can
lead to misinterpretation and errors. To address these
problems, in (Gouveia et al., 2021) an alternative no-
tation is proposed, with what are considered simpler
and more intuitive diagrams and tables, readable by
any stakeholders that have no knowledge of DEMO,
just business know-how. These improvements were
validated in (Pacheco et al., 2022a).

The main artifact of this new Fact Model is
the Concepts and Relationships Diagram (CRD), a
generic, global, and synthetic view of an entire
domain’s concepts while abstracting from their at-
tributes (Pacheco et al., 2022b). In the online annex
(Aveiro et al., 2024), there is an example of the CRD,
including a detailed explanation of each concept.

4 EXTENDING ACTION RULE
SPECIFICATIONS SYNTAX

Here, we introduce the key advancements in our al-
ternative DEMO ARS, as originally outlined in (An-
drade et al., 2020) and (Aveiro and Freitas, 2023b).
Because of space limitations, a complete version
of the EBNF grammar that formalizes our refined
DEMO ARS syntax can also be accessed in the online
annex mentioned in the previous section, alongside
four intricate action rules from the MHP case study,
showcasing the recent enhancements. It is impor-
tant to note that, for historical reasons, the DISME’s
database (DB) tables and concepts employ slightly
different terminology in the grammar. Specifically,
concepts and attributes from the FM are saved as en-
tity types and properties, respectively, while trans-
actions and tasks are recorded under the transac-
tion type table. This section summarizes the key in-
novations along with selected entries from the gram-
mar where necessary. Figure 3 of the annex (Aveiro
et al., 2024) presents the first example of a complex
action rule derived from the MHP case.

These innovations were introduced to address the
complexities encountered in the MHP, which our pre-
vious version of the ARS grammar could not fully

Extending DEMO Action Rule Specifications’ Syntax in a Low Code Platform Based Municipality Hearing System Implementation

247



handle. While earlier iterations were enough for
simpler applications like the neurorehabilitation case
managed within DISME. This case was presented in
(Aveiro et al., 2023) where the development efforts
of developing the needed system in a low-code and
traditional way were compared. The formal evalua-
tion of the usability of both systems was published in
(Aveiro and Freitas, 2023a) which was quite similar
for both systems, proving the capability of our ARS
syntax and of DISME in this already complex sce-
nario. However, in response to the unique challenges
presented by the MHP, we introduced innovative lan-
guage elements designed to address specific gaps in
the ARS syntax, allowing for more seamless handling
of complex scenarios.

The Figure 3 of the annex (Aveiro et al., 2024)
demonstrates the action rule associated with the exe-
cution phase of the ’Placing Hearing Request’ trans-
action. In this scenario, a municipality employee is
tasked with selecting a citizen from the database, re-
viewing prior hearing records, and completing a re-
quest form based on relevant details such as the asso-
ciated process or subject. Once the form is properly
filled out, the municipality clerk will then generate a
PDF with the request information, print it and deliver
it to the citizen. After that, a Hearing Officer must be
assigned to the request, although the assigning might
be either immediately done by the clerk or delayed
to a posterior moment and decided by someone else,
when the best option of hearing officer is decided for
that particular hearing. This last step is achieved in
the action rule using the user evaluated expression el-
ement, where the clerk can decide if he wants to as-
sign the hearing officer right away, or wants to request
a transaction for this purpose to be handled later.

One of the most relevant changes in the new ver-
sion of the grammar was renaming/adapting the ele-
ment previously known as user input to the new cre-
ate instance. This happened because a created in-
stance of a certain entity type might obtain their fact
values from things other than inputs from a form
(the only possibility in the previous version). Now,
in this action, the system will prompt the user for
input through a form, that is, for the user to input
some data, if there are specified form facts (previously
known as properties) for this action. The new concept
of derived facts introduced in this work allows for
automatic value assignments, effectively incorporat-
ing DEMO’s framework of derived fact specifications
(Dietz, 2022), which had not been included in earlier
versions of DISME and something our colleagues in
(Krouwel et al., 2024) were struggling with, as previ-
ously mentioned. In Figure 4 of the annex we can find
a more complex derived fact including a compute ex-

pression. If there are no form facts specified, but there
are derived facts, the action will run automatically by
the system’s engine without user intervention.

Other very relevant additions to the grammar,
which can be seen right at the beginning of Figure 3 of
the annex (Aveiro et al., 2024), are the elements: con-
text variable, which serves a similar function as local
variables in a function in a programming language;
and the possibility of specifying that the selectable
options to be made available in a certain form fact
input must come from a query executed at runtime
(which might accept parameters or not, e.g., a con-
text variable). In the particular case of this example,
the citizen is set as a context variable at the start, and
can then be used, not only to query previous hearing
requests that he has made in the past, but also to auto-
matically derive its value into the respective form fact
needed in the Placing Hearing Request transaction.

In some situations one will want to save in a cer-
tain generated instance, a reference to the person who
executed a certain action/created a certain instance,
e.g., the concrete admin staff processing the hearing
request. This is the reason for the new element exe-
cuting user, which can also be seen in Figure 3 of the
annex (Aveiro et al., 2024).

The term element was also the target of a rele-
vant change: term = constant — value — property
— query — compute expression — context variable
— executing role — executing user. Namely, the
last three elements are new. This allows even greater
reusability and componentization of the different ele-
ments of the syntax especially thanks to the introduc-
tion of the element context variable. In fact, this is the
key new element in our grammar that, together with
the use of dynamic queries with parameters, allows
solving, at design time, many types of complexities
our colleagues faced in (Krouwel et al., 2024). This
is a quite traditional and important construct needed
in specifying business logic, most of the time buried
in the code of some common programming language.
As presented in (Aveiro and Freitas, 2023b) the term
element is one of the key elements in our grammar
that allow modularization of and integration of differ-
ent system elements and logic. We bring to attention
the fact that following the AOM principle (Yoder and
Johnson, 2002) all elements of our ”programs” speci-
fied in DEMO ARS are objects stored in the DISME’s
DB. This allows a huge capacity of reuse and also de-
pendency detection and dynamic impact analysis of
potential changes in process logic or data structure or
value types. The introduction of the context variable
element brings a positive increase in these capacities.

In conclusion, we developed a new set of ele-
ments to address a common requirement in many en-

KEOD 2024 - 16th International Conference on Knowledge Engineering and Ontology Development

248



terprises - the ability to create and manage service
slots, whether scheduled by clients or internal collab-
orators.

Figure 2: Action Rule - Create Hearing Slots.

This new set of elements composes a new ac-
tion type: create schedule slots = scheduling record
slot records, that will serve to automatically create
time slots based on a scheduling record entity type, as
can be seen in the new element scheduling record =
entity type responsible user start date start time
end date end time weekday duration slot count.
This entity type must be specified in the system and
will be used here to set which of its properties holds
the information about specific scheduling properties
that are needed to create time slots. The slot records
entity type must also be specified in the system and
will be used to set in which properties the informa-
tion about the specific time slots created should be
stored, as can be seen in the new element slot records
= entity type schedule reference slot number day
start time end time {additional fact}. In case we
have other properties belonging to the specified slot
records entity type that aren’t specific to the slot
records fundamental elements, that we want to spec-
ify a value for, we also have a new element addi-
tional fact = property “=” term — property value.
As scheduling functionalities are crucial in many
business types, this kind of action and the elements
following below were devised to facilitate the spec-
ification of scheduling properties and execution of
scheduling mechanisms. Several of these properties
were inspired by the proficient online scheduling ser-
vice Appointlet7.

In Figure 2 we can see the usage of this new action
type in the context of the MHP. Here we can see the
matching of the scheduling properties in full effect.
In the scheduling record input of the action block, af-

7https://www.appointlet.com

ter selecting the Schedule Block internal entity type
that contains the information about the scheduling
that needs to be made, previously inserted by the user
in a create instance action, the matching is made in-
dividually for each scheduling property. This way, we
now know in which entity type and in which proper-
ties we can get the information needed for generating
the scheduling’s slots, that is, the start date, end date,
duration and so on. Next, in order to generate the
schedule slot instances, one needs to know the type of
these entities. That, alongside other important infor-
mation, is specified in the schedule slot input of the
action block, as can be seen in Figure 2. After select-
ing the Hearing Slot entity type of which instances
will be created to store the generated scheduling slots,
matching is made again for the fundamental proper-
ties of a schedule slot, which include, for example,
the day, start time and end time. By matching these
fundamental properties with the chosen entity type’s
properties, the system is able to automatically gen-
erate the schedule slots and store each of these fun-
damental properties on the system’s entity instances.
Furthermore, as the Hearing Slot entity type contains
more properties that need their value set other than the
fundamental properties of a scheduling slot, we define
how those additional facts should have their value de-
fined in the last input of this schedule slot block.

5 CONCLUSIONS AND FUTURE
WORK

This paper presents key findings from our collabora-
tion with a local municipality, where we developed
a system to streamline the Hearings Process using
DISME. This applied research project led to the re-
alization that we needed to improve and extend our
already evolved grammar of DEMO’s Action Model,
one of the main contributions of the reported work.
Our implementation of DEMO’s Action Model for
the Hearings Process brought new elements that di-
rectly addressed the complexities unique to managing
citizen requests and officer availability. This specific
approach allowed us to translate intricate workflows
into a richer Action Rule Syntax (ARS), which could
be validated and adjusted by municipal staff without
the need for deep technical knowledge. The project’s
success highlights the potential for DEMO’s frame-
work to significantly improve productivity and usabil-
ity in local government systems. In response to the
unique needs of the municipal Hearings Process, we
incorporated advanced programming constructs such
as conditional logic (if-then-else), complex arithmetic
operations, and dynamic queries with parameters.

Extending DEMO Action Rule Specifications’ Syntax in a Low Code Platform Based Municipality Hearing System Implementation

249



These additions enabled the system to handle flexible
scheduling requests and context-sensitive data man-
agement, making it adaptable to the varying demands
of the local administration. One could argue that what
we are doing with DEMO’s ARS is complex and al-
most amounts to programming at a similar level as
other languages. However, what we are aiming to
offer is different and at a much higher level: a way
to visually specify complex processes and flow logic
in the most technologically neutral and user-friendly
way possible. In fact, if one looks at life before com-
puters, human and paper based information systems
were already performing all these complex process
logic and flow operations, albeit in a very slow way,
and the ”programming logic” was imbued in the pro-
cesses. With our approach, by using a visual and
block-based interface that eliminates the risk of syn-
tactic errors and allows dynamic semantic, and even
pragmatic validations with runtime and production
data, thanks to the flexibility provided by Blockly, we
expect that we will be able to bring a lot of power back
to the business users, as citizen developers, if not for
all kinds of software systems (not reasonable or feasi-
ble), at least for a good amount of typical information
systems.

The other contribution is the conceptual models of
the Process and Facts of the MHP process, which con-
stitutes a generic pattern that might be used for other
similar ends in other public institutions, with a sim-
ilar process and information to manage. Some rele-
vant aspects of this model are the nuances of: splitting
the request for the hearing from the scheduling of the
hearing itself, while taking into account the historical
record of hearings of requesting citizens; and flexible
functionalities for rescheduling hearings and manag-
ing officers’ hearing slots. The municipality currently
uses a Commercial-Off-The-Shelf software solution
for managing scheduling, which is expensive and not
flexible to accommodate this and other nuances of the
process that need to be supported in order to achieve
higher operational efficiency in the use of the officer’s
time. When they saw the potentialities of DISME in a
public presentation, they immediately approached us
to test our platform to implement a better system for
their purposes. This implementation of the low-code
based system to support the MHP is not yet finished,
as some use cases are still missing to be specified.
Completing this specification and making it available
to the academic, industrial and scientific communi-
ties is one of the other lines of future work. Looking
ahead, we plan to refine the DEMO Action Model fur-
ther by collaborating with municipal staff and public
administration experts. Our focus will be on enhanc-
ing the usability of our Blockly-based interface, mak-

ing it more intuitive for non-technical users in gov-
ernment settings. Usability studies within this pub-
lic administration context will guide the future itera-
tions of the platform, ensuring it meets the operational
needs of diverse public institutions. So, detailed us-
ability studies on these more recent implementations
will also be done and reported in the near term.

REFERENCES

Andrade, M., Aveiro, D., and Pinto, D. (2020). Bridging
Ontology and Implementation with a New DEMO Ac-
tion Meta-model and Engine. In Aveiro, D., Guiz-
zardi, G., and Borbinha, J., editors, Advances in En-
terprise Engineering XIII, Lecture Notes in Business
Information Processing, pages 66–82, Cham. Springer
International Publishing.

Aveiro, D. and Freitas, V. (2023a). Evaluating the usability
of a system implemented on a DEMO based low-code
platform. In Sales, T. P., Aveiro, D., Proper, H. A., As-
prion, P. M., Marcelletti, A., Morichetta, A., Schnei-
der, B., Zech, P., Kulkarni, V., Breu, R., Barat, S.,
Poels, G., Riel, J. V., Calhau, R. F., Bork, D., Mul-
der, M., de Kinderen, S., Guerreiro, S., and Griffo, C.,
editors, Companion Proceedings of the 16th IFIP WG
8.1 Working Conference on the Practice of Enterprise
Modeling and the 13th Enterprise Design and Engi-
neering Working Conference: BES, DTE, FACETE,
Tools & Demos, Forum, EDEN Doctoral Consortium
co-located with PoEM 2023, Vienna, Austria, Novem-
ber 28 - December 01, 2023, volume 3645 of CEUR
Workshop Proceedings. CEUR-WS.org.

Aveiro, D. and Freitas, V. (2023b). A new action meta-
model and grammar for a demo based low-code plat-
form rules processing engine. In Advances in Enter-
prise Engineering XVI, pages 33–52, Cham. Springer
Nature Switzerland.

Aveiro, D., Freitas, V., Cunha, E., Quintal, F., and Almeida,
Y. (2023). Traditional vs. low-code development:
comparing needed effort and system complexity in the
nexusbrant experiment. In 2023 IEEE 25th Confer-
ence on Business Informatics (CBI), pages 1–10, Los
Alamitos, CA, USA. IEEE Computer Society.

Aveiro, D., Freitas, V., Pinto, D., Caires, V., and Pacheco,
D. (2024). EBNF Grammar of DEMO Action
Rules Specification and Process and Fact Models
Representations for a Municipal Hearings Process.
https://github.com/EnterpriseEngineeringLab/KEOD-
2024-annex/blob/main/KEOD-2024-annex.pdf

Aveiro, D. and Pinto, D. (2015). Universal Enter-
prise Adaptive Object Model: A Semantic Web-
Based Implementation of Organizational Self-
Awareness. Intelligent Systems in Accounting,
Finance and Management, 22(1):3–28. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/isaf.
1363.

Dietz, J. L. G. (2022). DEMO Specification Language 4.7.2
– Enterprise Engineering Institute.

KEOD 2024 - 16th International Conference on Knowledge Engineering and Ontology Development

250



Dietz, J. L. G. and Mulder, H. B. F. (2020). Enterprise On-
tology: A Human-Centric Approach to Understanding
the Essence of Organisation. The Enterprise Engi-
neering Series. Springer International Publishing.

Frank, U. (1999). The MEMO META-METAMODEL.
Freitas, V., Pinto, D., Caires, V., Tadeu, L., and Aveiro, D.

(2022). The DISME low-code platform - from sim-
ple diagram creation to system execution. In Guer-
reiro, S., Griffo, C., and Jacob, M., editors, Pro-
ceedings of the 22nd CIAO! Doctoral Consortium,
and Enterprise Engineering Working Conference Fo-
rum 2022 co-located with 12th Enterprise Engineer-
ing Working Conference (EEWC 2022), November 2-
3, 2022, Leusden, the Netherlands, volume 3388 of
CEUR Workshop Proceedings. CEUR-WS.org.

Gouveia, B., Aveiro, D., Pacheco, D., Pinto, D., and Gou-
veia, D. (2021). Fact model in demo - urban law
case and proposal of representation improvements.
In Aveiro, D., Guizzardi, G., Pergl, R., and Proper,
H. A., editors, Advances in Enterprise Engineering
XIV, pages 173–190, Cham. Springer International
Publishing.

Hevner, A. (2007). A three cycle view of design science re-
search. Scandinavian Journal of Information Systems,
19.

Hevner, A., R, A., March, S., T, S., Park, Park, J., Ram, and
Sudha (2004). Design science in information systems
research. Management Information Systems Quar-
terly, 28:75–.

ISO/IEC 14977:1996 (1996). ISO/IEC 14977 - Information
technology — Syntactic metalanguage — Extended
BNF. Standard, International Organization for Stan-
dardization, Geneva, CH.

Krouwel, M., Op ’t Land, M., and Proper, H. (2024). From
enterprise models to low-code applications: mapping
demo to mendix; illustrated in the social housing do-
main. Software and Systems Modeling, pages 1–28.

Krouwel, M. R. (2023). On the design of enterprise
ontology-driven software development. Maastricht
University, Maastricht.

Lantow, B., Sandkuhl, K., and Stirna, J. (2022). Enterprise
Modeling with 4EM: Perspectives and Method. In
Karagiannis, D., Lee, M., Hinkelmann, K., and Utz,
W., editors, Domain-Specific Conceptual Modeling:
Concepts, Methods and ADOxx Tools, pages 95–120.
Springer International Publishing, Cham.

Pacheco, D., Aveiro, D., Gouveia, B., and Pinto, D. (2022a).
Evaluation of the perceived quality and functional-
ity of fact model diagrams in demo. In Advances in
Enterprise Engineering XV, pages 114–128, Cham.
Springer International Publishing.

Pacheco, D., Aveiro, D., Pinto, D., and Gouveia, B.
(2022b). Towards the x-theory: An evaluation of the
perceived quality and functionality of demo’s process
model. In Aveiro, D., Proper, H. A., Guerreiro, S.,
and de Vries, M., editors, Advances in Enterprise En-
gineering XV, pages 129–148, Cham. Springer Inter-
national Publishing.

Perinforma, A. (2015). The Essence of Organisation: An
Introduction to Enterprise Engineering. Sapio Enter-
prise Engineering.

Pinto, D., Aveiro, D., Pacheco, D., Gouveia, B., and Gou-
veia, D. (2021). Validation of DEMO’s Conciseness
Quality and Proposal of Improvements to the Process
Model, pages 133–152.

Yoder, J. W., Balaguer, F., and Johnson, R. (2001). Archi-
tecture and design of adaptive object-models. SIG-
PLAN Not., 36(12):50–60.

Yoder, J. W. and Johnson, R. (2002). The Adaptive Object-
Model Architectural Style. In Bosch, J., Gentleman,
M., Hofmeister, C., and Kuusela, J., editors, Soft-
ware Architecture: System Design, Development and
Maintenance, IFIP — The International Federation
for Information Processing, pages 3–27. Springer US,
Boston, MA.

Extending DEMO Action Rule Specifications’ Syntax in a Low Code Platform Based Municipality Hearing System Implementation

251


