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Abstract: We evaluate deep learning architectures for rat pose estimation using a six-camera system, focusing on ResNet
and EfficientNet across various depths and augmentation techniques. Among the configurations tested, ResNet
152 with default augmentation provided the best performance when employing a multi-perspective network
approach in the controlled experimental setup. It reached a Root Mean Squared Error (RMSE) of 8.74, 8.78,
and 9.72 pixels for the different angles. The utilization of data augmentation revealed that less altering yields
better performance. We propose potential areas for future research, including further refinement of model
configurations, more in-depth investigation of inference speeds, and the possibility of transferring network
weights to study other species, such as mice. The findings underscore the potential for deep learning solutions
to advance preclinical research in behavioral neuroscience. We suggest building on this research to introduce
behavioral recognition based on a 3D movement reconstruction, particularly emphasizing the motoric aspects
of neurodegenerative diseases. This will allow for the correlation of observable behaviors with neuronal
activity, contributing to a better understanding of the brain and aiding in developing new therapeutic strategies.

1 INTRODUCTION

Integrating data science and machine learning tech-
niques into neuroscientific research represents an
evolving field that brings huge potential for improved
efficiency gains in conducting preclinical medical tri-
als, minimizing the influence of human bias, and in-
troducing more quantifiable, reproducible, and scal-
able methodologies. This study has positioned itself
at the intersection of these disciplines, focusing on
taking another step toward automating preclinical ro-
dent models in degenerative diseases.

Preclinical rodent models are imperative before
commencing with human clinical trials to evalu-
ate novel therapeutic options to halt or reverse dis-
ease. Traditionally, this process is manual, time-
consuming, monotonous, and error-prone, with low
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inter-rater reliability and coarse rating scales.
Neurodegenerative disorders, including Parkin-

son’s disease and Huntington’s disease, along with
neurological disorders such as Epilepsy, manifest
through motor impairments, presenting significant
challenges in their study and treatment. Traditional
methods, such as manual scoring or marker-based
systems, suffer numerous drawbacks that stifle re-
search progress. Manual scoring is labor-intensive
and introduces subjectivity, while marker-based sys-
tems can disrupt natural rodent behavior.

The advancements in computer vision and deep
learning have transformed the analysis of rodent be-
havior, offering markerless capabilities that avoid the
pitfalls of previous approaches. The introduction
of tools such as DeepLabCut (Mathis et al., 2018),
Deepfly (Günel et al., 2019), and JAABA (Kabra
et al., 2013) has facilitated the application of deep
neural networks in behavioral neuroscience, allowing
for non-invasive, accurate tracking in video feeds. Yet
the field continues to seek enhancements in 3D move-
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ment analysis, which can potentially integrate behav-
ioral data with neuronal activity measures to establish
causative links between brain function and behavior.

While significant strides have been made in
3D pose estimation for animal behavior analysis
(Karashchuk et al., 2021) (Günel et al., 2019) (Mathis
et al., 2018), the focus has predominantly been on
flies and mice, with limited exploration in rats, which
play a central role in studying more nuanced behav-
ioral components in degenerative diseases. Unlike
prior studies, such as the one by Nilsson et al. (Nils-
son et al., 2020), which examined social behaviors
in rats, this study has positioned itself to address the
motoric components of seizures tied to specific de-
generative conditions, tracking a more complex set of
poses than before. Distinct in their behaviors com-
pared to mice, rats are indispensable for certain dis-
ease models. Yet, comprehensive automated obser-
vation methodologies remain scarce, and none have
overbridged the issue of not always being able to track
the full movement pattern independent of how the ro-
dent twists and turns. This paper addresses this gap
using a standardized recording setup with six inward-
facing cameras. This setup not only enables a future
complete 3D skeleton, overcoming the limitations of
partial views and 2D analysis but also lays the founda-
tion for incorporating detailed mapping of pose data
to specific symptoms, potentially via the utilization
of action recognition systems (Gharaee et al., 2017)
combined with calcium imaging. This approach al-
lows for continued research that could link observable
behaviors with underlying neuronal activity, thereby
facilitating the development of new therapeutic strate-
gies.

1.1 Pose Estimation in Animal Studies

The introduction of DeepPose (Toshev and Szegedy,
2014) marked a leap in pose estimation techniques. It
utilized deep convolutional neural networks (CNNs)
to regress image pixels directly to spatial body joint
locations, moving away from reliance on handcrafted
features. Enhancements followed with methods com-
bining CNNs and Markov Random Fields for model-
ing geometric and spatial constraints (Tompson et al.,
2014), and incorporating temporal information to
leverage movement continuity across frames (Pfister
et al., 2015). Building on these advancements, po-
sition refinement models (Tompson et al., 2015) and
the partitioning and labeling approach in DeepCut
(Pishchulin et al., 2016) brought finer detail and im-
proved detection capabilities. DeeperCut (Insafutdi-
nov et al., 2016) leveraged the ResNet architecture
to enhance accuracy and processing efficiency, intro-

ducing deep body part detectors that significantly im-
proved precision.

DeepLabCut (Mathis et al., 2018) adapted Deep-
erCut’s feature detector architecture for animal mod-
els, broadening pose estimation’s applicability to non-
invasive animal studies. This contributed to ethical
research by minimizing stress and interference while
maximizing analytical depth. Building upon the ap-
proach taken by DeepLabCut, LEAP (Pereira et al.,
2019) focused on inference speed, while DeepPoseKit
(Graving et al., 2019) introduced a model leveraging
a stacked DenseNet architecture to improve speed and
robustness.

For 3D pose estimation in animals, DeepFly3D
(Günel et al., 2019) and Anipose (Karashchuk et al.,
2021) advanced precision by introducing procedures
for triangulating multiple cameras. LiftPose3D
(Gosztolai et al., 2021) extended capabilities by
adapting techniques designed for humans to animal
models.

Recent contributions like Multi-animal DeepLab-
Cut (Lauer et al., 2022) and SLEAP (Pereira et al.,
2022) introduced multi-task architectures capable of
identifying key points and tracking multiple animals
simultaneously.

Despite significant progress, challenges remain
due to the lack of annotated datasets for certain
species and non-standardized recordings. Recent
studies have proposed alternative approaches to ad-
dress data scarcity. Biderman et al. introduced Light-
ning Pose, a semi-supervised model utilizing both la-
beled and unlabeled data, employing a multi-network
architecture that leverages temporal and spatial con-
texts without extensive annotations (Biderman et al.,
2023). Similarly, Li and Lee developed ScarceNet,
which uses a pseudo-label-based approach, training a
model with a small set of labeled images to generate
pseudo-labels for unlabeled data (Li and Lee, 2023).

While promising, these techniques have not yet
gained broad acceptance, and the field predominantly
relies on supervised methods. This underscores the
potential utility of the presented dataset.

1.2 Behavioral Analysis in Animals

The introduction of JAABA (Kabra et al., 2013)
marked a shift towards using pose estimation for be-
havior classification in mice and flies. JAABA uti-
lized pose trajectories to compute per-frame features,
demonstrating the feasibility of behavior analysis us-
ing pose data.

MotionMapper (Berman et al., 2014) presented an
unsupervised behavior classification pipeline for in-
vertebrates, mapping behaviors to a 2D plane without
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prior labeling by segmenting, scaling, and aligning
frames before applying PCA. This method identified
distinct general behavioral modes but was limited to
invertebrates.

MoSeq (Wiltschko et al., 2015) expanded unsu-
pervised behavior analysis to vertebrates, specifically
mice. By compressing video data and segmenting it
into discrete behavioral ”syllables” using an autore-
gressive hidden Markov model (AR-HMM), MoSeq
offered insights into the modular nature of animal be-
haviors, contributing to the understanding of complex
behavioral patterns.

DeepBehavior (Arac et al., 2019) leveraged
GoogLeNet and YOLO-v3 architectures to identify
individual and social behaviors in mice. However, the
focus remained on general social interactions rather
than motoric analysis pertinent to degenerative dis-
eases.

BehaveNet (Batty et al., 2019) introduced a prob-
abilistic framework combining video compression
with AR-HMM segmentation for unsupervised anal-
ysis. This allowed for simulating behavioral videos
based on neural activity in mice, offering potential
pathways for linking observable behaviors with un-
derlying conditions, though not directly applied to
motoric components.

SimBA (Nilsson et al., 2020) and MARS (Segalin
et al., 2021) designed pose-based approaches for ana-
lyzing rodent social behavior, with SimBA extending
tools to both mice and rats. While these studies pro-
vided valuable insights into social dynamics, they did
not focus on the motoric components. DeepEthogram
(Bohnslav et al., 2021) employed a supervised ap-
proach using optical flow estimated from video clips
for behavior classification but similarly concentrated
on social behaviors.

While pose estimation has enhanced our under-
standing of animal behavior, there is a gap in auto-
mated methods for motoric components of degener-
ative disease models. At the same time, there is no
public rat dataset for detailed benchmarking at the de-
sired granularity. Given the mobility of soft tissue
and fur, introducing a standard could also minimize
human bias and allow for synchronizing datasets be-
tween laboratories.

2 RECORDING FRAME

The recording apparatus is custom-designed to sup-
port a six-camera system that captures all six sides of
a cubic space. This configuration, with inward-facing
cameras mounted on the frame, enables comprehen-
sive capture of rodent behavior within the enclosure.

Figure 1: The recording frame with its six cameras and
mounts (circled in red) facing the transparent arena.

We utilized NileCAM25 cameras for their capa-
bility to record high-definition (HD) video at 60Hz
and support feed synchronization. These specifica-
tions ensure high-quality video data, which is crit-
ical for detailed pose annotation and precise move-
ment tracking. At the system’s core is a Jetson AGX
Orin, which processes camera input via a GMSL2 de-
serializer board. This setup streamlines data capture
and synchronizes feeds from all six cameras, ensur-
ing temporal alignment of footage. Synchronization
is essential for enabling future 3D tracking of move-
ment patterns. This approach ensures that pose pre-
dictions are conducted simultaneously across all per-
spectives, avoiding introducing spatial deviations in
identified positions.

2.1 Video Recording, Frame Extraction,
and Dataset Construction

Each of the 22 recorded sessions comprised six
video streams corresponding to the six cameras, re-
sulting in 132 MKV video files from the angles
above/side/below.

Frame extraction was conducted post-recording
using K-means to select the most diverse frames from
each video. By setting k=50, we partitioned the video
data into 50 clusters per video, extracting the centroid
frame of each cluster. This approach maximizes the
variety of poses and activities within the dataset, re-
ducing bias toward any specific behavior or arena re-
gion where the rat might spend significant time.

From this process, 6.600 frames were extracted
and further annotated with 35 labels representing var-
ious anatomical positions of the skeleton. The dataset
was then partitioned into training, validation, and test
sets with an 80-10-10 split. It was constructed solely
using healthy control animals.
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2.2 Data Augmentation

The employed augmentation methods are derived
from the ‘packaging’ of DeepLabCut and adjusted to
fit the project’s setup (Mathis et al., 2018). The fol-
lowing Table (1) and section outline the specific aug-
mentation methods in each augmentation package and
motivate their inclusion.

Table 1: Affiliation of augmentation methods for each in-
vestigated package (tensorpack, imgaug and default).

Augmentation tensorpack imgaug default
Mirroring ✓
Rotation ✓ ✓
Scaling ✓ ✓

Motion Blur ✓
Gaussian Noise ✓ ✓
Gaussian Blur ✓

Elastic Transformation ✓
Grayscale ✓

Contrast Adjustments ✓ ✓
Filters ✓
Crop ✓ ✓
Pad ✓

Brightness ✓
Covering ✓
Saturation ✓

Resize ✓

Spatial transformations include mirroring, which
creates horizontal flips of images to help models rec-
ognize and track poses regardless of the animal’s
orientation, preventing bias toward the direction in
which the animal most frequently appears. Rotation
introduces angular perspectives, replicating the natu-
ral variance observed when an animal moves in three-
dimensional space, ensuring accuracy across different
capture angles. Covering (adding dropout regions)
mimics occlusion events when a body part is tem-
porarily hidden, training the model to infer poses and
maintain tracking despite visual obstructions. Elastic
transformations introduce image distortion, challeng-
ing the model to recognize anatomical features even
when distorted by movement during rapid activities.
Crop and pad operations introduce boundary variabil-
ity, teaching the model to handle cases where the rat
is not entirely within the frame or is positioned to-
ward the edges. Resize ensures accurate pose esti-
mation across different resolutions and scales, which
is essential for processing data from various sources
or camera types. Scaling allows for random resizes
within a specified range, maintaining the aspect ratio
but altering spatial dimensions, mimicking zoom ef-
fects during recording.

Blur or noise adjustments involve motion blur,

simulating the effect of rapid movement or lower
frame rates. This allows the models to regard poses
even when image clarity is compromised. Gaussian
blur provides controlled blur, approximating loss of
sharpness, e.g., mimicking an out-of-focus rat mov-
ing fast. Adding Gaussian noise conditions the model
to disregard random noise in the image, focusing on
critical features, simulating sensor noise in low light.

Color and light adaptations encompass contrast
adjustments, addressing scenarios where lighting al-
ters the rat’s appearance. Brightness and saturation
adjustments handle changes in visual perception due
to environmental illumination and camera exposure.
Converting images to grayscale forces the model to
rely less on color and more on structural information,
enhancing performance under varying conditions.

Filter effects simulate camera lens imperfections
or environmental factors that might affect quality.

2.3 Post-Processing and Evaluation

The post-processing consists of three main steps: con-
fidence filtering, moving Z-score outlier detection,
and spline interpolation for filling in missing values.

The initial step involves applying a confidence fil-
ter to the raw pose estimation data. This threshold was
set to 0.6 to adjust for a balance between minimizing
false positives and the risk of losing true positives.

A moving Z-score is applied to identify and re-
move outliers following confidence filtering.

The interpolation of missing values resulting from
the removal of low-confidence detections and outliers
follows thereafter. Cubic spline interpolation is em-
ployed since it provides smooth, continuous curves
that naturally fit the movements observed in the data.
This method interpolates missing data points by fit-
ting a series of cubic polynomials between known
data points, ensuring that the first and second deriva-
tives of the interpolated curves are continuous across
the dataset. This is calculated as:

S(x) = anx3 +bnx2 + cnx+dn, for xn ≤ x ≤ xn+1
(1)

where S(x) represents the spline function, and an, bn,
cn, and dn are the coefficients of the cubic polynomial
between known points xn and xn+1.

The evaluation of the model’s performance relies
on Root Mean Squared Error (RMSE), as expressed in
equation 2. The metric is based on the Euclidean dis-
tance, in pixels, between the predicted positions and
the corresponding ground-truth positions. This is cal-
culated as:

RMSE =

√
1
N

N

∑
i=1

(gti − predi)2 (2)
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where gti represents the ground truth position while
predi depicts the prediction.

3 NETWORK COMPARISON

The Resnet 50 and 152 models demonstrated rapid
initial learning and good generalization when de-
fault and imgaug augmentation packages were ap-
plied (Figure 2: A, B, D and E). This suggests that
these configurations can effectively capture and gen-
eralize from the learned patterns. When applying the
tensorpack augmentation, both architectures portray
higher losses and significant volatility (Figure 2: C
and F), which implies that the augmentations may
destabilize the learning process.

Figure 2: Network comparison, train- and validation loss
for all network configurations A-L (architecture and aug-
mentation method). Note that the Efficentnet B6 tensorpack
(I) configuration did fail due to GPU memory constraints
during training (Nvidia A100 node).

Among the various configurations, the Resnet 152
models with both default and imgaug augmentations
emerge as the top performers (Table 2). Specifically,
the Resnet 152 with default augmentation shows the
lowest test error (16.81 px before the probability cut-
off and 10.46 px after), making it the best-performing
model expressed in RMSE. This is closely followed
by the Resnet 152 with imgaug augmentation, demon-
strating a performance of 14.31 px before and 10.48
px after the probability cutoff.

When examining configurations for the
Efficientnet-B3 and B6 models, regardless of
the augmentation used, they present a significantly
higher test error than the leading Resnet models. This
suggests challenges in the network architecture’s
ability to address the task and/or issues stemming
from the augmentation methods. At the same time,
the augmentation methods have contributed to low
pixel error for the top-performing architectures, thus
implying that the issue may lie on the architectural
side.

This does not rule out that, given longer training
sessions or further tuning, models like the Efficennet-
B6 default could prove valid alternatives. With the
obtained results, it is clear that the Resnet 152 default
is the configuration to proceed with.

The tensorpack augmentation package includes
a comprehensive set of transformations that signifi-
cantly increase the complexity of the training data.
These transformations are introduced to simulate real-
world variances, such as changes in lighting, occlu-
sions, and motion that a model might encounter in
different implementation settings. The controlled en-
vironment represents a context where such variability
does not often occur. This could explain why model
configurations implementing tensorpack portray such
issues. This indicates that even if tensorpack would be
best suited for a more dynamic environment, the con-
trolled experimental setup points to that lesser aug-
mentation brings better model performance.

Although nominally small at ∼ 1.4% pixels, the
difference between the Resnet 50 and Resnet 152 de-
fault models represents an error increase of ∼ 12%.
This provides a clear argument favoring the adoption
of a deeper architecture.

The computational overhead is an aspect that
should be considered in preclinical environments with
limited computational resources or time constraints.
The inference speed for processing six 5-minute
videos via an Nvidia RTX 4080 for the Resnet 50 and
Resnet 152 default models is shown in Table 3. From
the results, an ∼ 63% increase in processing time can
be inferred when employing the deeper network.

Observational periods in studies of particular dis-
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Table 2: Performance comparison of network configurations (model and augmentation method). Error is expressed in RMSE.

Model Aug. method Model
best train
iter.

% train
set

Shuffle
no.

Train err.
(px)

Test err.
(px)

p-cutoff Train err.
w. p-
cutoff

Test err.
w. p-
cutoff

efficientnet-b3 default 330000 80 1 1120.47 1136.77 0.6 - -
efficientnet-b3 imgaug 510000 80 1 820.38 787.55 0.6 - -
efficientnet-b3 tensorpack 600000 80 1 1074.06 1043.82 0.6 - -
efficientnet-b6 default 600000 80 1 246.13 262.68 0.6 452.19 333.3
efficientnet-b6 imgaug 30000 80 1 1068.39 1054.71 0.6 - -

resnet 152 default 540000 80 1 2.93 16.81 0.6 2.75 10.46
resnet 152 imgaug 570000 80 1 3.33 14.31 0.6 3.15 10.48
resnet 152 tensorpack 90000 80 1 180.85 196.96 0.6 30.84 37.19
resnet 50 default 540000 80 1 5.99 20.25 0.6 4.33 11.85
resnet 50 imgaug 540000 80 1 6.25 17.43 0.6 4.29 12.01
resnet 50 tensorpack 270000 80 1 545.65 559.52 0.6 286.41 292.39

Table 3: Inference speed comparison for the two different
Resnet depths investigated.

Model Rec. FPS
Dur.
(s)

Inf.
Speed

(s)
Ratio

Resnet 152 default 6 30 1794 4602 1:2.6
Resnet 50 default 6 30 1794 2816 1:1.6

eases often extend to multiple hours per animal and
require large quantities of animals to achieve signifi-
cant results. The utilized recording frame adds a fac-
tor of 6 (cameras), thus introducing another layer of
complexity that should be considered.

3.1 Single or Multiple Networks

The exploration of whether using multiple networks,
each dedicated to a specific camera angle, would
improve performance over a single network trained
across all angles. For the dedicated ResNet 152 de-
fault networks (above, side, below), the training and
validation loss curves showed rapid decreases fol-
lowed by stabilization, indicating effective learning
without overfitting (Figure 3).

From Table 4, it is clear that the multi-network
approach results in lower test errors compared to the
single-network.

While theoretically, free-moving rats could ex-
pose all body parts to any camera, the diversity cap-
tured using the frame extraction method (K-means)
may not encompass all possible poses for each an-
gle. This raises the question of whether disease-
induced motor symptoms, like seizures, might affect
the model’s accuracy if the angle-specific networks
have not been trained on such variations. Each disease
model may require additional data to capture these be-
haviors. The multi-network approach could serve as
a transfer basis, but this consideration applies regard-

Figure 3: Resnet 152 default train- and validation loss seen
for the dedicated networks (multi-network approach). From
the top: above, side, and below.

less of whether single or multiple networks are used.

3.2 Limitations

The findings are based on a controlled experimen-
tal environment designed for preclinical behavioral
studies, which may limit the generalizability to more
dynamic settings where other model configurations
might perform better. Individuals performed data an-
notation, introducing potential biases in label place-
ment and data quality assessments, though efforts
were made to mitigate these issues.

The investigation was limited to selected network
architectures, depths, and augmentation methods cho-
sen for their relevance and proven performance. Al-
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Table 4: Performance for the dedicated (angle-specific) models versus the single (one covering all angles) network. Error is
expressed in RSME.

Model Approach Angle Train err. (px) Test err (px) Train err. w/ p-cutoff Test err. w/ p-cutoff
Resnet 152 default Angle-Specific Above 2.57 9.77 2.57 8.74
Resnet 152 default Angle-Specific Below 2.03 11.64 2.02 8.78
Resnet 152 default Angle-Specific Side 2.47 12.6 2.39 9.72
Resnet 152 default Single All 2.93 16.81 2.75 10.46

Figure 4: Illustration of pose detection from various camera
angles using the dedicated networks. The detected poses
align with the designated labels of the defined rat skeleton.

ternative configurations might yield better results.
Consistent network parameter tuning was maintained
across configurations to ensure comparability, but this
may have restricted optimal tuning for each model.

4 CONCLUSIONS

This paper has explored the application of different
deep-learning architectures, depths, and augmenta-
tion techniques for pose estimation in rodents, given
the presented 6-camera recording frame. The focus
has been on ResNet 50, ResNet 152, EfficientNet-B3,
and EfficientNet-B6. In conclusion, ResNet 152, with
default augmentation, is the most effective choice
given the controlled experimental setup utilized.

The study also examined the efficacy of employ-
ing a single network trained across all six camera an-
gles versus multiple networks, each dedicated to a
specific camera angle. The findings favored the multi-
perspective approach utilizing the Resnet 152 default
configuration.

The results show that the configuration can con-
struct coherent movement patterns in 2D from the de-
tections, which further lays a foundational step to-
wards achieving tracking in 3D. This enables a more
granular analysis of the motoric components of de-
generative diseases and opens up the possibility of ex-

tracting behavioral syllabus and potentially mapping
the same to neural activity in the future.

4.1 Future Work

Continued work could explore improving the Effi-
cientnet tuning and investigate how they handle dif-
ferent camera angles.

Future directions should assess how changes in
network depth affect processing times, provide a more
detailed mapping of the preclinical areas that require
vast processing, and clarify the extent.

The approach could serve as a base for transfer
learning, thus allowing adaptations for other anatom-
ically similar species, such as mice. Therefore, an-
other direction is to investigate how well the solution
generalizes to mice and determine the required addi-
tional data.

A natural continuation of the project is to utilize
the 2D data to construct a 3D representation of the ro-
dents. This will allow for behavioral analysis, which,
together with calcium imaging of brain activity, could
allow further research into the neural activity associ-
ated with degenerative diseases.
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