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Abstract: This study aims to achieve two primary objectives. Firstly, it offers empirical evidence on the statistical dis-
tribution of inter-event times for lava fountains at Mt. Etna between 2011 and 2022, revealing that these times
follow a power-law distribution, which supports the hypothesis that volcanic energy release exhibits dynam-
ics characteristic of Self-Organized Criticality (SOC) systems. Secondly, it introduces a modified version of
the classic Bak-Tang-Wiesenfeld (BTW) model, specifically adapted to simulate the inter-event times of lava
fountains in volcanic environments like Mt. Etna. Although the proposed model is straightforward and offers
initial insights, it remains preliminary. Further development is needed to enhance its accuracy and extend its
applicability to more complex volcanic systems.

1 INTRODUCTION

Many natural systems exhibit self-organization at the
edge of phase transitions, a phenomenon known as
self-tuned phase transitions. Such systems have been
observed across various domains, including labora-
tory fusion plasmas, solar physics, and magneto-
spheric physics (Watkins et al., 2015). In geophysics,
many systems display SOC characteristics (Corral
and Gonzales, 2019). It is now widely recognized
in seismology that seismic energy release follows a
power-law distribution, with different regions exhibit-
ing distinct representations of the Gutenberg-Richter
law of earthquake magnitude (Corral and Gonzales,
2019). The presence of power laws is a strong in-
dicator of Self-Organized Criticality (SOC) (Jensen,
1998), suggesting that seismic energy release is a
classic example of a SOC system.

Given the SOC characteristics observed in seis-
mic energy release, it is plausible to hypothesize that
volcanic energy release might follow similar dynam-
ics. Volcanic activity encompasses a wide range of
eruption styles, with significant variations in the vol-
ume of ejected material and the intervals between
eruptions. Previous studies have identified power-
law relationships between the Volcanic Explosivity
Index (VEI) and eruption frequency, drawing a par-
allel to the Gutenberg-Richter law observed in earth-
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quake magnitude distributions (Butters et al., 2017).
This suggests a potential SOC behavior in volcanic
activity as well.

This study specifically investigates the inter-event
times of lava fountains at Mt. Etna, aiming to demon-
strate their adherence to a power-law distribution.
Mt. Etna is one of the most active volcanoes in the
world, making it an ideal candidate for studying vol-
canic energy release through lava fountains. To model
this phenomenon, we adapt the Sandpile model (Bak
et al., 1987), a cellular automaton originally devel-
oped to illustrate SOC, which has been widely used to
model critical phenomena in complex systems. Cel-
lular automata, with their discretized time, space, and
internal states, can produce complex structures de-
spite their simple local evolution rules. They have
been applied to model non-equilibrium phenomena
such as crystal growth, fluid dynamics, and transport
processes governed by the Navier-Stokes equations.
In the context of volcanic systems, cellular automata
have been employed to simulate intricate phenomena,
including lava flows (Vicari et al., 2007) and magma
ascent (Piegari et al., 2011). In this study, we explore
an adapted version of the BTW model to interpret the
inter-event times of Lava Fountains (LF) at Etna, pro-
viding further experimental evidence that volcanic en-
ergy release may follow power-law distributions.
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2 LAVA FOUNTAIN
PHENOMENON

Lava fountains, such as those observed at Mt Etna,
can be understood as resulting from the gradual ac-
cumulation of stress within the volcanic system. This
stress eventually triggers the ascent of molten mate-
rial, with gases playing a crucial role in facilitating
this rise. However, the mechanisms that control such
events are not fully understood (La Spina et al., 2017),
and their modeling using partial differential equations
(PDEs) presents significant challenges.

Firstly, our understanding of the physical proper-
ties within a volcanic system is limited. The subsur-
face conditions, such as the structure and composition
of the magma chamber and conduit system, are poorly
constrained by available observational data, making it
difficult to accurately parameterize these features in
mathematical models.

Secondly, magma itself is not a simple fluid. It
exhibits non-Newtonian behavior, where its viscos-
ity varies depending on factors like temperature and
crystal content. The presence of solid particles fur-
ther complicates its flow dynamics, introducing chal-
lenges that standard fluid dynamics equations struggle
to capture accurately.

Furthermore, the interaction between rising
magma and the surrounding rock, coupled with the
complex degassing processes, introduces additional
layers of complexity. These interactions can affect
the magma’s ascent rate, pressure buildup, and ulti-
mately, the explosivity of eruptions. The exsolution
of gases from magma plays a crucial role in driving
ascent and eruption processes, but these processes are
highly non-linear and not fully understood.

Additionally, the stochastic nature of volcanic ac-
tivity, influenced by numerous random factors, com-
plicates the prediction of precise behaviors using de-
terministic models. This inherent variability, cou-
pled with the multitude of interacting processes, often
renders traditional PDE-based models inadequate for
capturing the full range of volcanic behaviors.

Given these challenges, alternative modeling ap-
proaches like the Sandpile model (Bak et al., 1987),
which is adapted in this study, offer valuable insights
into the statistical properties of volcanic phenomena.
This model allows for the exploration of eruption dy-
namics without requiring detailed physical parame-
ters, making it a powerful tool for studying the dis-
tribution of time intervals between eruptions.

3 DATA AND METHOD

3.1 Experimental Data

The dataset for this study comprises the start and
end dates of 118 lava fountain episodes at Mt Etna,
recorded between 2011 and 2022 (Calvari and Nun-
nari, 2022). These episodes have been meticulously
documented, offering a detailed chronicle of volcanic
activity during this period.

To analyze the temporal distribution of these lava
fountain episodes, we calculated the inter-event times,
defined as the difference in days between the start of
one lava fountain and the start of the next. This metric
quantifies the intervals between successive volcanic
activities, providing insights into the underlying tem-
poral patterns (Calvari and Nunnari, 2022).

Figure 1: Histogram of LFs inter-event times. The x-axis
represents the inter-event time in days, while the y-axis rep-
resents the frequency of occurrences. This histogram illus-
trates the distribution of intervals between consecutive lava
fountain episodes at Mt Etna from 2011 to 2022, highlight-
ing the variability and periodicity of volcanic activity.

Figure 1 presents the histogram of LFs inter-event
times, offering a visual representation of the temporal
distribution of lava fountain episodes. This histogram
reveals the variability and periodicity in the volcanic
activity at Mt Etna over the studied period, which is
crucial for understanding the system’s dynamics.

3.2 Some General Features of SOC
Systems

Self-organized criticality (SOC) is a property of dy-
namical systems that naturally evolve to a critical
state, where a minor event can lead to significant
consequences. This concept has been applied to a
wide range of physical, biological, and social sys-
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tems. Here are some general features of SOC sys-
tems:

• Scale Invariance. SOC systems exhibit behav-
ior that is independent of the scale at which they
are observed. This means that similar patterns or
structures can be found at different magnitudes,
indicating a fractal-like nature. For a function of
the type f (x) = xα, the relative variation f (kx)

f (x) =

kα does not depend on x.

• Power-law Distributions. The size and fre-
quency of events in SOC systems typically fol-
low a power-law distribution. This implies that
small events are exceedingly common, while large
events are rare but possible. One method to ex-
perimentally determine if a phenomenon could be
generated by an SOC system is to measure a char-
acteristic of the phenomenon, in space or time,
and check if its probability distribution follows a
power-law. However, even if a power-law distri-
bution is observed, this does not constitute rigor-
ous proof of SOC behavior, as the absence of a
characteristic scale might be obscured or not evi-
dent in the dataset. This means that while observ-
ing a power-law distribution may suggest SOC be-
havior, it is not definitive evidence of it; other un-
derlying factors or data limitations could obscure
the true nature of the system.

• Threshold Dynamics. SOC systems often have a
critical threshold that, when reached, can trigger
a chain reaction or cascading events. The system
naturally evolves towards this critical point with-
out external tuning.

• Long-range Correlations. In SOC systems, dis-
tant parts of the system can become correlated,
meaning that a change in one part of the system
can influence another part, regardless of the phys-
ical distance.

• Intermittent Activity. The activity in SOC sys-
tems is typically sporadic, with periods of relative
calm interspersed with bursts of intense activity.
This intermittent behavior is a hallmark of critical
systems.

Understanding these features helps in identifying
and analyzing SOC behavior in various complex sys-
tems, from earthquakes to financial markets.

3.2.1 The BTW Model for Simulating SOC
Systems

The BTW (Bak-Tang-Wiesenfeld) Sandpile model is
a mathematical framework commonly used to sim-
ulate self-organized criticality (SOC) across various

systems, including volcanic activity. The model oper-
ates on a grid, where each cell can hold a certain num-
ber of grains. When a cell exceeds a critical threshold,
it "topples," distributing grains to neighboring cells
and potentially causing a chain reaction of toppling
events, known as an avalanche.

In its standard form, the Sandpile model operates
as follows:
1. Initialization. A square grid of size pile_width×

pile_width is initialized. Each cell in the grid is
randomly assigned up to three grains.

2. Grain Addition. Grains are added to the grid one
at a time at random positions. If adding a grain
causes a cell to exceed three grains, an avalanche
is triggered.

3. Avalanche Process. During an avalanche, four
grains are removed from the overloaded cell: one
grain is added to each of its four neighboring cells
(top, right, bottom, left). If any of these neigh-
boring cells exceed three grains as a result, they
also topple, continuing the avalanche until no cell
exceeds three grains.

4. Boundary Conditions. Grains that topple off the
edge of the grid are lost and not considered in sub-
sequent steps.

5. Simulation Loop. The process of adding grains
and resolving avalanches continues until the spec-
ified number of grains has been added to the grid.

3.2.2 Adaptation of the BTW Model for
Simulating Lava Fountains

To better simulate lava fountains, the adapted BTW
model introduces critical modifications to the bound-
ary conditions and the resistance matrix, which are
necessary to capture the unique behaviors observed
in volcanic activity. Below, we outline the major dif-
ferences between the standard BTW model and our
adapted version.

Consider a 2D grid of size N ×N. Each cell in the
grid is denoted by (i, j) with i, j ∈ {1,2, . . . ,N}. The
rules governing the accumulation and release of stress
are as follows:

1. Stress Accumulation Rule. Stress, representing
the buildup of volcanic pressure, is incrementally
added to a random position in the bottom row dur-
ing each simulation step:

S(N, j)→ S(N, j)+1,

where j is randomly chosen from {1,2, . . . ,N}.
2. Resistance Matrix.

– The resistance matrix R(i, j) decreases from the
bottom to the top of the grid.
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– The resistance on the lateral boundaries (left and
right edges) is set to infinity:

R(i, j)=

{
∞, if j = 1 or j = N
Rmin +

i−1
N−1 × (Rmax −Rmin), otherwise

A visual representation of the resistance matrix is
shown in Figure 2.

Figure 2: An example of the resistance matrix adapted for
simulating volcanic activity, illustrating how resistance de-
creases with height and influences the dynamics of stress
accumulation and release.

3. Stress Redistribution Rule. When the stress
S(i, j) in a cell exceeds the resistance R(i, j), an
event occurs:

S(i, j)→ S(i, j)−4,

and the excess stress is redistributed to the four
neighboring cells:

S(i+1, j)→ S(i+1, j)+1,
S(i−1, j)→ S(i−1, j)+1,
S(i, j+1)→ S(i, j+1)+1,
S(i, j−1)→ S(i, j−1)+1.

This redistribution of stress can trigger further
events in neighbouring cells, leading to a chain re-
action, referred to as an avalanche.

4. Boundary Conditions. The stress in cells at the
top and bottom rows is lost if it attempts to redis-
tribute outside the grid:

S(i, j)→ 0 for i = 1 or i = N.

5. Stop Condition. The simulation is terminated
when the accumulated stress in the entire grid
reaches a threshold value.

These modifications, particularly the introduction
of a resistance matrix that decreases with height and

the specific boundary conditions, are critical for repli-
cating the self-organized criticality observed in vol-
canic systems. The next subsection will explore the
implications of these changes for understanding the
dynamics of lava fountains at Mt Etna.

4 RESULTS

This section presents the analysis of lava fountain
(LF) inter-event times and their compatibility with
a power-law model. Section 4.1 evaluates whether
the observed inter-event times of LFs at Mt. Etna fit
a power-law distribution, providing the correspond-
ing model parameters. Section 4.2 examines whether
the inter-event times from simulated LFs, using the
adapted sandpile model, exhibit similar power-law
behavior, thereby assessing the model’s ability to
replicate the characteristics of the actual volcanic
events.

4.1 A Power-Law for the Mt Etna LF
Inter-Event Times

To determine if the lava fountains at Mt. Etna exhibit
features characteristic of a Self-Organized Criticality
(SOC) system, we analyzed the inter-event times of
lava fountains recorded from 2011 to 2022. Following
the analysis by (Calvari and Nunnari, 2022), the inter-
event times were fitted to a power-law distribution,
resulting in the parameters α = 1.72, xmin = 5.39,
σα = 0.19, and σxmin = 6.49. The p-value of 0.46 in-
dicates that the power-law model is statistically plau-
sible, suggesting that the inter-event times lack a char-
acteristic scale, which is consistent with the behavior
of SOC systems.

Figure 3 shows the empirical complementary cu-
mulative distribution function (CCDF) for the LF
inter-event times and the corresponding power-law fit,
highlighting the fit’s alignment with the data.

4.2 Simulating the Adapted Sandpile
Model

To assess whether the adapted sandpile model can
replicate the inter-event times of lava fountains ob-
served at Mt. Etna, we conducted simulations over
50,000 cycles on a 64x64 grid. We tracked both the
number of avalanches and the grains expelled from
the top central portion of the grid, which we identified
as simulated lava fountain events. The times between
these events are considered as the inter-event times of
simulated lava fountains.

A Modified Sandpile Model for Simulating Lava Fountains at Mt Etna

703



Figure 3: Empirical complementary cumulative distribution
function (CCDF) (blue circles) and its power-law model fit
(dotted black line) for the inter-event times of lava fountains
(LF) at Mt. Etna between January 2011 and July 2022. The
symbol ’*’ indicates the xmin for the considered dataset.

4.2.1 Simulating the Avalanche Size

Figure 4 illustrates the distribution of observed
avalanches by size as recorded by the model. This
distribution is a key indicator of the model’s behavior
and its potential alignment with SOC characteristics.

Figure 4: Number of observed avalanches versus their size
for the adapted 64x64 grid size sandpile model.

The empirical CCDF for avalanche sizes, along
with the fitted power-law model, is presented in Fig-
ure 5. The parameters obtained (α = 1.70, xmin = 8)
and the p-value of 0.60 suggest that the model re-
produces the avalanche dynamics characteristic of
the original Bak-Tang-Wiesenfeld (BTW) sandpile
model, reinforcing the model’s validity.

4.2.2 Simulating the LF Inter-Event Times

Over 50,000 simulation cycles, the model recorded
68 lava fountain events, allowing for the analysis of

Figure 5: Empirical CCDF of avalanche sizes and the cor-
responding power-law fitting model.

inter-event times. The power-law fit for the simulated
LF inter-event times yielded parameters of α = 1.59,
xmin = 47, σα = 0.25, and σxmin = 180.64. The p-
value of 0.09 suggests marginal plausibility, indicat-
ing that while the model approximates the observed
distribution, it may not fully replicate the statistical
characteristics of the actual LF inter-event times at
Mt. Etna. This result suggests limitations in the
model’s ability to fully capture the dynamics of the
volcanic system.

Figure 6: CCDF of the simulated LF inter-event times using
the adapted 64x64 grid size sandpile model.

5 CONCLUSIONS

This study demonstrates that the proposed sandpile
model effectively reproduces the avalanche dynam-
ics characteristic of the Bak-Tang-Wiesenfeld (BTW)
model, yet it only partially succeeds in simulating the
inter-event times of the lava fountain phenomena ob-
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served at Mt. Etna. Several factors contribute to the
model’s partial success in replicating real-world lava
fountain dynamics:

Firstly, the simplified stress propagation mecha-
nism in the model likely fails to fully capture the com-
plex dynamics inherent in real lava fountains. This
simplification may overlook critical interactions and
feedback processes. Future refinements could include
integrating more sophisticated stress redistribution al-
gorithms or exploring alternative stress propagation
models that better reflect the complexity of volcanic
processes.

Secondly, the limited grid size (64x64) and the
number of simulation cycles (50,000) may have con-
strained the model’s ability to accurately simulate the
complexity of lava fountains. Larger grids and ex-
tended simulation periods could capture a broader
range of inter-event times, potentially leading to a
better approximation of real-world dynamics. Future
studies should consider scaling up these parameters to
assess their impact on the accuracy of the simulation
results.

Furthermore, the comparison with the more com-
plex model by (Piegari et al., 2011) underscores the
inherent trade-offs between model simplicity and ac-
curacy. While our model offers a tractable frame-
work for initial investigations, it may lack the detailed
mechanisms necessary for higher fidelity simulations.
This balance between simplicity and detail highlights
the need for ongoing model refinement and validation
to better capture the nuances of volcanic activity.

Overall, this work represents a valuable initial
attempt to simulate a complex geophysical phe-
nomenon using a simplified model. The insights
gained from this study offer a foundation for future
research, which could focus on refining the model to
better capture the nuances of lava fountain dynamics
and exploring alternative approaches to improve sim-
ulation accuracy. Continued development and valida-
tion of the model will be crucial in enhancing its abil-
ity to reproduce real-world lava fountain phenomena
and contribute to our understanding of these complex
systems.

Future research directions may include:

• Further refining the stress propagation mechanism
to better mirror the dynamics observed in actual
lava fountains, possibly by incorporating more
complex algorithms or alternative modeling ap-
proaches.

• Systematically testing the model with larger grid
sizes and extended simulation periods to explore
how these factors influence the fidelity of the sim-
ulated lava fountain dynamics, potentially leading
to more accurate and reliable predictions.

• Investigating additional external factors, includ-
ing environmental conditions and geological vari-
ations, that could significantly influence lava
fountain behavior, offering a more holistic under-
standing of the processes involved.
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