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Abstract: When it was first introduced, the Chips-n-Salsa Java library provided stochastic local search and related algo-
rithms, with a focus on self-adaptation and parallel execution. For the past four years, we expanded its scope
to include evolutionary computation. This paper concerns the evolutionary algorithms that Chips-n-Salsa now
provides, which includes multiple evolutionary models, common problem representations, a wide range of
mutation and crossover operators, and a variety of benchmark problems. Well-defined Java interfaces enable
easily integrating custom representations and evolutionary operators, as well as defining optimization prob-
lems. Chips-n-Salsa’s evolutionary algorithms include implementations with adaptive mutation and crossover
rates, as well as both sequential and parallel execution. Source code is maintained on GitHub, and immutable
artifacts are regularly published to the Maven Central Repository to enable easily importing into projects for
reproducible builds. Effective development processes such as test-driven development, as well as a variety of
static analysis tools help ensure code quality.

1 INTRODUCTION

Evolutionary computation refers to the family of
problem solving frameworks that are inspired by
models of natural evolution and genetics. Most forms
of evolutionary computation are population-based,
maintaining a population of many candidate solu-
tions to a problem, which evolve over many gener-
ations using operators that mimic evolutionary pro-
cesses such as mutation and recombination. Evo-
lutionary computation is often used to solve a wide
variety of problems, including in software engineer-
ing (Sobania et al., 2023; Arcuri et al., 2021; Petke
et al., 2018), computer vision and image process-
ing (Wan et al., 2023; Bi et al., 2023), neural net-
work construction (Zhou et al., 2021), engineering
design (Tayarani-N. et al., 2015), production schedul-
ing (Branke et al., 2016), finance (Ponsich et al.,
2013), graph theory (Pizzuti, 2018), feature selec-
tion (Xue et al., 2016), data mining (Mukhopad-
hyay et al., 2014), multiobjective optimization (Liang
et al., 2023), dynamic optimization problems (Yaz-
dani et al., 2021), among many others.

Previously, we introduced Chips-n-Salsa (Ci-
cirello, 2020), an open source Java library for
stochastic local search and related algorithms. At
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the time, Chips-n-Salsa version 1.3.0 did not in-
clude evolutionary computation. Instead it focused
on a variety of other metaheuristics, such as hill
climbing (Hoos and Stützle, 2018; Selman and
Gomes, 2006; Prügel-Bennett, 2004), simulated an-
nealing (Delahaye et al., 2019), and stochastic sam-
pling search algorithms (Grasas et al., 2017; Cicirello
and Smith, 2005; Gomes et al., 1998; Bresina, 1996;
Langley, 1992). Chips-n-Salsa supports self-adaptive
search, such as adaptive annealing schedules (Ci-
cirello, 2021; Hubin, 2019; Štefankovič et al., 2009)
for simulated annealing, and adaptive restart sched-
ules (Cicirello, 2017; Luby et al., 1993) for multi-
start search. Chips-n-Salsa is also designed to eas-
ily support parallel search, as well as to enable defin-
ing hybrids of multiple metaheuristics. The algo-
rithm implementations are highly customizable such
as in choice of search operators, including providing
well-defined interfaces to enable the option to inte-
grate custom components with library components.
Chips-n-Salsa currently requires Java 17 at minimum.
Source code is maintained on GitHub, and API docu-
mentation and other information available on the web.
Immutable artifacts of every release, including pre-
compiled jar of the library and jars of the source and
documentation, are regularly published to the Maven
Central Repository to enable easily importing into
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Table 1: URLs for Chips-n-Salsa.

Source https://github.com/cicirello/
Chips-n-Salsa

Website https://chips-n-salsa.cicirello.org/
Maven https://central.sonatype.com/artifact/org.

cicirello/chips-n-salsa/
Docs https://chips-n-salsa.cicirello.org/api/
Examples https://github.com/cicirello/

chips-n-salsa-examples

software development projects, as well as to ensure
reproducible builds. See Table 1 for library URLs.

During the four years since that previous publi-
cation, there have been six major releases of Chips-
n-Salsa, whose scope we expanded to include evolu-
tionary computation. This paper focuses on version
7.0.0, and more specifically on the genetic algorithms
(GA) and other evolutionary algorithms (EA) that the
library now provides. Chips-n-Salsa supports multi-
ple forms of EA, such as the classic generational EA
as well as the (µ + λ)-EA, and also includes many
crossover and mutation operators for different rep-
resentations, such as for optimizing bit-vectors, per-
mutations, and vectors of reals and integers. Addi-
tionally, to complement Chips-n-Salsa’s emphasis on
self-adaptation, it includes an adaptive EA where the
crossover and mutation rates evolve during the search.
We have also added many common benchmarking
problems to the library. The objectives of doing so
include serving as a research testbed, and supporting
reproducible empirical evolutionary computation re-
search. Reproducible research (National Academies,
2019) is crucial in all fields of science and engineer-
ing.

In the remainder of this paper, we cover the EA
functionality of Chips-n-Salsa as of version 7.0.0. We
begin with a brief discussion of related evolutionary
computation libraries in Section 2. Then, in Sec-
tion 3, we present the EAs of Chips-n-Salsa, along
with a discussion of key features of the implementa-
tions, and a discussion of the crossover and mutation
operators available for each supported representation.
We also summarize the benchmark problems imple-
mented within the library. Our objective isn’t only
to enable reproducible research, but also to provide a
production ready open source toolkit for use by prac-
titioners. Thus, we employ high-quality development
practices, which we summarize in Section 4. We wrap
up in Section 5.

2 RELATED WORK

There are several other open source libraries avail-
able for evolutionary computation (Jenetics, 2024;
Tarkowski, 2023; de Dios and Mezura-Montes, 2022;
Izzo and Biscani, 2020; Scott and Luke, 2019; Bell,
2019; Gijsbers and Vanschoren, 2019; Detorakis and
Burton, 2019; Simson, 2019).

Many focus on a specific form of evolutionary
computation. For example, LGP (Simson, 2019)
implements genetic programming (GP) in Kotlin.
DCGP (Izzo and Biscani, 2020) is also a GP li-
brary, but in C++ with a Python interface. Meta-
heuristics (de Dios and Mezura-Montes, 2022) is
a Julia package consisting of several metaheuris-
tics for both single-objective and multi-objective
optimization. CEGO (Bell, 2019) is a differen-
tial evolution C++ library with a Python wrapper.
Quilë (Tarkowski, 2023) and GAIM (Detorakis and
Burton, 2019) are both C++ libraries for GAs, with
GAIM focused specifically on multi-population is-
land models. ECJ (Scott and Luke, 2019) and Jenet-
ics (Jenetics, 2024) are both Java libraries supporting
multiple forms of evolutionary computation.

Chips-n-Salsa differs from the existing libraries
in a few ways. First, it supports both evolutionary
computation as well as other metaheuristics. Due to
this, it is straightforward to create hybrids of multiple
techniques. Second, observing that much of the run-
time of an EA is spent generating random numbers,
we have highly optimized the randomness of Chips-
n-Salsa utilizing the ρµ library (Cicirello, 2022b).
Third, Chips-n-Salsa includes more built-in support
for evolving permutations compared to other libraries,
with a comprehensive collection of evolutionary per-
mutation operators (Cicirello, 2023). Additionally,
Chips-n-Salsa is designed to enable parallel execu-
tion.

3 CORE FUNCTIONALITY

This Section provides an overview of the core evo-
lutionary computation functionality of the Chips-n-
Salsa library. It is organized into subsections covering
the EA features and characteristics (Section 3.1), the
evolutionary operators provided by the library (Sec-
tion 3.2), and the available benchmark problems (Sec-
tion 3.3).

3.1 Evolutionary Algorithms

Evolutionary Models. Chips-n-Salsa provides im-
plementations of both generational EAs, where each
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public interface Copyable <T extends
Copyable <T>> {

T copy(T c);
}
Listing 1: Interface to define custom representa-
tion.

generation involves replacing the current population
with an offspring population produced via application
of the crossover and mutation operators, as well as
steady-state EAs, where a small number of children
are generated at a time, replacing a small number of
members of the population. For example, the (µ+λ)-
EA maintains a population of size µ, generates a small
number of children λ, and keeps the µ best of the
combination. The simplest form of steady-state EA
is the (µ+1)-EA that generates a single offspring at a
time. The library also includes the special case of the
(1+ 1)-EA. Chips-n-Salsa additionally supports the
special case of a mutation-only EA. The generational
EAs include an option for elitism, where a small num-
ber of the best population members survive without
undergoing crossover or mutation.
Representations. Chips-n-Salsa provides several
built-in representations, including efficient bit-vectors
suitable for a GA, as well as vectors of integers
and reals, such as for real-valued function opti-
mization. Since many combinatorial optimization
problems concern searching for an optimal ordering,
Chips-n-Salsa supports evolving permutations utiliz-
ing an efficient permutation representation (Cicirello,
2018). Section 3.2 focuses on the evolutionary opera-
tors available for each of these representations.
Customizable. If the built-in representations are un-
suitable for a problem, Chips-n-Salsa supports cus-
tom representations via Java generic types and by
implementing a Java interface Copyable as seen in
Listing 1, which enables the library to create iden-
tical copies of population members as needed in a
representation-independent manner. Defining evolu-
tionary operators for the new representation is accom-
plished by implementing the MutationOperator and
CrossoverOperator interfaces shown in Listing 2.
Those same interfaces also enable implementing cus-
tom crossover and mutation operators for the built-in
representations.
Adaptive. In addition to the more common case of
control parameters that remain constant throughout a
run, Chips-n-Salsa includes an implementation of an
adaptive EA that encodes the crossover and mutation
rates as part of each population member, using Gaus-
sian mutation to evolve these during the search (Hin-
terding, 1995).
Parallel. All metaheuristics in the library imple-

public interface MutationOperator <T>
extends Splittable <MutationOperator
<T>> {

void mutate(T c);
}

public interface CrossoverOperator <T>
extends Splittable <CrossoverOperator
<T>> {

void cross(T c1, T c2);
}

public interface Splittable <T extends
Splittable <T>> {

T split();
}

Listing 2: Interfaces for evolutionary operators.

ment a set of Java interfaces, enabling the EA im-
plementations to utilize the library’s existing parallel
architecture for multi-populations to accelerate run-
time on multicore systems. One of these interfaces
is the Splittable interface shown earlier in List-
ing 2, which enables the library’s parallel architecture
to replicate the functionality of operators, etc when
spawning threads.
Hybridization. Hybrids of EA with other search al-
gorithms are common. For example, a memetic al-
gorithm combines an EA with local search (Neri and
Cotta, 2012). Creating such hybrids in Chips-n-Salsa
is straightforward, facilitated by its plug-and-play de-
sign.
Configurable and Optimized Randomness. The
runtime of an EA or GA can be significantly im-
pacted by the choice of pseudorandom number gen-
erator (PRNG) (Nesmachnow et al., 2015), as well
as the choice of algorithm for generating values from
specific distributions (e.g., uniform subject to bounds,
Gaussian, Cauchy, etc). For this reason, we care-
fully optimized all random behavior within Chips-n-
Salsa utilizing the enhanced random functionality of
the ρµ library (Cicirello, 2022b). Additionally, by de-
fault, Chips-n-Salsa uses a carefully chosen, efficient
PRNG, but also provides the option to configure the
PRNG through its Configurator class whose inter-
face is shown in Listing 3.

3.2 Evolutionary Operators

Selection Operators: The selection opera-
tors (Mitchell, 1998) include fitness proportionate
selection (i.e., weighted roulette wheel), truncation
selection, tournament selection, stochastic universal
sampling (SUS), linear rank selection, exponential
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public class Configurator {
public static void
configureRandomGenerator(long seed);

public static void
configureRandomGenerator(
RandomGenerator.SplittableGenerator
r);

}
Listing 3: Random generator configuration.

public interface SelectionOperator extends
Splittable <SelectionOperator > {

default void init(int generations);
void select(
PopulationFitnessVector.Double fitnesses,
int[] selected);

void select(
PopulationFitnessVector.Integer fitnesses,
int[] selected);

}
Listing 4: Interface for defining selection opera-
tors.

rank selection, Boltzmann selection, and random
selection. There are two forms of each of linear rank,
exponential rank, and Boltzmann selection: one that
operates like roulette wheel and one that operates
like SUS. There are also options to transform fitness
values relative to the population fitness during
selection, such as with sigma scaling or by shifting
the fitness scale. An interface, SelectionOperator,
is provided to enable defining custom selection
operators (see Listing 4).
Evolutionary Operators for Bit Vectors. Chips-n-
Salsa supports the common bit-flip mutation for mu-
tating bit vectors, and all of the common crossover op-
erators, such as single-point, two-point, k-point, and
uniform crossover operators.
Evolutionary Operators for Integer Vectors and
Real Vectors. For vectors of integers and reals, the li-
brary includes the obvious extensions of single-point,
two-point, k-point, and uniform crossover. For mutat-
ing real vectors, the library includes Gaussian muta-
tion (Hinterding, 1995), Cauchy mutation (Szu and
Hartley, 1987), and uniform mutation. For integer
vectors, it includes a uniform mutation (e.g., that adds
a uniform random value from [−w,w] to components
of the vector), as well as a random value change mu-
tation that replaces a value with a different random
value from its domain.
Evolutionary Operators for Permutations. Many
evolutionary operators exist for evolving permuta-
tions (Cicirello, 2023). Chips-n-Salsa provides an
extensive collection of crossover and mutation op-

erators for permutations. Mutation operators in-
clude all of the common permutation mutation op-
erators (Cicirello, 2023; Serpell and Smith, 2010;
Eiben and Smith, 2003; Valenzuela, 2001) as well
as a few less common ones. The mutation opera-
tors for permutations include: swap, adjacent swap,
insertion, reversal, scramble, uniform scramble, cy-
cle mutation (Cicirello, 2022a), 3opt (Lin, 1965),
block move, block swap, as well as window-limited
mutation operators (Cicirello, 2014). Crossover
operators include: cycle crossover (Oliver et al.,
1987), position based crossover (Barecke and De-
tyniecki, 2007), order crossover (Davis, 1985), or-
der crossover 2 (Syswerda, 1991), non-wrapping
order crossover (Cicirello, 2006), uniform order
based crossover (Syswerda, 1991), partially matched
crossover (Goldberg and Lingle, 1985), uniform
partially matched crossover (Cicirello and Smith,
2000), edge recombination (Whitley et al., 1989),
enhanced edge recombination (Starkweather et al.,
1991), precedence preservative crossover (Bierwirth
et al., 1996), and uniform precedence preservative
crossover (Bierwirth et al., 1996).

Hybrid Operators: The library includes support
for utilizing hybrid crossover operators and hybrid
mutation operators. Specifically, it includes classes
to integrate multiple crossover operators or mutation
operators, such that an operator is chosen randomly
from a specified set during each application. The ran-
dom choice can be weighted (e.g., to choose one op-
erator with higher probability than another) or it can
be a uniform random choice.

3.3 Benchmark Problems

To solve optimization problems using the EAs of the
library, you either implement the fitness function di-
rectly via a Java interface, or if it is a minimization
problem, you can implement its cost function via a
Java interface, and then use one of the library’s classes
for mapping a cost function (e.g., minimization) to a
fitness function (e.g., maximization). Listing 5 shows
the interfaces for defining fitness functions; and List-
ing 6 shows the interfaces for defining optimization
problems (OptimizationProblem for real-valued
costs and IntegerCostOptimizationProblem for
integer-valued costs). The library treats optimization
functions and fitness functions as distinct concepts.

Chips-n-Salsa includes many common bench-
marking problems. For example, it includes imple-
mentations of all of Ackley’s (Ackley, 1985; Ackley,
1987) classic problems for bit vectors, such as one-
max, two-max, trap, porcupine, plateaus, and mix, as
well as various royal roads problems (Mitchell et al.,
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public interface FitnessFunction.Double <T
extends Copyable <T>> extends
FitnessFunction <T> {

double fitness(T candidate);
}

public interface FitnessFunction.Integer
<T extends Copyable <T>> extends
FitnessFunction <T> {

int fitness(T candidate);
}

public interface FitnessFunction <T extends
Copyable <T>> {

Problem <T> getProblem();
}

Listing 5: Interfaces to define fitness functions.

1992; Holland, 1993; Jones, 1994). It includes some
real-valued function optimization problems (Forrester
et al., 2008; Gramacy and Lee, 2012). It also in-
cludes the permutation in a haystack (Cicirello, 2016),
a benchmarking problem for permutations, as well
as many NP-Hard combinatorial optimization prob-
lems (Garey and Johnson, 1979), such as the travel-
ing salesperson, bin packing, largest common sub-
graph, quadratic assignment, and many scheduling
problems.

4 DEVELOPMENT PRACTICES

In developing Chips-n-Salsa, we utilize best practices
in software engineering, such as test-driven develop-
ment, integrating static analysis tools into the build
pipeline, and continuous integration and continuous
deployment (CI/CD). Frequent public releases are de-
ployed to artifact repositories (e.g., Maven Central
and GitHub Packages) to ease potential integration
into other open source projects. The immutable na-
ture of the artifacts published to the Maven Central
Repository help ensure builds of projects that depend
upon Chips-n-Salsa are reproducible.

A few of the quality control methods used in de-
veloping Chips-n-Salsa are as follows:
Unit Testing. Following test-driven development
practices, unit tests are written for all components in
the JUnit framework.
Regression Testing. All new and existing test cases
must pass before changes are accepted, to ensure that
new functionality does not introduce bugs into exist-
ing components.
Test Coverage. We use the test coverage tool, Ja-
CoCo (Hoffmann et al., 2024), to compute both C0

public interface OptimizationProblem <T
extends Copyable <T>> extends Problem
<T> {

double cost(T candidate);
double value(T candidate);
default double costAsDouble(T
candidate);

default SolutionCostPair<T>
getSolutionCostPair(T candidate);

default boolean isMinCost(double cost);
default double minCost();

}

public interface
IntegerCostOptimizationProblem <T
extends Copyable <T>> extends Problem
<T> {

int cost(T candidate);
int value(T candidate);
default double costAsDouble(T
candidate);

default SolutionCostPair<T>
getSolutionCostPair(T candidate);

default boolean isMinCost(int cost);
default int minCost();

}

public interface Problem <T extends Copyable
<T>> {

double costAsDouble(T candidate);
SolutionCostPair<T>
getSolutionCostPair(T candidate);

}
Listing 6: Interfaces to define problems.

coverage (instructions coverage) and C1 coverage
(branches coverage) for all builds.
Pull-Request Checks. Chips-n-Salsa is developed
openly on GitHub. GitHub’s built-in CI/CD frame-
work, GitHub Actions (GitHub, 2024c), is used dur-
ing pull-requests to verify that all test cases pass, and
to run the test coverage analysis.
Static Analysis. The build pipeline runs several static
analysis tools to automatically detect error prone
code, including: CodeQL (GitHub, 2024a), Refac-
torFirst (Bethancourt, 2024), SpotBugs (SpotBugs,
2024), FindSecBugs (Arteau, 2024), and Snyk (Snyk,
2024).
Code Style. For consistency, we use Google Java
Style (Google, 2024), and automatically reformat to
this style using a Maven plugin (Spotify, 2024).
Dependency Management. We keep dependencies
up to date with dependabot (GitHub, 2024b).
Documentation Site. The project website, among
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other things, contains the Javadoc formatted docu-
mentation of the library (URL in Table 1), which is
automatically updated during the release process.
Example Code. In addition to the repository of the
library itself, an additional GitHub repository (URL
in Table 1) provides a collection of detailed examples
demonstrating how to use Chips-n-Salsa in projects.

Chips-n-Salsa is licensed via the GNU Gen-
eral Public License v3.0 (Free Software Foundation,
2007), and it welcomes contributions from the open
source community, with well-defined guidelines for
contributors.

5 CONCLUSION

Evolutionary computation is widely used in many
fields. Chips-n-Salsa provides a well-engineered open
source framework for EA and related metaheuristics,
including a comprehensive set of evolutionary opera-
tors for common representations like bit vectors, per-
mutations, and vectors of integers or reals, as well
as implementations of many common benchmarking
problems. It thus can serve as an ideal framework
for empirical research. For example, if a researcher
implements their new EA using the library, they ben-
efit from an easy way to compare their approach to
many others as well as on many problems. Deploying
immutable software artifacts of each version of the
library to Maven Central better enables reproducible
research (National Academies, 2019), as future runs
of experiments can use the exact versions of compo-
nents as the original runs.
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