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Abstract: Over recent decades, precision agriculture has revolutionized farming by optimizing crop yields and reducing
resource use through targeted applications. Existing portable spray quality assessors lack precision, espe-
cially in detecting overlapping droplets on water-sensitive paper. This proposal aims to develop a smartphone
application that uses the integrated camera to assess spray quality. Two approaches were implemented for
segmentation and evaluation of both the water-sensitive paper and the individual droplets: classical computer
vision techniques and a pre-trained YOLOv8 deep learning model. Due to the labor-intensive nature of an-
notating real datasets, a synthetic dataset was created for model training through sim-to-real transfer. Results
show YOLOv8 achieves commendable metrics and efficient processing times but struggles with low image
resolution and small droplet sizes, scoring an average Intersection over Union of 97.76% for water-sensitive
spray segmentation and 60.77% for droplet segmentation. Classical computer vision techniques demonstrate
high precision but lower recall with a precision of 36.64% for water-sensitive paper and 90.85% for droplets.
This study highlights the potential of advanced computer vision and deep learning in enhancing spray quality
assessors, emphasizing the need for ongoing refinement to improve precision agriculture tools.

1 INTRODUCTION

Accurate evaluation of agricultural spray applica-
tions is critical for ensuring optimal pesticide usage
and minimizing environmental impact. Although vi-
sual assessment of Water-Sensitive Papers (WSPs) is
the norm for spray application of pesticides, it has
shown to be an unreliable method for correctly assess-
ing the paper’s density and distribution of droplets.
These challenges call for the development of im-
proved methods for analyzing WSP data to enhance
the precision and reliability of agricultural spray as-
sessments.

The use of pesticides in crop management is cru-
cial but can have significant economic, environmen-
tal, and health consequences if not applied correctly.
The effectiveness of pesticides relies heavily on the
application method to achieve an optimal droplet pat-
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tern, reducing drift and ensuring precise product de-
position on the target (Privitera et al., 2023). How-
ever, inconsistent pesticide spray coverage often re-
sults in unequal protection across fields, leading to nu-
merous issues, such as the need for repeating pesticide
applications, the development of weed resistance, and
potential shifts in pest behavior. These shortcom-
ings impose not only economic burdens but also am-
plify environmental and health risks (Machado et al.,
2018). Moreover, factors such as the variability in
weather conditions, equipment, and applicators fur-
ther contribute to this inconsistency, posing signifi-
cant challenges for effective and sustainable field crop
protection (Nansen et al., 2021).

Precision spraying can be optimized by knowing
the values of certain metrics such as Volume Me-
dian Diameter (VMD), which is measured by mul-
tiple image analyzers and stands as a key factor in
reducing wasted spray and thereby minimizing envi-
ronmental damage and cutting operational costs (Priv-
itera et al., 2023). There are already a few meth-
ods available to assess the performance of pesticide
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applications with sophisticated imaging analyses and
water-sensitive spray cards, which are able to quan-
tify spray coverage and evaluate the efficiency of the
pesticide distribution (Nansen et al., 2021). Tech-
niques have evolved to calculate these metrics in the
last few years, from manual processes to automated
solutions such as DropletScan (Machado et al., 2018)
and SmartSpray (Nansen et al., 2021). This signifies
a growing need for more precise and efficient assess-
ment tools (Xun and Gil, 2024). The integration of
artificial intelligence and machine learning in agricul-
ture can also make significant advancements in as-
sessing spray quality (Privitera et al., 2023).

This research addresses the challenges described
by developing a dual-method framework integrating
both classical computer vision and advanced machine
learning solutions for accurate WSP and droplet seg-
mentation. To allow real-time image processing and
statistical analysis of WSP in a practical tool for field
use, an Android application was developed that is
ready to be used for photography and analysis of the
WSP. Additionally, a synthetic dataset for images of
WSP with droplets was created to augment the train-
ing data as a means to improve the accuracy and gen-
eralization of the machine-learning models, given the
limited number of annotated WSP images available.

This paper reviews existing methodologies for
Water Spray Pattern (WSP) analysis, identifying their
limitations through a gap analysis. It presents the pri-
mary metrics for evaluating spray quality and intro-
duces an innovative approach to enhance model train-
ing using synthetic datasets. The methodology de-
scribes both classical computer vision and machine
learning techniques for WSP and droplet segmenta-
tion, alongside the development of an Android appli-
cation and web service. The results demonstrate the
efficacy of the proposed solutions, comparing perfor-
mance metrics across real and synthetic datasets. The
study concludes with a summary of findings, implica-
tions for future research, and potential directions for
further work.

2 LITERATURE REVIEW ON
WATER-SENSITIVE SPRAY
ASSESSMENT

Water Sensitive Papers (WSPs) have been a funda-
mental tool for agricultural spray evaluation for over
40 years, used in both aerial and ground applica-
tions (Cerruto et al., 2019; Marçal and Cunha, 2008).
WSPs are semi-rigid papers coated with bromoethyl
blue on one side and are available in various sizes.

The coating appears yellow when dry but turns differ-
ent shades of brown, blue, and purple when it comes
into contact with water droplets. These stains cre-
ate a significant contrast with the dry yellow back-
ground, making it easier to assess the dispersion of
the droplets (Privitera et al., 2023; Machado et al.,
2018; Hoffmann and Hewitt, 2005). However, this
method faces limitations such as the inability to mea-
sure droplets smaller than 50 µm Machado et al.
(2018); Cerruto et al. (2019), sensitivity to high hu-
midity (Nansen et al., 2021; Hoffmann and Hewitt,
2005), and inaccuracies with high coverage (Marçal
and Cunha, 2008). These limitations call for alterna-
tive methods for accurate spray analysis.

Rosin-Rammler distribution is a widely used func-
tion expressing drop size distribution with two pa-
rameters, representative diameter and a measure of
drop size dispersion, and is useful for single-peaked
results. Its simplicity and ability to extrapolate into
difficult-to-measure ranges make it popular (Lefebvre
and McDonell, 2017; Déchelette et al., 2011).

The evaluation of droplet sizes commonly uses
Volume Median Diameter (VMD), which expresses
drop size based on the volume of liquid sprayed.
The spray is divided into two equal parts based on
the sprayed volume, meaning that 50% of the total
volume is made up of drops with diameters larger
than the VMD value, and the other 50% by droplets
with diameters smaller than the VMD value (Privit-
era et al., 2023; Schick, 2008). Relative Span Fac-
tor (RSF) is another metric commonly used. It is a
dimensionless parameter indicative of the uniformity
of the drop size distribution. RSF is a practical way
of comparing various drop size distributions. High
RSF values indicate wider drop size distributions and
lower RSF values indicate less variation among drop
sizes (Lefebvre and McDonell, 2017; Privitera et al.,
2023; Machado et al., 2018; Schick, 2008).

YOLOv8, a state-of-the-art model in object detec-
tion, excels in efficiency and speed, making it suitable
for real-time applications like precision agriculture.

There are an array of software solutions available
to characterize spray quality. Zhu et al. (2011) cre-
ated DepositScan, which is a portable scanner com-
prised of a handheld card scanner and a deposit col-
lector. Nansen et al. (2015) presented SnapCard as
an app available for both iOS and Android smart-
phones that offers two core functions: prediction of
spray coverage based on pre-application weather data
and spray settings, and post-application measurement
for quality control. Machado et al. (2018) intro-
duced DropLeaf, a smartphone app tailored to esti-
mating pesticide amounts on WSPs, assisting farmers
and agronomists in measuring spray coverage. Addi-
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tionally, there are multiple other methodology solu-
tions that although are not readily available and com-
mercialized, they serve important contributions to the
field. Ömer Barış Özlüoymak and Bolat (2020) de-
veloped a novel image processing software within
Vision Acquisition Software (VAS) by National In-
struments that aims to assess accurately spray cov-
erage rates and droplet counts on WSP, including
overlapped droplets. Xun and Gil (2024) developed
a novel methodology that focuses on precisely seg-
menting overlapping droplets by utilizing concave
point detection and ellipse fitting, ensuring optimal
accuracy when the coverage is below 25%. Liu et al.
(2024) presented a novel Optical Droplet Edge Imag-
ing method that uses a device to acquire images from
the top and bottom side of the droplet deposition sur-
face to obtain the correct size measurement of the
droplets.

3 DESIGN AND
IMPLEMENTATION OF
PROPOSED SOLUTION

The main goal of the system is to create an An-
droid application tool for real-time assessment of
spray quality on water-sensitive paper. The An-
droid application, client-side, captures an image of
the water-sensitive paper and sends it to the server
side. The server analyzes the image, provides droplet
statistics, and sends the results back to the client.
The server-side application uses a dual-method al-
gorithm that combines classical computer vision and
machine learning techniques to accurately segment
water-sensitive paper and droplets. The primary ob-
jective of both algorithms is to detect and separate
overlapped droplets, ensuring that droplets that over-
lap are counted as separate entities for statistical pur-
poses. Both methods developed follow an equiva-
lent logic: detect the water-sensitive paper, remove
distortion, segment individual droplets, and calculate
the WSP statistics. This dual-algorithm approach al-
lows to directly compare distinct methods of analyz-
ing water-sensitive papers.

The standard WSP image contains over 1000
droplets that require manual labeling to establish ac-
curate ground truth. This is challenging due to pixel-
level segmentation requirements and the risk of incor-
rect labels. To overcome this, an algorithm was cre-
ated to generate a simulation-based dataset, produc-
ing synthetic data that replicates real-world processes
and automatically generates ground truth annotations.
This approach saves time, ensures consistency, and

improves annotation accuracy, which is vital for ef-
fective machine learning model training.

Two distinct sets of images of water-sensitive pa-
per were provided that form the basis for the analy-
sis and study of the visual aspect of real spraying on
a WSP. The images were also used to test the appli-
cation’s algorithms implemented. Given the task of
manually labeling each droplet, only two images were
properly annotated for testing purposes.

Both datasets will be made available further into
the future.

3.1 Synthetic Dataset

The synthetic dataset addresses the data acquisition
and annotation challenges and was designed for trans-
fer learning during the training of CNN models. Ele-
ments from real datasets, such as droplet colors, pat-
terns, and shapes, were combined to enhance accu-
racy and simulate realistic conditions. The dataset
represents a range of spraying scenarios with over-
lapped droplets. The Rosin-Rammler distribution was
used to calculate droplet sizes, a method commonly
used to describe particle sizes in sprays. The synthetic
datasets were created with three different image res-
olutions to test model generalization across varying
resolutions, as well as multiple different droplet size
distributions.

The background of a WSP was generated with a
radial gradient and random imperfections to mimic
real-world scenarios. Droplet sizes were determined
using the Rosin-Rammler distribution. Both colors
for the background and the droplets were sourced
directly from real datasets. The algorithm gener-
ates the placement of each droplet randomly. Then,
it identified the overlaps between the droplets and
applied a ”shape burst” coloring technique for real-
ism. Droplets were positioned using a sliding window
technique to manage the computational load. Once
positioned, droplets were colored based on the dis-
tance to the nearest edge, ensuring smooth color tran-
sitions.

(a) Syn-
thetic
droplets.

(b) Syn-
thetic
droplets.

(c) Real
droplets.

(d) Real
droplets.

Figure 1: Comparison between droplets from the synthetic
dataset (image (a) and (b)) and the real dataset (image (c)
and (d)).
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In the end, for testing purposes, background com-
positing was applied to seamlessly integrate synthetic
droplets with realistic backgrounds, using the base
images from real datasets. This process involved
scaling and layering synthetic elements to maintain
authenticity, ensuring the resulting composite image
looked natural.

(a) Syn-
thetic WSP.

(b) Syn-
thetic WSP.

(c) Real
WSP.

(d) Real
WSP.

Figure 2: Comparison between droplets from the synthetic
dataset (image (a) and (b) and the real dataset (image (c)
and (d)).

3.2 Water-Sensitive Paper Statistics

To accurately assess the quality of a spray in a water-
sensitive paper (WSP) analysis, several statistical
measures must be considered. The most representa-
tive and widely used statistical measurements are the
Volume Median Diameter (VMD) and Relative Span
Factor (RSF), which both require the diameter of each
droplet.

Since the measurements are conducted using the
pixels of a digital image, droplets are initially mea-
sured in pixels. The software detects the area of each
droplet rather than the diameter. Therefore, to cal-
culate the real-world measurements of each droplet,
the server-side application must obtain the size of the
paper to be analyzed in real-world units, specifically
in centimeters. This value is then used to establish
the true ratio between the measurements in pixels and
centimeters. With the area of each droplet measured
in pixels, the diameter can be calculated by approxi-
mating the droplet shape to a perfect circle and using
the relation between area and diameter. The following
equation is used throughout the algorithms developed
to calculate the statistics of a WSP:

dµm = 2×
√

Apx

π
×

widthµm

widthpx
(1)

dµm is the diameter in micrometers, Apx is the area
of the droplet in pixels, widthpx is the measurement

of the width of the paper in pixels and widthµm is the
measurement of the width of the paper in microme-
ters.

When calculating real-world statistics such as
VMD or RSF, the measurements of the droplets,
which are all in pixels, are converted to real-world
measurements in centimeters using a pre-defined
scale. This scale factor accounts for the resolution
of the image and the physical dimensions of the WSP.
Additionally, a spread factor is applied, assuming that
all droplets have the same physical properties and im-
pact on the WSP under similar conditions. This en-
sures consistency in the interpretation of droplet mea-
surements

The values of VMD and RSF are calculated using
the representative diameters of the droplets. There-
fore, for an accurate analysis of a WSP, it is crucial to
know the correct measurement of the diameter of each
droplet. If droplets overlap, it is important to sepa-
rate them, as the calculation of the diameter based on
the area assumes a perfect circle. Additionally, if a
droplet is considered an ellipse, it introduces further
errors in the calculation.

Moreover, the coverage percentage, which indi-
cates the proportion of the WSP covered by droplets,
along with the quantity of droplets, is computed. This
information is used to assess the precision of the al-
gorithms developed and is displayed as a statistical
result in the Android application to offer additional
details about the paper.

3.3 Water-Sensitive Paper and Droplet
Segmentation

The server-side application focuses on the instance
segmentation of droplets on WSP, meaning that the
algorithm must identify and delineate the individual
each individual droplet within the image, including
the overlapped droplets. This is crucial for accurately
measuring and assessing droplet size and distribution.
These measurements are used to calculate the sta-
tistical values mentioned before like average droplet
size, distribution uniformity, and coverage percent-
age. Two segmentation types are required: segmen-
tation of the WSP and segmentation of the droplets
on the WSP.

3.3.1 Segmentation of the Water-Sensitive Paper

The classical computer vision method for segmenta-
tion of the WSP involves a multi-step process to ac-
curately delineate the paper from its background. Ini-
tially, the image is processed with a Gaussian blur
to minimize noise and a 3D color histogram is em-
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ployed to identify and isolate the predominant color,
masked to generate a binary image. This binary im-
age is produced by converting the original image to
grayscale and applying a binary threshold to accentu-
ate the edges. OpenCV’s findContours function is
used to detect contours, with the largest contour pre-
sumed to outline the paper’s boundary. The convex
hull of this contour is computed to establish a more
precise boundary. Finally, the corner points of the de-
tected shape are identified, and a perspective trans-
formation matrix is applied to correct any distortion,
resulting in a properly aligned image of the WSP.

For the machine learning approach, a pre-trained
model from YOLOv8 is utilized due to its efficiency
and rapid performance in object detection tasks. The
model, specifically a small-sized version optimized
for segmentation, was retrained using a dataset com-
prising 591 images for training, 54 images for val-
idation, and 27 images for testing. The model was
trained with 50 epochs and AdamW optimizer for
30 minutes. This dataset originally included 278
annotated real images of WSP with diverse back-
grounds. The annotations were done manually us-
ing Roboflow’s smart polygon tool. The augmenta-
tion techniques were applied on Roboflow as well,
expanding the dataset to a total of 672 images.

3.3.2 Droplet Segmentation on Water-Sensitive
Paper

The developed algorithm utilizes classical computer
vision techniques to segment and classify WSP
droplets, thereby providing meaningful distribution
statistics. The process begins with Otsu threshold-
ing (Mugele and Evans, 1951) from the OpenCV li-
brary, which effectively distinguishes droplets from
the background and outperforms adaptive threshold-
ing that often results in fragmented and inconsis-
tent segmentations. As cited by various researchers
(Lipiński and Lipiński, 2020; Wen et al., 2022), this
thresholding method stands out as particularly effec-
tive in the domain of this research

To minimize noise and enhance droplet separa-
tion, the image is first blurred before applying thresh-
olding. The thresholding mask is inverted, and the
findContours function in OpenCV is employed to
identify contours. Contours are classified into single
circles, single ellipses, and overlapped shapes, with
additional notation for edge shapes. Circularity and
ellipse fitting are determined using OpenCV func-
tions, while convexity analysis helps identify poten-
tial individual droplets within complex shapes.

For complex shapes, the Hough Circle Transform
combined with KMeans clustering is used to detect
circles. A mask isolates the region of interest, and

Original

Thresholding

Contour Classification

Droplet Detection

Figure 3: Image processing algorithm using classical com-
puter vision methods.

parameters are finely tuned to maximize circle detec-
tion. Circles are then refined through clustering and
Intersection over Union (IoU) score improvements,
ensuring accurate droplet identification and analy-
sis. Figure 4 illustrates the steps taken for individual
droplet segmentation.

ROI Hough Circle KMeans IoU

Figure 4: Separation of individual droplets process given a
non-circular shape.

The machine learning approach uses a pre-trained
medium segmentation model from YOLOv8. The
model is trained with 5 000 images of the synthetic
dataset. Given the small size of the droplets to be
detected, the images are cut into squares of 320 by
320 pixels to minimize the number of droplets per im-
age and maximize the visibility of each droplet for the
model. The model was trained with 300 epochs and
SGD optimizer for 7 hours and 30 minutes.

YOLOv8 was trained using images of 320 by 320
pixels, which was chosen to balance the need for de-
tail and the computational efficiency required for real-
time processing. This resolution provides enough de-
tail for identifying and segmenting droplets while en-
suring the processing time remains practical for appli-
cations that demand quick responses.

3.4 Android Application

The client-side is an Android application designed to
meet the system’s real-time requirements and was pri-
marily developed using the programming languages
Kotlin and Java in the Android Studio IDE. The ap-
plication GUI is illustrated in Figure 5

When using the app, the user can select to take a
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picture of the WSP using the smartphone-integrated
camera or choose an image from the gallery. After
that, they need to choose the segmentation algorithm
they intend to use and will be able to view the statis-
tics obtained through the computer vision analysis of
the server-side application. The communication be-
tween the two sides is done by sending a file in JSON
format.

Figure 5: Preview of the Android application.

Given the computationally intensive nature of the
image segmentation algorithms, processing on the
smartphone’s processor was deemed impractical. To
address this, a web service server was developed to
handle the image-processing tasks. This server re-
ceives requests to process images, performs the nec-
essary computations, and returns the processed image
along with relevant statistics.

The web service was developed using Python and
Flask, a lightweight web framework. The service fea-
tures a single REST API endpoint designed to receive
and process images and send back the evaluation of
the WSP.

4 EXPERIMENTAL RESULTS

4.1 Segmentation of Water Sensitive
Paper Results

The validation of the segmentation of the water-
sensitive paper is done by calculating the IoU met-
ric using both methods on a collection of 20 images,
which were put aside when the training of YOLOv8
took place. These images include a multitude of back-
grounds with the WSP being not always centered or
the main focus of the image, assuming the worst type
of user for the images.

Table 1: Results of the two algorithms developed for detect-
ing water-sensitive paper.

Method IoU Time (ms)
YOLOv8 0.9776 0.2801

CCV 0.3664 0.0357

The results presented in Table 6 indicate that the
YOLOv8 method significantly outperforms the CCV
approach in terms of IoU. This outcome aligns with
expectations, as CCV techniques rely on predefined
fixed values and are often less adaptable to image
variations. The CCV method struggles with gener-
alization, particularly when the dataset exhibits diver-
sity in the shapes, colors, and orientations of the WSP.

The detection of the WSP using the CCV method
implements a histogram of the colors in the image.
Therefore, when the main focus of the WSP image is
not the paper itself, this method is not the most effec-
tive. The algorithm performs with much more preci-
sion when the WSP is centered and occupies most of
the pixels in the image.

Figure 6 depicts two examples of the images used
to validate the algorithms. The image on the left
achieved an IoU value of 97.34%, whereas the image
on the right attained a value of 8.59%. This illustrates
that while segmentation with classical computer vi-
sion can be effective in certain cases, it has notable
failure points. On the other hand, the YOLOv8 model
obtained values of 97.03% and 93.78% respectively.

Figure 6: Two examples of images used for validating the
algorithms of WSP segmentation.

4.2 Segmentation of Droplets

For the evaluation of the segmentation of droplets, the
metrics presented in Table 2 were chosen for the task
of validating the different algorithms across various
datasets. The primary goal was to assess the perfor-
mance of each algorithm in terms of precision (P),
recall (R), F1-score (F1), mean average precision at
50% intersection over union (mAP50), and process-
ing time (Time).

Three different datasets were used. The synthetic
dataset (SD) comprises 30 images, which were put
aside during the training of YOLOv8, representing a
comprehensive sample of the synthetic dataset cre-
ated, including multiple image resolutions, colors,
and droplet distributions available. From the real
dataset, two images were annotated and verified, RD1
and RD2. Although this task was performed meticu-
lously, it is still susceptible to human error.

From the results, it can be inferred that YOLOv8
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Table 2: Results of algorithms for calculating statistics for water-sensitive paper.

Method Dataset P R F1 mAP50 Time (ms)
YOLOv8 RD 0.1516 0.0859 0.1096 0.01378 10.6307
YOLOv8 SD 0.6077 0.5725 0.5896 0.3796 8.2397

CCV RD 0.6551 0.8485 0.7393 0.5545 5.3724
CCV SD 0.9085 0.6304 0.7443 0.6010 5.3204

does not outperform CCV in segmentation. The seg-
mentation by YOLOv8 is imperfect, with many rough
edges due to the low resolution of images and the
small size of objects. Nevertheless, YOLOv8 exhibits
acceptable metrics, especially given the constraints of
the task. The performance metrics highlight specific
strengths and weaknesses of each method. For ex-
ample, while CCV shows higher precision on RD, its
recall is considerably lower, indicating that it misses
more droplets than YOLOv8.

The confidence threshold for the prediction of
YOLOv8 was set to 0.1 and 0.5, respectively. Dur-
ing the segmentation task, the YOLOv8 solution was
found to be conservative. It often failed to detect
droplets even when there was a clear distinction be-
tween the background and the droplet. Upon evaluat-
ing the results, it was apparent that assigning the low-
est confidence score during the prediction generated
much better results for the task at hand. To assess the
precision and recall of the predictions, the IoU thresh-
old was set to 0.5 (or 50%). This means that a predic-
tion was considered accurate when the IoU relation-
ship between the predicted mask and the ground-truth
mask of the object was over 0.5.

Another important aspect to consider to validate
the algorithms developed is to evaluate the values ob-
tained for the most relevant statitstics for spray qual-
ity assessment. For this, it was used an external soft-
ware developed by Machado et al. (2018), DropLeaf.
Multiple applications are available on the Google Play
Store, but only DropLeaf allows image uploads from
the gallery. This process was done manually for both
the datasets and the results were annotated for later
evaluation and metric calculation. The datasets used
are the same datasets used for the before table. To
utilize DropLeaf, a virtual machine for Android 7.3.1
was utilized since the software stopped being compat-
ible with newer Android versions.

DropLeaf consistently evaluates the coverage per-
centage as high, approximately 90%. However, ac-
cording to Machado et al. (2018), the density should
be lower and more accurate. When recalibrating the
value to 100% minus the Coverage Percentage, the ac-
curacy of DropLeaf improved significantly. This sug-
gests a potential error in the application rather than
the calculation of the coverage percentage in the al-
gorithm, as no other cause was identified.

The ground truth statistics of the datasets were cal-

culated using the same algorithm as the segmentation
algorithm developed. Therefore, it is crucial to con-
sider that significant discrepancies in DropLeaf values
might stem from differences in the calculation mod-
ule, as it is the only varying factor.

5 CONCLUSIONS

This study analyzes WSP methodologies, identifies
limitations, and proposes innovative solutions. A syn-
thetic dataset is generated to improve model training
and generalizability. The development of a partial an-
notation algorithm for real datasets reduces manual
effort while maintaining accuracy. However, further
improvements to the synthetic dataset are needed to
enhance both human perception and transfer learning
results.

The methodology compares classical computer vi-
sion techniques with advanced machine learning for
WSP and droplet segmentation. An Android app and
web service are also developed for real-time data col-
lection, demonstrating practical applications.

The evaluation of droplet segmentation algorithms
on both synthetic and real datasets revealed distinct
performance differences between the methods. While
YOLOv8 demonstrated reasonable results, it was out-
performed by CCV in terms of segmentation accu-
racy, particularly with real-world data. CCV achieved
superior precision and recall, making it more effec-
tive at detecting droplets in diverse conditions. Nev-
ertheless, YOLOv8 showed promising results in syn-
thetic datasets, especially when dealing with reason-
ably sized objects and higher-resolution images.

Further analysis using metrics such as droplet
count, VMD, RSF, and coverage percentage high-
lighted additional performance disparities between
the algorithms. These findings emphasize the criti-
cal need to select algorithms tailored to the specific
characteristics of a dataset and segmentation task, and
they underline the importance of thorough validation
to ensure precise droplet segmentation and accurate
statistical assessment.

In summary, this research contributes to the field
by addressing current limitations in WSP analysis
by providing a smartphone application and instance
segmentation methodology for future studies. The
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Table 3: Percentage error of each one of the metrics used to evaluate the spray quality of a water-sensitive paper.

Method Dataset No Droplets VMD RSF Coverage Percentage
YOLOv8 RD 0.5561 0.2233 2.7338 0.6095
YOLOv8 SD 0.2621 0.1423 0.2729 0.4593

CCV RD 0.4189 0.1952 1.9945 0.1533
CCV SD 0.3144 2.5103 0.5108 0.0842

DropLeaf RD 0.6096 0.7362 0.0916 0.5223
DropLeaf SD 0.9667 0.3738 8.5897 0.2639

findings emphasize the potential of using synthetic
datasets to train machine learning models to enhance
accuracy and efficiency. Future research could fo-
cus on refining the process of generating synthetic
datasets of WSP and developing more advanced
machine-learning models to further advance its anal-
ysis.
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