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Abstract: The work is devoted to a new approach to neuromorphic encoding of streaming data. An essential starting 

point of the proposed approach is a special (sampling) representation of input data in the form of a stream of 

discrete events (counts), modeling the firing events of biological neurons. Considering the specifics of the 

sampling representation, we have formed a generative model for the primary processing of the count stream. 

That model was also motivated by known neurophysiological facts about the structure of receptive fields of 

sensory systems of living organisms that implement universal mechanisms (including central-circumferential 

inhibition) of biological neural networks, particularly the brain. To list the main ideas and consolidate the 

notations used, the article provides a brief overview of the features and most essential provisions of the 

proposed approach. The new results obtained within the framework of the approach, related to the analysis of 

neuromorphic encoding (with distortions) of streaming data, are discussed. The issues of possible 

decoding/restoration of the original data are discussed in the context of what Marr called the primary sketch. 

The results of computer modelling of the developed encoding/decoding procedures are presented, 

approximate numerical characteristics of their quality are given. 

1 INTRODUCTION 

The widespread use of computers in (Big) data 

processing tasks has shifted the focus from issues of 

fitting data to known statistical models to issues of 

developing adequate (generative) models based on 

the characteristics of the data themselves. The most 

successful here have been artificial neural networks 

(ANN), capable of automatically (machine-aided) 

learning on data without explicit additional 

programming of the systems. Since the effectiveness 

of machine learning (ML) depends primarily on the 

volume of data, very high requirements for 

performance, available resources, and the data 

exchange capacity of computers are important here. 

The rapidly developing technologies of deep learning 

(DL) are the most critical to such requirements 

(Dargan, 2020). It is deep learning that has enabled 

the development of more efficient, intelligent and 

scalable solutions for many information tasks over the 

past decades, including recognition and synthesis of 

text, speech, images, as well as for such real-world 
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tasks as market segmentation, customer consulting, 

self-driving cars, etc. 

Unfortunately, today we understand that the 

progress achieved in the field of information 

technology, due to successes in the development of 

the element base of computers, will not be able to 

continue forever. The main problem here is that 

existing computers are oriented towards the von 

Neumann architecture. The latter assumes a 

continuous, intensive exchange of information 

between the memory and the processor via a common 

bus. The presence in modern computers of a limited 

bus bandwidth, due to fundamentally physical 

(thermodynamic) principles, will eventually lead to a 

slowdown in the progress observed today. Neither 

Moore's doubling law nor Dennard's scaling law will 

save us from the inevitable crisis. 

A promising direction for solving this problem 

seems to be the transition to neuromorphic computing 

based on several neurobiological principles of the 

human brain (Christensen, 2022). A typical 

information technology that can make maximum use 
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of the advantages of neuromorphic data processing 

are systems for controlling and monitoring objects 

based on a stream of recorded images. In this regard, 

we note such a new area of information technology as 

neuromorphic vision (NV) (Wang, 2023). NV 

involves recording images using neuromorphic 

cameras and processing them using spiking neural 

networks (SNNs). The difference between NV and 

traditional computer vision lies primarily in the way 

of image formation by the data registered. Traditional 

computer vision involves the accumulation of data 

over a certain registration time frame, treating the 

result of the accumulation as an image. 

Neuromorphic vision, in contrast, is focused on 

presenting data in the form of a continuous stream of 

discrete events (counts), recorded by neuromorphic 

cameras (Al-Obaidi, 2021). Accordingly, 

calculations in NV must necessarily be neuromorphic 

– event-driven, as, for example, in SNN networks. 

Thus, neuromorphic technologies open new 

horizons that allow us not only to focus on digital 

computing, but also to rethink the use of analog, 

approximate and mixed data computing, typical for 

biological neurons. At the same time, neuromorphic 

computing will require a radical change in the 

programming paradigm. This may be why 

neuromorphic computing has yet to find widespread 

market adoption – to date, there are only a few 

publicly discussed prototypes, the result of initiatives 

from a few leading universities and academic centres. 

With this in mind, we have recently attempted to 

develop some methods for processing data streams 

based on procedures that would be based on the 

neuromorphic-like computing (Antsiperov V., 2024). 

An essential starting point is a special (sampling) 

representation of input data in the form of a stream of 

discrete events (counts), like firing events of 

biological receptors. Considering the specifics of the 

sampling representation, we have formed a generative 

model based on known neurophysiological facts 

about the system of receptive fields (RF) of the living 

sensory systems, which implement universal 

mechanisms (including center-surround inhibition) of 

the biological neural networks. To recall the main 

ideas and to fix the notations used, the next section 

provides a short review of the features and most 

essential provisions of the approach. The following 

sections discuss new results related to the analysis of 

neuromorphic coding of data and the formation on its 

basis of what Marr called a primary sketch (Marr, 

1980), i.e. a procedure of neuromorphic data primary 

reconstruction. We note in this regard that Marr's 

concept of a primary sketch is today considered as a 

first step towards Gestalt synthesis (Zhu, 2023). 

2 MAIN FEATURES OF 

NEUROMORPHIC 

COMPUTING BASED ON A 

POISSON STREAMS OF 

DISCRETE EVENTS 

Let's start the discussion with the main provisions of 

the approach we are developing to neuromorphic 

computing. Since our approach was largely formed on 

the way of modeling neural structure and functions of 

sensory systems of living organisms, the architecture 

and concepts of neuromorphic systems used in the 

approach are discussed in terminology like that used in 

neurobiology. Terms and concepts from the 

neurophysiology of the most complex and universal 

sensory system, the human visual system (HVS), are 

widely used. Due to the known similarity of the neuro-

mechanisms of most biological sensory systems 

(touch, hearing, vision or smell) (Masland, 2020), the 

HVS terminology can be well adapted to each of them 

and can also be successfully used in the case of 

artificial neuromorphic systems that model biological. 

As noted above, a feature of approach proposed is 

its special form of input data representation. Our 

approach doesn’t assume input data in traditional 

form of a continuous distribution of stimuli intensity 

𝐼(�⃗�) over a certain parametric space   �⃗� ∈ 𝛺 ⊂ 𝑅𝑑 – 

in the case of HVS – the intensity of the incident on 

the retina 𝛺 ⊂ 𝑅2  radiation, but in the form of a 

stream of random, discrete events 𝑋 = {�⃗�𝑖}, �⃗�𝑖 ∈ 𝛺 

that result from the process of detecting such intensity 

– in the case of HVS by retinal receptors 

depolarizations – the so-called (photo) counts. The 

process of registering random events itself is assumed 

to be as simple as possible: the probability of 

registering an event in a small element of the 

parametric space 𝑑�⃗� ∈ 𝛺  is assumed to be 

proportional to the power of the recorded data:  

𝑃(�⃗�𝑖) ~ 𝐼(�⃗�𝑖)𝑑�⃗�; the probability of registering two or 

more events in the same element 𝑑�⃗�  is considered 

negligible in comparison with 𝑃(�⃗�𝑖); and events in 

separated elements are considered as statistically 

independent (dependent only on 𝐼(�⃗�)). It is known 

that the listed properties (orderliness and 

independence) are “almost necessary” for the 

corresponding event stream to be a 𝑑 −dimensional 

inhomogeneous Poisson point process (PPP) 

(Kingman, 1993) with a point–count rate 𝜆(�⃗�) 

proportional to the intensity 𝐼(�⃗�) . A detailed 

discussion of numerous issues, approximations and 

applications of PPP to the event stream modeling can 

be also found in the books (Streit, 2010) and (Barrett, 
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2004). A statistical description of such а 

representation can also be obtained using the concepts 

of an ideal recording device and an ideal image, 

proposed in our work (Antsiperov, 2023). 

From the statistical point of view, the 

representation of the event stream = {�⃗�𝑖} , 𝑖 =
1, … , 𝑛 , by PPP implies the identification of 

registered event parameters �⃗�𝑖 with the PPP random 

point having the same coordinates in the same 

parameter space 𝛺 ⊂ 𝑅𝑑 . Accordingly, a complete 

statistical description of the events could be given by 

the joint distribution density of PPP points. Here, 

however, it should be noted, that the number of points 

in PPP is potentially infinite, but the number 𝑛  of 

actually recorded events is always finite. To get 

around this problem, for a given region 𝛺, one can 

specify the (consistent) set of joint finite-dimensional 

distributions for all 𝑛 = 0,1, … . Such description of 

events is traditionally called as the preset-time form 

(Barrett, 2004). But one can fix 𝑛 and consider the 

representation 𝑋𝑛 = {�⃗�𝑖} ⊂ 𝑋  as a subsample of size 

𝑛 from the general population of all PPP points. This 

description is called the preset-counts form (Barrett, 

2004). The latter representation was used in most of 

our works and was defined as a sampling 

representation (Antsiperov, 2023). Under the 

assumption of independence of counts, the sampling 

representation joint probability distribution density 

decomposes into the product of individual count 

densities: 𝜌𝑛(𝑋 = {�⃗�𝑖} | 𝐼(�⃗�)) = ∏ 𝜌1(�⃗�𝑖  |𝐼(�⃗�))𝑛
𝑖=1 , 

where the density of the individual count 𝜌1(�⃗�𝑖  |𝐼(�⃗�)) 

coincides with the normalized (to region 𝛺) intensity 

(Antsiperov, 2023): 

𝜌1(�⃗�𝑖  |𝐼(�⃗�)) =
𝐼(�⃗�𝑖 )

∬ 𝐼(�⃗�)𝑑�⃗�
⬚

𝛺

 . (1) 

Note that the given description of the event stream 

(1) is very convenient for both theoretical analysis 

and numerical simulation. Indeed, factorization of the 

joint distribution density into the product of 

individual count densities 𝜌1(�⃗�𝑖  |𝐼(�⃗�)) is the basis for 

many well-developed statistical approaches and is 

assumed by a few ML methods, including naive 

Bayes learning (Murphy, 2012). Namely, if the 

intensity 𝐼(�⃗�) is known at least approximately, it is 

possible using (1) to carry out complex calculations 

with 𝜌𝑛(𝑋 = {�⃗�𝑖} | 𝐼(�⃗�)) basing on the Monte Carlo 

methods (Robert, 2004). 

To illustrate this thesis, Figure 1 shows the result 

of count stream modelling for the intensity 𝐼(�⃗�) 

specified by the pixels of the PNG image 

“GRAY_OR_400x400_056.png” of size 𝑠 × 𝑠 =
400 × 400  pixels, color depth 𝑣 = 8  bits from the 

TESTIMAGES database (Asuni, 2014). The set 

𝑋𝑛  = {�⃗�𝑖}  of 𝑛 = 10 000 000  random counts was 

generated by the Monte-Carlo acceptance-rejection 

sampling method (Robert, 2004) with a uniform 

auxiliary distribution 𝑢(�⃗� ) = 𝑠−2  and an auxiliary 

constant 𝑀 = 2𝜐, details can be found, for example, 

in (Antsiperov, 2023).  

 

Figure 1: Illustration of event stream represented by 

Poisson counts (sampling representation), generated by 

Monte Carlo acceptance-rejection sampling. On the left 

side is the approximate intensity 𝐼(�⃗�) given by the pixels in 

the grayscale image “GRAY_OR_400x400_056.png” 

(Asuni, 2014). On the right – its sampling representation of 

size 𝑛 = 10 000 000 counts. 

The advantage of event stream description in the 

form (1) is also its universal character, allowing to 

transition from detailed (ideal) fine-scale 

consideration at the level of individual events (points) 

to a more coarse, large-scale analysis in the form of 

the number of events in any area 𝜎 ⊂ 𝛺 of parametric 

space. A similar transformation occurs in the retina of 

the eye, which contains ~ 108 receptors (rods and 

cones), transmitting registered data to the visual 

cortex only through ~ 106 axons of output neurons 

(RGCs - retinal ganglion cells) constituting the optic 

nerve (Frisby, 2010). As a result, the average ratio of 

the number of receptors to nerve fibers is about 100:1, 

which approximately corresponds to the compression 

of recorded data by interneurons in intermediate 

layers of the retina. Moreover, it is well known that 

compression by interneurons (horizontal, amacrine 

and other cells) is carried out by summing and 

aggregating the counts of special groups of receptors, 

that make up the receptive fields (RF) of the 

corresponding RGCs (Masland, 2020). Since we will 

need this aggregated representation of event streams 

below, let’s briefly look at how it is derived from the 

sampling representation (1). Let us denote by ∆ ⊂ 𝛺 

a small region in parametric space. The probability 

that some event �⃗�𝑖  from 𝑋  will be in ∆  can be 

calculated according (1) as: 

𝑃1(∆) = ∬ 𝜌1(�⃗�𝑖  |𝐼(�⃗�))𝑑�⃗�𝑖
⬚

∆
=

∬ 𝐼(�⃗�𝑖)𝑑�⃗�𝑖
⬚

∆

∬ 𝐼(�⃗�)𝑑�⃗�
⬚

𝛺

 . (2) 

Accordingly, the probability that some 𝑘  of 𝑛 

(independent) events from 𝑋 = {�⃗�𝑖} will fall into ∆ is 
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determined by the binomial distribution 𝐵(𝑛, 𝑃1(∆)), 

for which we immediately write out the asymptotic 

for large 𝑛 ≫ 𝑘: 

𝑃𝑘(∆) =
𝑛!

𝑘!(𝑛−𝑘)!
𝑃1

𝑘(∆)(1 − 𝑃1(∆))
𝑛−𝑘

=

=
(𝑛𝑃1(∆))

𝑘

𝑘!

∏ (1−
𝑖

𝑛
)𝑘−1

𝑖=1

(1−𝑃1(∆))
𝑘 (1 −

𝑛𝑃1(∆)

𝑛
)

𝑛

→

→
(𝛽𝐼(̅∆)𝜎)𝑘

𝑘!
exp(−𝛽𝐼(̅∆)𝜎)

 , (3) 

where it is assumed that together with 𝑛 → ∞ also 

∬ 𝐼(�⃗�)𝑑�⃗�
⬚

𝛺
→ ∞ , so that ∬ 𝐼(�⃗�)𝑑�⃗�

⬚

𝛺
𝑛⁄  ~ 𝛽−1 =

𝑐𝑜𝑛𝑠𝑡, from which it follows that 𝛽−1 is the portion 

of the total power of the recorded 𝐼(�⃗�) per count. The 

symbol 𝜎 in (3) denotes the area of the region ∆, the 

value 𝐼(̅∆) = ∬ 𝐼(�⃗�𝑖)𝑑�⃗�𝑖
⬚

∆
𝜎⁄  denotes the average 

intensity 𝐼(�⃗�) on ∆, thus  𝑛𝑃1(∆)~𝛽 ∬ 𝐼(�⃗�𝑖)𝑑�⃗�𝑖
⬚

∆
=

𝛽𝐼(̅∆)𝜎. As a result, the probability distribution of the 

number of events (3) turns out to be Poisson (similar 

to the preset-time representation, but on ∆, not on 𝛺), 

for which the average 𝑘 (as well as its variance) is 

equal to �̅� = 𝛽𝐼(̅∆)𝜎 . Distribution (3) does not 

depend on the details of 𝐼(�⃗�) on ∆, but only on the 

average integral characteristic 𝐼(̅∆), which, in fact, 

implies a coarsening of the description. To simplify 

the notation, it is advisable to introduce instead of 

𝐼(̅∆) a proportional measure of the average number of 

events 𝜆(∆) = �̅� = 𝛽𝐼(̅∆)𝜎 , which completely 

determines the distribution of events number 𝑘 on ∆. 

Note that 𝑘, in turn, is an unbiased estimate of 𝜆(∆) 

(with the minimum possible variance which is equal 

to the reciprocal of the Fisher information in 𝑘).  

The derivation of distribution (3) can be easily 

extended to 𝑚 > 1  disjoint regions ∆𝑗  ∈ 𝛺 , 𝑗 =

1, … , 𝑚 , with the numbers of events {𝑘𝑗}. As a result, 

the set 𝑌 = {𝑘𝑗} will be a collection of independent 

Poisson random variables with a joint distribution (in 

asymptotic 𝑘 = ∑ 𝑘𝑗
𝑚
𝑗=0 ≪ 𝑛 → ∞) of the form:  

 𝑃𝑚(𝑌 = {𝑘𝑗} |𝐼(𝑥)) =

= ∏
(𝜆(∆𝑗))

𝑘𝑗

𝑘𝑗!
exp (−𝜆(∆𝑗))𝑚

𝑗=1

 . (4) 

In the case when the union of similar disjoint areas 

{∆𝑗} covers a significant part of the event stream area 

𝛺  (i.e., it partitions the latter), the set 𝑌 = {𝑘𝑗} 

together with its statistical description (4) can be 

considered as coarsened (to a scale of ~ 𝜎 ) stream 

representation. In (Antsiperov, 2023) it was called the 

“occupation-number” representation. The occupation 

number representation (4) is related to the sampling 

representation (1) in the same way as in statistical 

physics the canonical ensemble is related to the 

microcanonical one. 

As noted above, the numbers 𝑘𝑗 can be interpreted 

as unbiased estimates of the means �̅�𝑗 =

𝛽 ∬ 𝐼(�⃗�)𝑑�⃗�
⬚

∆𝑗
. If we assume that all regions ∆𝑗  , 

located in different places of 𝛺, are similar to each 

other in shape (the shape of a typical region ∆), then 

{�̅�𝑗} will be the output of a linear filter with a sliding 

window ∆  from the input 𝐼(�⃗�) . Moving average 

filters are well known in computer science and are a 

classic tool for simple denoising (encoding) of signals 

of various origins. In this sense, the representation 

𝑌 = {𝑘𝑗}  does not contain anything fundamentally 

new and is widespread with the only note that its noise 

is assumed not to be additive Gaussian, but 

Poissonian (or quantum noise, or shot noise (Barrett, 

2004)). To illustrate such a representation (by 

occupancy numbers) Figure 2 shows the 

representation 𝑌 = {𝑘𝑗}  for rectangular lattice of 

50 × 50 regions over the 𝛺.  

 

Figure 2: Image sampling representation coarsened by the 

rectangular lattice. On the left is a sampling representation 

of size 10 000 000 counts of the grayscale image from 

Figure 1, covered with a 50 × 50 lattice. On the right – 

smoothed coarsened representation 𝑌 = {𝑘𝑗}, obtained by а 

rectangular lattice of 50 × 50 square regions.  

3 POISSON STREAMS 

NEUROMORPHIC ENCODING 

BY THE SYSTEM OF THE 

RECEPTIVE FIELDS 

Unfortunately, the above simple occupancy number 

representation 𝑌 = {𝑘𝑗}, along with the advantage of 

simplicity of encoding (400 × 400 pixels→ 50 × 50 

matrix), has a number of significant disadvantages. This 

problem is well known in the field of image coding 

(Zhang, 2021). The problem is that moving average 

filters are low-pass filters and, therefore, while 

eliminating the redundancy associated with 

uncorrelated noise, they also suppress significant fine 

details in data. The latter leads to blurring of contrasts, 
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destruction of boundaries, smoothing of important 

texture fragments., etc., i.e. all those characteristics that 

are extremely important for a human when analyzing 

the data (Masland, 2020). Moreover, linear filters are 

no longer effective at suppressing noise in cases where 

the latter depends on the signal, as in the case of 

Poisson noise. To combat these circumstances, various 

nonlinear modifications of filters have been proposed, 

in particular, based on anisotropic filtering, total 

variation, SUSAN filter, empirical Wiener filter, 

thresholding wavelet-shrinkage, bilateral filter, mean-

shift filter, etc., see (Buades, 2005). Many of these 

nonlinear filters solve some specific problems of linear 

processing, but none of them have proven to be 

universal. Thus the natural guiding principle for the 

search for universal solutions became the study and 

modeling of the biological sensory systems 

neuromechanisms, that possess the required 

universality. As result, the new direction of research 

and development of coding / filtering methods focused 

on human perception has emerged (Antsiperov V. E., 

2024).  

Most coding methods aimed at human perception 

are based on the Retinex concept (Land, 1971), which 

allows separating the reflective radiation from objects 

from the smoothly changing general illumination of 

the scene by highlighting or even enhancing the local 

contrast of image intensity. Among the algorithms 

based on Retinex, the widely used principle is 

center/surround inhibition (Jobson, 1997). It 

estimates a smoothed version of the image 

(illuminance) and subtracts it from the original image 

to produce reflectance. Some center/surround 

algorithms differ in the types of filters that are used to 

smooth the image. So, SSR (Single Scale Retinex) 

and MSR (Multi Scale Retinex) algorithms use a 

Gaussian filter / set of filters. Further development of 

these ideas led to the creation of a bilateral filter, 

whose weighting coefficients are a combination of 

both the spatial proximity of the pixels and the 

similarity of their values (Elad, 2005). Practice has 

confirmed that the bilateral filter under smooth 

lighting well preserves edges and avoids the 

appearance of associated halos. 

The successes of the perceptual coding reflect 

successful solutions in modeling the internal structure 

of disjoint areas {∆𝑗}  covering (partitioning) the 

event stream area 𝛺, and on the base of which the 

occupation number representation 𝑌 = {𝑘𝑗}  (4) is 

constructed. Such centre–antagonistically structured 

areas are called retinal receptive fields (RF) (Lisani, 

2020). Quite unexpected is the fact that the relatively 

simple organization of the RF in the form of 

center/surround structure allows, among other things, 

to transmit significant information about intensity 

contrasts to the brain (Masland, 2001).  

The lateral inhibition associated with RFs become 

today the canon of ideas about the basic 

neurophysiological mechanisms of the perceptual 

coding. We owe these discoveries primarily to the 

famous Harvard School, led by Kuffler (Katz, 1982). 

According to Kuffler the structure of the RF consists 

of two concentric parts: a central region that receives 

data directly from the retinal receptors and called the 

RF center, and an enclosing it (antagonistic) region 

that receives data from the horizontal cells and called 

the surround. It is usually believed that the ratio of the 

center size to the size of the RF (size of the surround) 

is on average ~ 1:2 (Marr, 1980). Based on the listed 

neurobiological data, a number of formal models of 

the center/surround RF have recently been proposed, 

which, with varying degrees of generality, explain the 

mechanisms of lateral inhibition using cascades of 

linear/nonlinear procedures (LN–, LNLN–models) 

(Zapp, 2022), based on standard elements of ANN. 

We have also proposed a centre-lateral threshold 

filtering approach (of NLN type), which was initially 

focused on processing event streams in neuromorphic 

systems (Antsiperov V.E., 2024). The features of our 

approach that distinguish it from those noted above 

can be found in the article (Antsiperov V., 2024), here 

we briefly describe only its main points. 

Let us denote for some typical RF 𝛥 ⊂ 𝛺 of area 

𝜎  by 𝛥𝑐  the region of its center of area 𝜎𝑐  and, 

accordingly, by 𝛥𝑠  the concentric surround of area 

𝜎𝑠 . Assuming that the center and surround do not 

intersect 𝛥𝑐 ∩ 𝛥𝑠 = ∅  and 𝛥 = 𝛥𝑐 ∪ 𝛥𝑠, we say, that 

𝛥𝑐 and 𝛥𝑠 perform a partition of RF 𝛥. Note, that in 

this case 𝜎 = 𝜎𝑐 + 𝜎𝑠. Let us also denote by 𝑘, 𝑘𝑐 and 

𝑘𝑠  the count numbers in RF 𝛥, in its centre 𝛥𝑐  and 

surround 𝛥𝑠: 𝑘 = 𝑘𝑐 + 𝑘𝑠. As discussed above, these 

random numbers have Poisson statistical models with 

probability distributions following from (3): 

𝑘𝑐~ 𝑃𝑘𝑐
(𝛥𝑐) =

(𝜆(𝛥𝑐))
𝑘𝑐

𝑘𝑐!
exp(−𝜆(𝛥𝑐)) ,

𝑘𝑠~ 𝑃𝑘𝑠
(𝛥𝑠) =

(𝜆(𝛥𝑠))
𝑘𝑠

𝑘𝑠!
exp(−𝜆(𝛥𝑠)) ,

 , (5) 

Since 𝑘𝑐  and 𝑘𝑠  correspond to non-intersecting 

regions 𝛥𝑐 ∩ 𝛥𝑠 = ∅ , they are statistically 

independent, and their joint distribution can be 

written, according (5), as:  

𝑃𝑘𝑐,𝑘𝑠
(𝛥𝑐, 𝛥𝑠) = 𝑃𝑘𝑐

(𝛥𝑐) × 𝑃𝑘𝑠
(𝛥𝑠) =

=
(𝜆(𝛥𝑐))𝑘𝑐

𝑘𝑐!

(𝜆(𝛥𝑠))𝑘𝑠

𝑘𝑠!
exp{−(𝜆(𝛥𝑐) + 𝜆(𝛥𝑠))}

 . (6) 

In order to obtain some conclusions about the 

behaviour of the intensity 𝐼(�⃗�) in the RF region 𝛥, 

basing only on the recorded numbers 𝑘, 𝑘𝑐  and 𝑘𝑠 , 

regardless of the directly unobservable measures 

Neuromorphic Encoding / Decoding of Data-Event Streams Based on the Poisson Point Process Model

143



𝜆(𝛥𝑐) = 𝛽𝐼(̅𝛥𝑐)𝜎𝑐  and 𝜆(𝛥𝑠) = 𝛽𝐼(̅𝛥𝑠)𝜎𝑠  it is 

necessary to move from conditional distributions (6) 

(for given 𝜆(𝛥𝑐)  and 𝜆(𝛥𝑠) ) to unconditional 

distributions of observable 𝑘𝑐 and 𝑘𝑠. Adhering to the 

Bayesian point of view, this can be done by choosing 

a certain prior distribution for 𝜆(𝛥𝑐)  and 𝜆(𝛥𝑠) , 

forming on this basis a generative model of all data 

{𝑘𝑐 , 𝑘𝑠, 𝜆(𝛥𝑐), 𝜆(𝛥𝑠)} and obtaining from their joint 

distribution marginal distributions for recorded 

numbers. We carry out this plan for two different 

hypotheses: hypothesis 𝐻0, which assumes the hard 

dependence of the average intensities 𝐼(̅𝛥𝑐)  and 

𝐼(̅𝛥𝑠) and alternative 𝐻1 , which assumes that 𝐼(̅𝛥𝑐) 

and 𝐼(̅𝛥𝑠)  are independent. Obviously, 𝐻0 

corresponds to the absence of contrast 𝐼(�⃗�) on 𝛥, and 

𝐻1 makes the contrast expectable.  

Let the a priori distribution of the average 

intensity 𝐼 ̅in any region of 𝛺 be given by the density 

𝜌𝑎(𝐼)̅ so, that 𝐼 ̅is not dependent on which RF region 

𝛥𝑐  𝛥𝑠  or 𝛥  the averaging occurs over. Then, for 

hypotheses 𝐻0  and 𝐻1  we can write the following 

forms of their joint distributions: 

𝜌𝑎(𝐼(̅𝛥𝑐), 𝐼(̅𝛥𝑠)| 𝐻𝑖) = 𝜌𝑖(𝐼(̅𝛥𝑐) | 𝐼(̅𝛥𝑠))𝜌𝑎(𝐼(̅𝛥𝑠)),

𝜌0(𝐼(̅𝛥𝑐) | 𝐼(̅𝛥𝑠)) = 𝛿(𝐼(̅𝛥𝑐) − 𝐼(̅𝛥𝑠)) ,

𝜌1(𝐼(̅𝛥𝑐) | 𝐼(̅𝛥𝑠)) = 𝜌𝑎(𝐼(̅𝛥𝑐))𝜌𝑎(𝐼(̅𝛥𝑠)).

  (7) 

where 𝛿() is Dirac’s delta-function, 𝑖 = 0, 1.  

Multiplying (6) and (7) we obtain the joint 

distributions of all observable / hidden data 

{𝑘𝑐 , 𝑘𝑠, 𝜆(𝛥𝑐), 𝜆(𝛥𝑠)} (generative model), integrating 

them over 𝜆(𝛥𝑐), 𝜆(𝛥𝑠)  we obtain unconditional 

distributions of observables 𝑘𝑐 , 𝑘𝑠  under the 

assumptions of hypothesis 𝐻0 or its alternative 𝐻1 – 

𝑃0(𝑘𝑐, 𝑘𝑠)  and 𝑃1(𝑘𝑐, 𝑘𝑠) . Taking the ratio of these 

distributions, we obtain the classical likelihood ratio 

Λ𝑘𝑐,𝑘𝑠
of the hypothesis 𝐻0  to the alternative 𝐻1 . 

Skipping a number of transformations and 

simplifications (details can be found in (Antsiperov 

V., 2024)), we present bellow only the final, easily 

interpreted expression for the likelihood ratio: 

Λ𝛿,𝑘 ≈
�̅�𝑎

√2𝜋𝑘
√

𝜎𝑐𝜎𝑠

𝜎2
exp (−

𝜎2

2𝑘𝜎𝑐𝜎𝑠
𝛿2) , (8) 

where 𝑘 = 𝑘𝑐 + 𝑘𝑠 , 𝛿 = 𝑘𝑐 − (𝜎𝑐 𝜎⁄ )𝑘  and �̅�𝑎 =

𝛽�̅�𝑎𝜎  is a priori average number of counts on typical 

RF, 𝐼�̅� is a priori average intensity in any region of 𝛺 

– characteristic scale of a priori density 𝜌𝑎(𝐼)̅ ~ 𝐼�̅�
−1.  

Using the uniformly most powerful unbiased 

(UMP) test (Young, 2005), we can now compare the 

goodness of fit of hypotheses 𝐻0 and 𝐻1  to the 

available data 𝛿, 𝑘 . Namely, according to the 

Neyman–Pearson criterion we should accept 𝐻0  – 

hypothesis of the coincidence 𝐼(̅𝛥𝑐) = 𝐼(̅𝛥𝑠)  if 

𝛬𝛿,𝑘 > 𝐾𝛼  and reject 𝐻0, implying 𝐻1 – hypothesis of 

the existing differenceе between 𝐼(̅𝛥𝑐) and 𝐼(̅𝛥𝑠), in 

opposite case 𝛬𝛿,𝑘 < 𝐾𝛼 . The positive constant 𝐾𝛼  

used here depends on the value of 𝛼 – the size of the 

test. The size of the test, in turn, can be defined as the 

probability of falling data 𝛿, 𝑘 into the critical region 

𝐶𝛼 = {𝛿, 𝑘|  𝛬𝛿,𝑘 < 𝐾𝛼} : 𝛼 = ∑ 𝑃0(𝛿, 𝑘)𝛿,𝑘 ∈𝐶𝛼
. 

From (8) we can obtain the explicit form of 𝐶𝛼: 

𝜎2

2𝑘𝜎𝑐𝜎𝑠
𝛿2 > ln {

�̅�𝑎

√2𝜋𝑘
√

𝜎𝑐𝜎𝑠

𝜎2

1

𝐾𝛼
} = 𝑑𝛼

2  , (9) 

from where we can relate the threshold 𝑑𝛼 to the test 

size 𝛼: 

𝛼 =
2

√𝜋
∫ exp{−𝜉2} 𝑑𝜉

∞

𝑑𝛼
= erfc(𝑑𝛼) , (10) 

where erfc(𝑥) =
2

√𝜋
∫ exp{−𝜉2} 𝑑𝜉

∞

𝑥
 is standard 

complementary error function. Thus there is no need 

to obtain 𝑑𝛼  via the constant 𝐾𝛼  if 𝛼  is given. In 

accordance with (10), 𝑑𝛼 is equal to 𝛼–th quantile of 

error function erfc(𝑥), which is well tabulated. After 

𝑑𝛼 is fixed, the criterion for rejecting the hypothesis 

𝐻0 – the hypothesis of the coincidence 𝐼(̅𝛥𝑐) = 𝐼(̅𝛥𝑠) 

and assumptions about a possible jump in intensity 

𝐼(�⃗�), contrast on 𝛥 takes the following final form: 

|𝛿| > √2
𝜎𝑐𝜎𝑠

𝜎2 𝑘𝑑𝛼 . (11) 

An important conclusion follows from the above 

discussion: if the “occupancy number” representation 

code 𝑌 = {𝑘𝑗}  is supplemented with the “contrast 

fields” data, for which residual |𝛿𝑗|  exceeds the 

threshold specified on the right side of (11), then the 

resulting code 𝑍 = {𝑘𝑗, 𝛿𝑗}  will have significantly 

higher quality, at least in the perceptual sense (for 

more detailed analysis see (Antsiperov V., 2024)). 

Figure 3 demonstrates the code 𝑍 = {𝑘𝑗 , 𝛿𝑗} for the 

same sampling representation partitioned by the 

lattice of 50 × 50 square RFs as in Figure 2.  

 

Figure 3: Illustration of the encoding results 𝑍 = {𝑘𝑗 , 𝛿𝑗} on 

a а rectangular lattice of 50 × 50  RFs for a sampling 

representation of size 10 000 000 counts from Figures 1, 2.  

On the left is the sampling representation (Figure 1, right), 

on the right are RFs with notable values 𝛿𝑗: 𝛿𝑗 > √2𝑘) in 

white, 𝛿𝑗 < √2𝑘 in black (√𝜎𝑐𝜎𝑠 𝜎2⁄ 𝑑𝛼 is equal to unity). 
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4 DECODING POISSON 

STREAMS ENCODED BY THE 

RECEPTIVE FIELDS SYSTEM 

As can be seen from Figure 3, the coding procedure 

(11) outlines the contrast edges in the image with two 

chains of non-zero RFs – one chain with positive 

values 𝛿𝑗 > √2𝑘 𝜎𝑐𝜎𝑠 𝜎⁄ 𝑑𝛼, and the other with negative 

values 𝛿𝑗 < − √2𝑘 𝜎𝑐𝜎𝑠 𝜎⁄ . This fact is not accidental. 

In reality, there is a very close connection (see 

(Antsiperov V., 2024)) between the values of 𝛿𝑗  and 

the Laplacian of Gaussian (LoG) filter output, which 

Marr proposed to detect the edges in digital images 

(Marr, 1980). Namely, to detect the points of such 

edges – filter zero-crossings, Map proposed to analyze 

pairs of points with the maximum and minimum of 

LoG output values, which, as he supposed, correspond 

to pairs of neighboring RFs with positive and negative 

responses. Moreover, Marr associated such points with 

ON- and OFF- receptive fields, as was done from the 

very beginning in our approach. 

 

Figure 4: Results of constructing chains of ON- and OFF-

field pairs based on 𝑍 = {𝑘𝑗 , 𝛿𝑗}  code for sampling 

representation of size 10 000 000 counts from Figures 1, 2.  

On the left is the sampling representation (Figure 1, right), 

on the right corresponding chains of ON- and OFF-field 

pairs, obtained by analysis areas with size of 5×5 RFs. 

Thus, following Marr's concept (Marr, 1980), it is 

possible to develop procedure for reconstructing 

(decoding) poisson streams by restoring, in addition to 

the smoothed intensity, also the edges of contrasts, as 

discussed above. In fact, the difficult part of this 

problem is to develop such sub procedure, that selects 

from the set of all RFs those chains of pairs of ON- and 

OFF- fields that actually follow along some zero-

crossing lines and reject those non-zero 𝛿𝑗 RFs that are 

caused by the random fluctuations and do not 

determine zero-crossing lines (see Fig. 3 (right)). If this 

problem is solved and, in addition, the order of the 

fields in the selected chains is found (see Fig. 4 right), 

then there are many ways to smoothly interpolate such 

broken zigzag-shaped sequences with smooth 

contours, for example, using Bezier curves (De Boor, 

1978), B-splines (Grove, 2011), Laplace smoothing of 

chains (Vollmer, 1999), etc (see Fig. 5 right). 

 

Figure 5: Results of chains smoothing, for sampling 

representation of size 10 000 000 counts from Figures 1, 2. 

On the left is the sampling representation (Figure 1, right), 

on the right Laplace smoothed chain. Note: chains shorter 

than three segments were censored. 

5 CONCLUSIONS 

As follows from the above, the work proposes a new 

approach to the problems of neuromorphic coding of 

data-event streams. Within the framework of the 

proposed approach, it was possible to carry out 

explicit modeling of the mechanisms of primary 

neuro-processing of video data in the periphery of the 

visual system. As a result, it was possible to develop 

a constructive method of neuromorphic type of event 

streams coding. Moreover, the experience of 

numerical testing and optimization of the developed 

procedures (algorithms) has shown that based on the 

concept central to the proposed approach – sampling 

representations – it is possible, on the one hand, to 

avoid computational problems associated with 

processing massive data, and, on the other hand, to 

adapt the approach to modern neural network 

problems like the one considered. 

In terms of technical implementation, a feature of 

the proposed method is the widespread use of the 

neurobiological concept of receptive fields. 

Structuring data based on a system of receptive fields 

allows one to effectively circumvent the known 

difficulties of many numerical algorithms (for 

example, EM) that process mixtures with many 

components. This conclusion follows, among other 

things, from the existing experience in computer 

implementation of the method. All illustrative 

materials presented in the work were obtained as part 

of computational experiments. Experiments 

confirmed the effectiveness of the method in terms of 

memory resources/computation time. 

In general, based on the results obtained, the 
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author expresses the hope that the approach proposed 

in the work and the procedures developed will find 

both their further theoretical development and fruitful 

use in applied problems. 
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