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Abstract: This work examines how evolutionary Neural Architecture Search (NAS) algorithms can be improved by 

controlling the step size of the mutation of numerical parameters. The proposed NAS algorithms are based on 

F-DENSER, a variation of Dynamic Structured Grammatical Evolution (DSGE). Overall, a (1+5) 

Evolutionary Strategy is used. Two methods of controlling the step size of mutations of numeric values are 

compared to Random Search and F-DENSER: Decay of the step size over time and adaptive step size for 

mutations. The search for lightweight, LeNet-like CNN architectures for MNIST classification is used as a 

benchmark, optimizing for both accuracy and small architectures. An architecture is described by about 30 

evolvable parameters. Experiments show that with step size control, convergence is faster, better performing 

neural architectures are found on average, and with lower variance. The smallest architecture found during 

the experiments reached an accuracy of 98.8% on MNIST with only 5,450 free parameters, compared to the 

62,158 parameters of LeNet-5. 

1 INTRODUCTION 

1.1 Neural Architecture Search 

Deep Convolutional Neural Networks (CNNs) are 

used for state-of-the-art (SOTA) image classification 

and segmentation tasks, like recognizing objects in a 

street scene. Designing and optimizing CNNs and 

other high-performing neural architectures is 

challenging and requires expert knowledge. Hence, 

there is great interest in automating the search for a 

well-performing neural architecture for a given 

problem. An extensive overview of current NAS 

methods was conducted by (White et al., 2023). 

Search spaces used for NAS can be conceptually 

grouped as narrow or wide. A narrow search space is 

one with few free variables, often of a single type 

(numeric or topological), where layer arrangement 

constraints, variables and their ranges are chosen to 

closely match architectures known to work well. 
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Numeric parameters are often constrained to a small 

set of values. In this work, a wide search space is 

understood as one using a wider range of layer 

arrangements, more parameters of more varied types, 

larger numeric ranges, and continuous values. A wide 

search space can also be characterized as one 

containing only a small proportion of high-

performing architectures. 

(Yang et al., 2019) and (Yu et al., 2020) have 

shown that several state-of-the-art NAS methods like 

DARTS, PNAS and ENAS do not perform much 

better than randomly sampling their search space: 

“the small range of accuracies obtained [by random 

sampling] hints at narrow search spaces, where even 

the worst architectures perform reasonably well” 

(Yang et al., 2019) 

This paper proposes using relatively wide search 

spaces on lightweight CNNs as a benchmark so that 

NAS methods can be compared more reliably. 
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1.2 Contribution 

We explore the question of how step size control can 

improve evolutionary NAS algorithms. In this work, 

step size control is understood as the algorithmic 

control of the magnitude of mutations of numeric 

parameters and, in some cases, the probability of 

mutations of network topology or categorical 

parameters. We propose two simple methods of step 

size control, which we call Stepper algorithms. In 

Stepper-Decay, a single global step size parameter 

decays over time. In Stepper-Adaptive, a step size 

parameter is associated with each individual and is 

subject to mutation and selection so that the step size 

can slowly be adapted towards an optimal value. 

To assess the effectiveness of these algorithms, 

we developed a benchmark using lightweight CNN 

architectures that is relatively fast to compute, has, on 

average, about 30 evolvable parameters, and a wider 

search space than almost any published NAS 

benchmark. The Stepper algorithms are compared to 

the F-DENSER algorithm, which they are based on 

(which has no step size control), and additionally to 

Random Search. The fitness function is chosen so that 

the search optimizes for 1) low error rate and 2) small 

architectures. 

The experiments show that with these simple 

methods of step size control, convergence is faster, 

better performing neural architectures are found on 

average, and with lower variance. 

2 BACKGROUND AND RELATED 

WORK 

2.1 Evolution Strategies and Step Size 
Control 

Evolution Strategies (ES) are robust optimization 

algorithms often used for black box optimizations on 

real-valued parameter spaces (Rechenberg, 1994; 

Schwefel, 1995). They were originally developed 

mainly for engineering problems. 

While step size control is rarely used with Genetic 

Algorithms (Holland, 1992), it is widely used with 

ESs, starting with Rechenberg’s 1/5th rule 

(Rechenberg, 1965). Many variations were explored, 

including Self-adaptive ES (Schwefel, 1995) and 

Differential Evolution (Storn & Price, 1997). CMA-

ES (Hansen & Ostermeier, 2001) is a SOTA 

optimizer for continuous black-box functions. It can 

be interpreted as controlling a step size not only for 

each parameter but also for each pair of parameters. 

(Loshchilov et al., 2013) showed that CMA-ES 

performed best out of more than 100 classic and 

modern optimizers on a wide range of black-box 

benchmark functions. 

(Droste & Wiesmann, 2000) and (Li et al., 2013) 

suggest guidelines for the choice of mutation 

operators, including Locality (Solutions can be 

gradually improved, and mutations can generate 

similar solutions) and Scalability (An efficient 

method should be used to control the strength of the 

impact of the mutation operator on the fitness values). 

2.2 Genetic Algorithms and 
F-DENSER 

Genetic Algorithms apply mutation, recombination 

and selection on a bit string representing an individual 

(Holland, 1992). Genetic Programming is an 

extension of this concept to the evolution of functions 

built from inputs, constants, and operators (Cramer, 

1985; Koza, 1989). Grammatical Evolution (GE) is a 

genetic algorithm that evolves programs that conform 

to context-free grammar (Ryan et al., 1998). 

The search algorithm used in this work is based 

on Fast DENSER, also called F-DENSER (Assunção 

et al., 2019). DENSER (Assunção et al., 2018) is an 

extension of Dynamic Structured Grammatical 

Evolution (DSGE) (Assunção et al., 2017). DENSER 

used a population of 100 for 100 generations. F-

DENSER introduced a (1 + 5) −  ES and removed 

crossover. Instead of using DSGE mutations, specific 

probabilities of 15-25% are used for the different 

kinds of layer mutations. This reduced the number of 

evaluations drastically without compromising the 

performance of generated solutions. 

3 THE BENCHMARK PROBLEM 

A benchmark problem for NAS algorithms should 

have the following properties: 

Rapid Evaluation: an evaluation means the 

complete training of an architecture on the training 

data and the measurement of the classification error 

rate on test data.  

Relatively Wide, Realistic Search Space: the search 

space and fitness function should have properties 

similar to those of hard SOTA problems. 

Reproducibility of Evaluations: the fitness function 

should have a low noise-to-signal ratio. 

MNIST classification is an easy problem by today’s 

standards. We decided to use it for benchmarking at 

this early stage, because models can be trained 

relatively quickly. As a starting point, we used A 
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modernized Variant of LeNet-5 from Kaggle (Sultan, 

2022) that can be fully trained on a GPU in 10-20 

seconds.  

It is easy to reach error rates below 1.5% on 

MNIST with variants of LeNet. There are various 

techniques to reduce the error rate further, like data 

augmentation, dropout regularization or using 

ensembles. We didn’t find these useful for a 

benchmark because they increase training time. 

3.1 The Fitness Function 

We chose to optimize neural architectures for both 

accuracy (low error rate) and small network size (low 

number of trainable parameters) to make NAS on 

MNIST more challenging and to reduce training times. 

There are two common approaches to optimize 

for two objectives: multi-objective optimization and 

using a penalty function that combines multiple 

objectives into a single fitness function. Multi-

objective optimization may be interesting to explore 

in future research. However, this cannot be done with 

an unmodified (1 + 5) − ES. 

The fitness function is: 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 2.5625 − ((
𝑒𝑟𝑟𝑜𝑟_𝑟𝑎𝑡𝑒

0.02
)

2

+
𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠

31,079
) 

   (1) 

𝑒𝑟𝑟𝑜𝑟_𝑟𝑎𝑡𝑒  is usually computed after training on 

53,000 images for ten epochs. 

𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠  is the number of free trainable 

parameters in the neural network model.  

The rationale is that a low error rate is more 

important than minimizing parameters, so the error 

rate is squared. The constants were chosen so that (i) 

the fitness of A Modern Variant of Lenet-5 is near 

zero (this has 62,158 parameters and an error rate of 

1.25%), and (ii) halving the original number of 

parameters compensates an increase in the error rate 

from 1% to 2√1.25% ≈ 2.236%.  

Any fitness above zero is considered an 

improvement. The best-observed fitness was 2.2. 

3.2 The Grammar and Search Space 

The grammar used in the experiments describes 

LeNet/AlexNet/VGG-like architectures. It uses 

extensions to the BNF for numeric and categorical 

variables, for example 

[num-filters,int,2,256] 

defines an integer variable num-filters with a 

range from 2 to 256, and  

[act:linear/relu/elu/sigmoid] 

defines a categorical variable act that can assume 

four values. Boolean variables are treated like 

categoricals with two values. 

Here is the grammar used in the experiments: 

<features> ::= <convolution> 

               | <pooling> 

<convolution> ::= layer:conv  

    [num-filters,int,2,256] 

    [filter-shape,int,2,5] 

    [stride,int,1,3] 

    [act:linear/relu/elu/sigmoid] 

    [padding:same/valid] 

    [bias:True/False] 

    [batch-norm:True/False] 

<pooling> ::= layer:pooling 

    [pooling-type:avg/max] 

    [kernel-size,int,2,5] 

    [stride,int,1,3] 

    [padding:same/valid] 

<classification> ::= layer:fc 

    [act:linear/relu/elu/sigmoid]  

    [num-units,int,64,2048] 

    [bias:True/False] 

    [batch-norm:True/False] 

<output> ::= layer:output num-units:10 

    bias:True 

<learning> ::= <gradient-descent> 

       [batch_size,int,50,2048] 

    | <rmsprop>  

      [batch_size,int,50,2048] 

    | <adam> [batch_size,int,50,2048] 

<gradient-descent> ::= 

    learning:gradient-descent 

    [lr,float,0.0001,0.1]  

    [momentum,float,0.68,0.99] 

    [nesterov:True/False] 

<rmsprop> ::= learning:rmsprop 

    [lr,float,0.0001,0.1] 

    [rho,float,0.5,1] 

<adam> ::= learning:adam 

    [lr,float,0.0001,0.1] 

    [beta1,float,0.5,1] 

    [beta2,float,0.5,1] 

The symbols shown in bold are top-level symbols 

corresponding to layer groups. There are 1 to 10 

layers in the feature group (of type convolution or 

pooling), followed by one to five layers in the 

classification group. Finally, a fixed output layer of 

ten units is added. A dummy layer group learning 

defines the learning optimizer that applies to the 

whole architecture. 

An equivalent grammar was used in the 

experiments with F-DENSER. We estimate the size 
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of the relevant search space1 to be 1040 combinations. 

According to the overview of NAS benchmarks in 

(White et al., 2023), most search spaces used for 

benchmarks are much smaller. 

4 THE NAS ALGORITHMS 

4.1 Mutation Operators for NAS 

For each generated offspring, only a few variables 

and topological parameters are chosen for mutation. 

The probability of mutating a variable or a layer 

group is 0.15 in Stepper so that only a few parameters 

(usually 2 to 5) are mutated for each new individual. 

Special mutation operators are applied to layers in 

the features and classification groups. For each of the 

following operators, a layer group is selected, and 

then a layer in it is chosen at random. 

Copy Layer: a layer is copied and inserted at a 

random position in the layer group. 

Add Layer: a new layer with random type and 

parameters is created and inserted at a random 

position in the layer group. 

Remove Layer: a layer is deleted from the group. 

Change Layer Type: the type of a layer is changed; 

all its parameters are randomly reset. 

If a mutation would violate the minimum or 

maximum constraint of layers per group, another 

mutation operator is randomly chosen instead. The 

number of layer mutations in a group is chosen 

randomly so that at least one mutation is applied, two 

mutations are relatively common, and three happen 

occasionally. 

Individuals had, on average, about five layers and 

four variables per layer. This results in about 0.75 

layer mutations and three variable mutations per 

offspring generated. 

When mutations result in an invalid individual 

(e.g., Keras error), offspring generation will start 

over. 

4.2 Mutation Step Size Control 

This work introduces algorithmic control of the 

mutation step size to NAS. Step size control is widely 

used in ES. ES is usually applied to search spaces 

where all parameters are real-valued. However, most 

parameters describing neural architecture are 

integers, categorical values, or layer architecture 

parameters. In the experiments, the architectures had 

about ten integers, 14 categorical and two real-valued 

parameters (the exact number depends on the number 

and type of layers). Real value calculations can be 

adapted to integers by rounding the result. This 

approach was followed by (Loshchilov & Hutter, 

2016), where step size control in the form of CMA-

ES was extended to integer parameters but only to 

those with a large range. 

Table 1 shows the mutation operators of the Stepper 

algorithms in comparison to F-DENSER. 𝜎 is the 

algorithmically controlled step size, which is 

associated with a generation for Stepper-Decay and 

with an individual in Stepper-Adaptive. 𝒩(𝜇, 𝜎) is a 

Gaussian-distributed random variable with a mean 𝜇 

and standard deviation 𝜎, and the range of a mutable 

variable is Range = max − min. 

Special care must be taken if a mutated numerical 

value falls outside the allowed interval. If values were 

simply clipped to the interval, this would introduce an 

additional bias into the distribution. To minimize this 

bias, the interval transformation described in (Li et 

al., 2013) is used. Intuitively, it reflects values outside 

of the interval back into the interval. 

4.3 Initialization of Individuals 

The number of feature layers is chosen at random to 

be two, three, or four, followed by one classification 

layer. The layer type is chosen at random, and the 

layer is initialized with random values within the 

parameter’s ranges. The same applies to the learning 

pseudo-layer. 

Table 1: Mutation operators in F-DENSER and the Stepper Algorithms. 𝜎 is the algorithmically controlled step size, and 

Range = max − min is the range of a mutable variable. 

Type of mutation F-DENSER Stepper-Decay and Stepper-Adaptive 

copy layer, remove layer fixed probability fixed probability 

add layer, change layer type fixed probability probability proportional to 𝜎 

Floating point add 𝒩(0,0.15) × Range add 𝒩(0, 𝜎) × Range 

Integer random resetting Add 𝑟𝑜𝑢𝑛𝑑(𝒩(0, 𝜎) × Range+1) 

Categorical value random resetting random resetting 

 
1 Assuming 1000 significant discrete values for 

continuous values, and a maximum of 3 convolutional, 3 

pooling and 2 fully connected layers. A larger number of 

layers was almost never reached during searches. 
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5 EXPERIMENTAL SETUP 

5.1 MNIST Dataset 

MNIST consists of 60,000 28 × 28  grey level 

pictures in the training set and 10,000 in the test set. 

The training set is triple split into 53,000 training (for 

training architectures), 3,500 validation (to calculate 

the loss during training) and 3,500 test samples (for 

calculating the error rate of a trained model). The 

10,000 test set is only used to calculate the final error 

rate for the results of the NAS search. 

Preliminary NAS searches were run with ten and 

30 training epochs. We observed no significant 

difference in the behavior; even the final error rate 

was similar. Ten training epochs were used in the 

experiments to minimize computation time.  

5.2 Implementation 

The Python code of this work started with the F-

DENSER code. The main author rewrote most of it 

and added the collection of more statistics, caching of 

results, and recording of the evolutionary history6. 

Experiments were run with Keras/TensorFlow on 

an NVIDIA GeForce RTX 2070 Super from 2019. 

5.3 Benchmark Experiments 

All NAS algorithms use a (1 + 5) −  ES for 200 

generations, so one run evaluates 1,000 architectures. 

F-DENSER is used as a baseline, with the 

modification that batch normalization is applied after 

the activation function. The original paper about 

batch normalization proposed this (Ioffe & Szegedy, 

2015), and it appears to be more effective. 

For comparison, a Random Search is run. It’s 

limited to five feature layers and one classification 

layer because nearly all best-performing architectures 

were observed in this subspace. 

5.4 Experiment 1: Stepper-Decay 

As a simple way of controlling a global step size, we 

introduce the Stepper-Decay algorithm, which 

reduces the step size over time. The rationale is that 

NAS should initially explore large sections of the 

search space and be able to jump out of a local 

optimum; later, when it has found a reasonably good 

solution, large steps will probably lead it away from 

 
2    Source code and additional materials for this article 

are available on https://github.com/ChristianNieber/ 

nas_on_cnns 

the (local) optimum, while small steps can bring it 

closer to it. 

𝜎 is the standard deviation of a normal distribution of 

random values that generate the mutation steps. 𝜎 

starts at 0.5 in the first generation and decays to 0.066 

in the 200th generation. The decay function (shown 

in Figure 1) is: 

𝜎(𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛)

= (
1

1 + 𝑑𝑒𝑐𝑎𝑦𝑟𝑎𝑡𝑒 × 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛
) × 0.5 

(2) 

where 𝑑𝑒𝑐𝑎𝑦𝑟𝑎𝑡𝑒 =
1

30
, which was determined in a 

few experiments. 

 

 

Figure 1: Decay of the step size 𝜎 over generations in the 

Stepper-Decay experiment. 

The mutation operations add layer and change 

layer type that randomly reset parameters are 

subjected to an analog decay of their probabilities. 

Other layer mutations and categorical values are not 

affected. 

5.5 Experiment 2: Stepper-Adaptive 

As a more refined method of step size control, we 

propose the Stepper-Adaptive algorithm, where every 

individual carries its own mutation step size. This is 

based on Derandomized Self-Adaptation of Evolution 

Strategies (Hansen & Ostermeier, 2001; Ostermeier 

et al., 1994), but modified so that only a few of the 

possible variables (usually 2 to 5) are mutated to 

generate each offspring. 

For each offspring, a new mutation step size is 

generated from the parent’s step size: 

𝜎𝑘
(𝑔)

= 𝜎(𝑔)𝜉 (3) 

Where 𝜎𝑘
(𝑔)

 is the step size or standard deviation 

used to generate mutations of individual 𝑘  in 

generation 𝑔, 𝜎(𝑔) is the step size associated with the  

ECTA 2024 - 16th International Conference on Evolutionary Computation Theory and Applications

292



 

Figure 2: Box plots with the distribution of quartiles and outliers of metrics of the best (highest fitness) architecture found in 

each run for 20 runs of 200 generations. The square of the error rate and the number of parameters negatively affect fitness. 

0 is the fitness of an expert-optimized LeNet-like architecture, the best observed fitness was 2.2. 

 

Figure 3: Fitness of the best individual of each generation, averaged over 20 runs of 200 generations. The darker line shows 

the mean, the filled area the standard deviation. 

Table 2: Mean and standard deviations of metrics of the best individuals found, summarized over 20 runs of each NAS 

algorithm. The most relevant results are in bold. 

Metric Random Search F-DENSER Stepper-Decay Stepper-Adaptive 

Fitness -1.38 ± 1.42 0.23 ± 1.02 1.13 ± 0.52 1.31 ± 0.41 

Final test fitness -1.38 ± 1.35 -0.06 ± 1.06 1.00 ± 0.59 1.13 ± 0.58 

Error rate 2.41 ± 0. 71 2.17 ± 0. 75 1.78 ± 0.45 1.59 ± 0.39 

Final test error rate 2.41 ± 0.67 2.41 ± 0.79 1.92 ± 0.48 1.79 ± 0.44 

Number of parameters 73,669 ± 37,066 31,690 ±14,663 18,442 ± 6,830  18,077 ± 7,287 

 

parent of generation 𝑔, and 𝜉  is a random variable 

distributed as 1.4;
1

1.4
 with a probability of 0.5 each. 

Then, the variable values chosen for mutation for the 

new individual are generated with the step size 𝜎𝑘
(𝑔)

. 

If an individual is selected as a new parent for the next 

generation, the step size associated with this 

individual is recalculated as the standard deviation 

that has the highest likelihood of generating the step 

that was taken. This is the concept of 

derandomization. 

𝜎𝑘
(𝑔+1)

= 𝜎(𝑔) exp (
‖𝒛𝑘‖ − E[‖𝒩(0, 𝑰)‖]

𝑑
) 

(4) 

where 𝑧𝑘 is the vector of the random numbers used to 

mutate the 𝑛 variables that were chosen to mutate the 

individual, 𝐼  is the unity matrix of rank 𝑛 , 𝑑  is a 

dampening factor > 1 that reduces the change rate of 

the step size so that step size does not change too 

randomly from one generation to the next. According 

to (Ostermeier et al., 1994), 𝑑 should be proportional 

to the square root of the number of variables. 𝑑 was 

chosen as √
25

8

 
≃ 1.768 , where 25 is the expected 

number of numeric variables per individual and 8 is a 

reduction factor. 

6 RESULTS 

Table 2 summarizes the metrics of the best individual 

over 20 runs of each NAS algorithm. Figure 2 shows 

box plots of fitness, error rate and number of 

parameters. Figure 3 shows the convergence behavior 

of each algorithm. 
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7  DISCUSSION 

The error rate has an observed standard deviation on 

k-folds of ~ 0.32%, resulting in a standard deviation 

of the fitness of ~ 0. 5%. 

A (1 + 𝜆) −ES only selects individuals as new 

parents that have better fitness than the previous best. 

Because of this noise in the measurement, selected 

individuals are often those that “got lucky” and have 

a fitness significantly above the mean k-folds fitness 

of the architecture. This appears to strongly influence 

the behavior of the search. 

To check for statistical significance in a pair-wise 

comparison of the algorithms, we used a one-sided 

Mann-Whitney U test on the 20 fitness values from 

the 20 runs. For Stepper-Decay vs. F-DENSER, this 

found p = 0.000813, for Stepper-Adaptive vs. F-

DENSER p = 0.000052. Since p < 0.05, they perform 

significantly better than F-DENSER. Stepper-

Adaptive is not significantly better than Stepper-

Decay (p = 0.130808). 

Stepper-Decay and Stepper-Adaptive converge 

faster than F-DENSER, find better average solutions, 

and have a lower variance.  

All algorithms find architectures with a similar 

error rate to LeNet-5 and with less than a quarter of 

the free parameters. 

Figure 4 shows the evolution of the step size in 

Stepper-Adaptive. After initial adaptations, the 

average step size hovers near 0.4. If the step size were 

regulated effectively, it should decrease continuously 

in later generations. Presumably, evolutionary 

pressure keeps the step size at a compromise value, 

where a larger step size would be optimal for some 

variables and a lower one for others. 

 

 

Figure 4: The evolution of the global step size  𝜎 over 20 

runs of Stepper-Adaptive is shown as the mean and standard 

deviation. 

8 CONCLUSIONS AND FUTURE 

WORK 

Compared to F-DENSER, two different simple 

methods of controlling the step size resulted in faster 

convergence, better average fitness, and lower 

variance. 

The search for architectures to classify MNIST 

data is an effective way to compare the performance 

of NAS algorithms operating on wide search spaces. 

Twenty runs of a (1 + 5) − ES for 200 generations 

gave a good indication of the relative performance of 

the algorithms, requiring 10,000 architecture 

evaluations that took about 28 hours on a single GPU. 

Noise caused by training data randomization and 

random initialization is significant compared to the 

low error rates of <1.5% that were easily reached; we 

conjecture that perhaps MNIST is too easy. This 

could be remedied by using a harder-to-classify 

MNIST replacement like Fashion-MNIST or 

Kuzushiji-MNIST, where error rates are generally 

higher, so noise is less significant. 

The methods of step size control studied here are 

rather crude for three reasons. First, a global step size 

is unlikely to be adequate for all numeric parameters. 

Secondly, step size control currently does not apply 

to categorical parameters, which in the studied 

problem represent about half the parameters of an 

architecture. The third point applies to Stepper-

Adaptive. The step size is only adapted when a new 

individual is selected as a parent, which happens quite 

rarely in a (1 + 𝜆) −ES. So, the algorithm cannot 

learn from the > 98% of non-selected individuals and 

ignores most of the available information about the 

search space. 

In principle, these kinds of step size control can 

be applied to any problem where solution candidates 

are described by a grammar-conforming expression 

containing numerical values. This research could be 

useful in other domains that have this kind of 

optimization problem, like Operations Research. 

Future work will go into two separate directions: 

(i) perform experiments with a wider set of 

benchmarks and datasets and more complex 

architectures (e.g., including skip connections), and 

compare it to the best applicable published methods. 

(ii) explore how step size can be adapted in a more 

fine-grained way, with separate step size for single 

parameters or groups of parameters, and how it can 

be changed based on more of the existing knowledge 

about the search space. 

The smallest architecture found in the 

experiments had 5,450 trainable parameters and 

reached an accuracy of 98.8% on MNIST. It 
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contained an unusual stack of three convolutional 

filter layers that use ELU, linear and linear activation 

functions, and only one fully connected classification 

layer. This example suggests that a NAS working on 

a wider search space can find interesting designs that 

the experimenters had not considered before. 

There is a large potential for future improvement 

by exploring variations of step size control and 

mutation operators. This is a step towards more 

general and more efficient NAS methods. If NAS can 

be improved further and applied to even wider search 

spaces, perhaps in the future, it can find surprising 

new architectural improvements. 
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