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Abstract: Spatial data recognition, navigation based on localized visual clues and ability to identify significant elements 

in the environment and build routes is formed as a result of general spatial learning and then adjusted to a 

specific location. Modern artificial intelligence (AI) — from visual processing applications to autonomous 

vehicles—also includes this capability. However, excessive learning can lead to overfitting, which 

significantly reduces the efficiency of spatial actions. In this work we describe typical algorithms for 

navigation, spatial learning in pigeon flights, and remote sensing recognition in neural networks. We consider 

learning algorithms based on significant topological elements, and suggest possible methods to expand 

learning opportunities and reduce the impact of erroneous settings. Our calculation results show how 

overfitting affects navigation behaviour and visual recognition. Result of this work provides direction for the 

future development of new algorithms that optimize the efficiency of spatial learning.  

1 INTRODUCTION 

Spatial behavior is determined by the internal 

settings, goals, and expectations of subjects and by 

the external world as well as by ways of obtaining 

additional information about the external 

environment. The ability to solve spatial problems is 

used directly in everyday life and affects global 

processes of settlement and migration.  

Animals solve their spatial tasks reflexively, 

without a detailed study of topological relationships; 

they directly relate their observations, actions, and 

results to the physical capabilities of their bodies and 

the available environment. Humans have an 

opportunity to apply both their natural skills and 

digital technologies to solve localized problems in 

spatial structures (Freksa et al. 2017). An application 

of artificial intelligence (AI) complements the 

possibilities of spatial perception and navigation of 

humans and animals and builds a new level for 

discoveries and achievements in geography (Galvani, 

Zaleshina, and Zaleshin 2021). 
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Detailed skills for terrain orientation are acquired 

through spatial learning. There are different ways to 

evaluate the effectiveness of spatial actions. In 

practice, it can be summarized into two main 

indicators - how many wanted objects of spatial 

search are found and reached, and how much time and 

material resources are spent. Additionally, for AI 

often calculates a percentage of correct finds in 

relation to all finds, and a percentage of found objects 

in relation to all objects. This work compares spatial 

perception and navigation behavior for animals 

(using the example of pigeons), and for artificial 

neural networks (using the example of recognizing 

basic urban landmarks). Particular attention is paid to 

the issues of overfitting and underfitting. It is 

emphasized that learning increases speed and 

minimizes costs of wayfinding, but at the same time, 

overfitting and lack of updates to the applied patterns 

lead to systematic repeated errors, leading to a large 

number of false results during actions. 

The materials of this work can be useful in various 

topics related to the formation of spatial cognition and 

navigational behavior algorithms. 
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2 BACKGROUND  

2.1 Spatial Learning Algorithms  

The ability to perceive and recognize spatial data and 

use this data during movement is innate in both 

animals and humans. Now this need is being built into 

various AI applications, from programs for remote 

sensing recognition to autonomous vehicles. For both 

living organisms and AI, learning can be two types: 

independent learning and learning with a teacher.  

Spatial learning serves to optimize expenditures 

of time, effort, and resources. At the same time, the 

costs of the path are non-linearly related to the 

quantity and quality of the result obtained. In 

addition, material resources can be replenished along 

the way. Typical learning flowchart is shown in 

Figure 1. 

 

Figure 1: Learning stages and typical underfitting and 

overfitting problems. 

Algorithms, once formed during training, can be 

repeated for a long time, but this time is limited. First, 

the environment can be modified, e.g., due to climate 

change. Second, a repeated action can be a reason of 

outside changes, e.g., if the sheep eat and trample all 

the grass in the pasture. Third, learning errors can 

have a cumulative effect due to filters or due to 

repetition. 

Another problem that occurs during learning is 

overfitting. In the case of a stable environment, 

trained algorithms usually work. Overfitting occurs 

when a trained algorithm is able to process a limited 

set of data in too much detail, it processes well in 

fixed sets of samples, but is unable to generalize the 

processing to new situations. In fact, novelty is 

contraindicated for it. This needs to be eliminated by 

retraining on new samples, unlocking the rigidity of 

the predefined classification (Bashir et al. 2020). 

Additionally, in reinforcement learning, the novelty 

of an event can strengthen a motivated response to it 

(Siddique et al. 2017), which partially facilitates 

efforts to get rid of existing incorrect algorithms. 

Overfitting and underfitting can greatly affect 

learning outcomes: data can be misinterpreted or 

misclassified, relevant data can be filtered out. 

Underfitting often results from misinterpretation of 

noise or confusion in scales. Some of the noise can be 

removed at the preprocessing stage using the decision 

tree method (Alharbi 2024) or by segmenting spatial 

data according to the scale. 

2.2 Typical Spatial Tasks  

▪ Bird Flights: Homing and Foraging 

In flight, birds focus their attention on the main 

elements of the environment: long roads and rivers, 

or well-observed objects. Blaser et al. (Blaser et al. 

2013) describe how pigeons' mental map helps them 

find a route to home or to feeding site based on their 

current location. Detailed training in fixed route flight 

can be done with a teacher, while flying in a flock, or 

while following a leader. Flight consistency in a flock 

of pigeons often depends on the flying experience 

and/or age of the individual birds and the ability of 

the flock leader to set the direction of flight (Santos et 

al. 2014). 

The difference in the length of the flight paths of 

a bird making its first flight and a bird that has 

undergone training can differ several times over the 

distance A trained pigeon does not need to make a 

choice every time where to fly, and its route is 

optimally shortened.  

Both in the case of the first flight and in the case 

of failure to find the original target, the pigeons begin 

to survey around the starting point or predicted POI, 

over distances comparable to their usual flights. 

Schaffner et al. (Schiffner et al. 2018) studied the 

difference between surveying trajectories of pigeons 

at the moment of departure from the site and 

subsequent directed flight to the target. The authors 

suggested that complex perception of external 

information in pigeons slows down their flight speed, 

but at the same time allows the birds to more steadily 

and efficiently adhere to the target direction. 
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▪ AI: Machine Learning and Unlearning 

In remote sensing recognition tasks, including for 

navigation, the priority is to identify key objects - 

roads, buildings, vegetation. Depending on data 

sources, quality, and specificity for a particular area, 

recognition results of trained neural networks have 

different quality. U-Net (Benedetti, Femminella, and 

Reali 2022) or DeepLabV3 (Wang et al. 2022) are 

often used to recognize remote sensing images. Such 

neural networks often have difficulty eliminating 

noise interference, such as shadows from trees, when 

recognizing buildings or roads. Well-chosen 

segmentation labeling algorithm (Lee et al. 2022) 

helps to optimize neural networks.  

Machine learning models can adapt to variability 

in the data they process, although this often requires 

pre-training or retraining. In primary sequential 

training, the observed data sets are used to fit the 

model, assuming that the predicted features are 

constant over time. Retraining requires the ability to 

collect new data and compare the recognition results 

of incoming data with predicted ones (Dietterich 

2002). Active learning algorithm improves the model 

quality by checking of data labeling and label 

dispersion (Bengar, Raducanu, and van de Weijer 

2021). Adversarial learning methods are limited in 

data generalization and give unreliable results after 

overfitting (Zhao, Alwidian, and Mahmoud 2022).  

Machine unlearning is used to partially eliminate 

incorrect settings, while preserving the neural 

network model’s ability to recognize the necessary 

data. When unlearning significant indicators that need 

to be forgotten and those that need to be remembered 

are determined (Foster, Schoepf, and Brintrup 2024). 

Hopkins et al. (Hopkins et al. 2024) propose a 

model-independent solution based on the ability to 

generalize properties across sets of different classes. 

Kim et al. (Kim, Kim, and Bengio 2021) associate 

each branch of models with a visual concept and 

further manage the resulting set using the attention 

module. Processing first calculates the content, which 

is then returned to a pixel space containing the subject 

area and style.  

2.3 Route Planning  

▪ Aggregation of Route Planning Information. 

The rapid development of digital technologies 

contributes to a significant increase in the volume of 

collection and processing of spatial and temporal 

route data. Depending on the structure, route data can 

be divided into explicit entities directly related to 

observation and implicit additions with weak 

spatiotemporal continuity (Kong et al. 2018). 

The availability of route points with known 

attributes serves as the basis for creating a route 

through such natural objects that have been located 

close to each other for a long time and usually have 

similar or dependent components that determine their 

structure and content. To a lesser extent, this applies 

to artificial objects. Tobler’s first law (Tobler 1970) 

assumes the dependence of some attributes of objects 

that are close to each other.  

Unlike static orientation elements, dynamic 

elements are not constant in their properties over 

time. Natural objects can change their visual 

properties depending on the time of day and season. 

Artificial objects can change their other attributes 

without changing visually over time: public facilities 

(museums, cafes, shops, etc.) have opening hours; 

public transport runs on a schedule, possibly, with 

long breaks. 

In an unfamiliar environment, a person searches 

for previously encountered objects and signs to 

recognize other ones. The uncertainty generated by a 

little-known situation results in an attempt to orientate 

and search for fragments of previously encountered 

elements (Tversky and Kahneman 1974). The variety 

of identification and interpolation options leads to the 

creation of both copies and complementary 

extensions of existing fragments. Like puzzles, such 

identified fragments do not always form a 

recognizable whole. Fragments that are not combined 

into blocks collectively make up a potentially usable 

pool. The search allows for identifying suitable 

fragments and supplements thereto. Missing points 

can be added based on the available parts of other 

objects, when points with known attributes transfer 

their properties onto fragments or whole areas, as is 

the case in kriging.  

Points with known attributes can also serve as 

reference points. Reference points have stable 

locations, but their locations can change over time. A 

set of reference points forms a system of 

spatiotemporal relations that can be used for 

orientation along a route. Reference points with 

known attributes make it possible to create 

generalized coordinate systems based on their spatial 

positions or on non-numeric indicators. The complex 

nature of reference points allows them to be used as a 

tool for operations with objects and attributes, and as 

a framework for spatial positioning. The relative 

positions of points and objects form the structural 

code of the track points. With small changes, the 

structural code may remain the same, with significant 

changes in the data set of the environment; a new 

structural code is formed from some stable or 

repetitive components/elements of the environment. 
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The lines of short routes, if possible, run as straight as 

possible, especially if they are also in the line of sight. 

If the line of sight of the short route endpoint is 

obscured by visual obstructions, the route may 

deviate greatly from the straight line and detour along 

the visible road section. 

▪ Fragmentation of Observed Data. 

The environment, including both artificial and natural 

signs, is often underrepresented, contradictory, and 

ambiguous; the boundaries, color, and texture are not 

perceived clearly. The composition of objects 

selected by a person changes over time, and when the 

same objects are selected again, their fragments are 

added and removed, and new combinations of 

fragments are generated (LaPointe, Lupianez, and 

Milliken 2013). In the observed environment, 

fragments are selected that belong to one or several 

objects, for example, not the road sign itself but some 

part thereof, being jointly selected and even 

combined with the adjacent lawn.  

The success of the configuration options, 

fragmentation, and recombination of blocks and 

structural code can be determined by the statistics of 

contradictions between a single found element and 

the correspondence among the existing several 

elemental options found exactly according to the 

specified parameters. Attribute transferring allows to 

smooth out corners and to make modest changes and 

additions, and filling large voids in the data 

approximately (Ge et al. 2021a, 2021b). 

When overfitting, trained topics overwhelm 

untrained topics by searching the environment for 

previously encountered objects, phenomena, and 

events. But potentially there is a transfer of attributes 

from the known to the unknown. A list of objects or 

fragments can create thematic non-overlapping layers 

in a location that form new structures, this gradually 

leads to changes in fields from the attribute table 

where the transfer of attributes changes, for example, 

color from green to red, and a car to a tractor in the 

same field. Versions of assembly of layers are 

possible. In such cases, a block combining elements 

into a common or a consolidated block of mixed 

elements or fragments from one or different sources 

can be combined into a common whole with other 

parts. 

▪ Multiscale Spatial Code. 

The nature of spatial perception can be described in 

terms of topological entities, with visual form 

primitives serving as key geometric invariants (Chen 

2005). A multiscale spatial code is also present in the 

brain, which allows external stimuli to be represented 

with varying degrees of refinement, both in 

generalization and in detail (Bellmund et al. 2018). 

In problems of detecting visual changes, 

researchers have shown that objects embedded in a 

contextually heterogeneous scene tend to be detected 

faster than objects embedded in a contextually 

homogeneous scene. consisting of types of objects 

and their probable location (LaPointe, Lupianez, and 

Milliken 2013). The relative positions of points, 

fragments, and objects form the structural code of the 

route. The structural code is determined by the 

relative location of commensurate objects and, in 

general, does not change when objects are replaced 

with their counterparts. Searching for objects with the 

same attributes results in finding objects with the 

same structural code.  

The structure of a composite block of fragments 

is a set of fragments and links between them. Such a 

structural code of a composite block can be 

transferred from one block to another. The structural 

code for a set of objects is determined by the presence 

or absence of boundaries adjacent to each other or to 

the “background.” The structural code can change 

when fragment blocks move relative to each other. 

After a search for additional data in a collection of 

fragments and blocks, an incomplete object can be 

supplemented with missing data.  

The structural code, like a route description, can 

be used as a geometrical relative location of a set of 

objects and as an invariant for describing motion. 

Object attributes and structure codes often become 

similar if they have been neighbors for a long time. 

The difference between the existing and predicted 

fragments can be calculated at the same location.  

Tobler (Tobler 1970) assumes the dependence of 

some attributes of objects that are close to each other. 

Neighboring artificial objects may have a similar 

structural code. If a group of objects is located in the 

same area, attributes of objects are useful for restoring 

the missing attributes of another object from the same 

class. If objects of the same class are located in sight, 

missing attributes can be added based on the available 

attributes of other objects.  

Search operations make it possible to find 

intermediate points along a route. With redundant but 

varied options, the lack of information is 

compensated by additions found during the search. 

▪ Signs and Dynamic Elements Along a Route. 

In choosing a route, the goal is usually not a single 

endpoint of interest but to obtain a variety of 

“vacation” impressions, which is achieved by 

selecting the entire set of points to visit—both final 

and intermediate. Some of these POIs chosen by a 

traveler may relate to their favorite hobby (places for 

sports activities, cultural attractions, etc.), some POIs 

are directly related to everyday needs, and some are 
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explicitly aimed at gaining new experiences (see 

Figure 2). 

 

Figure 2: Route signs in Stein am Rhein. 

A sign is a material object or a pointer, which is 

identified by many people in the environment, but can 

have different imaginative content for any person. 

However, for standard logistics tasks, identically 

perceived signs are used. When exchanging data, a 

sign usually represents a small amount of data and is 

spatially localized. Signs along a route replace the 

immediate appearance of a predicted event or external 

information.  

Points of interest often serve as bookmarks and 

reference points in navigational applications. These 

are required for a variety of cases of access to 

information sources. Similar data from the external 

world with supplements in the form of search results 

restore the same initial conditions for collecting and 

processing information. Being small in volume, POIs 

allow quick recovery of information with the relevant 

set of parameters, which was prepared earlier. Such 

POIs often continue to be observed for a long time, 

maintaining the sample selection stability when 

searching. 

Orientation information has the property of 

maneuverability. When included in the current data 

set together with other observed data, its fragments, 

links, attributes, and structural codes are transferred. 

Incoming data is modified by adding extra-large 

fragments or reference points or by filling in missing 

data using fragments. Expanding the currently 

collected data using a search is also possible when 

accessing extended data, with orientation information 

acting as an instance of some class, or if there are 

dependent or identical parts in the observed or found 

elements. 

▪ Choosing with Insufficient Information 

If there is no fixed endpoint, the route can be very 

tortuous. When fixing the start and end points of a 

route, its intermediate points are movable and depend 

on the selection and external events. According to 

some signs, that are known and equally understood by 

many people, it is possible to determine the type and 

intensity of traffic at certain hours in a certain 

direction. 

Uncertainty in choosing a route can occur when 

there is a lack or excess of information, or when it is 

impossible to determine the importance of the 

observed data. Choosing between two insignificant 

options or avoiding a choice may be based on 

intermediate surveying, or affected by external 

influence, or accompanied by withdrawal from the 

situation. Failure to pay attention to any POIs when 

changing the thematic setting may be a result of 

fatigue or overfitting. 

Untrained – a deviating path taking into account 

POIs, trained by teacher – the most well-trodden 

paths – mostly based on the decisions of others, 

taking into account the variations and, trained without 

teacher – shortest paths. 

Let the path consist of four parts: 1) planned 

activities, 2) relaxation with inactive rest without 

almost external events, c) visually attractive 

contemplation or observation without temporary 

haste for what is interesting and d) active spontaneous 

entertainment here and now.  

▪ Unexpected Events or New Road Signs  

For some, perhaps a long, time synchronicity is 

displayed in different structures and processes that 

start at the same time. The synchronicity of objects 

can be either temporal, as for a series of objects, or 

spatial, as for a set of objects that are selected by a 

person simultaneously (Ort and Olivers 2020). Even 

if the geometric distance is fixed, due to weather and 

other unexpected factors, traveling time from one city 

to another may be variable (Neumann 2017). Short-

distance travel is associated with risk, when this 

movement is carried out to link initially unrelated 

segments of the route path that are close to each other 

in the task of quick transition. It is worth noting that 

often many short sections of the route can only be 

traversed on foot. 

Unexpected events, obstacles or new road signs 

can significantly change both the route itself and the 

set of intermediate points of interest. A small gap in 

the planned route that arises due to a lack of 

information regarding objects along the route is 

closed under the assumption of the similarity of these 

unknown objects with previously encountered ones.  

Often, difficulties arise when opting for a 

particular route; besides, natural and artificial 

obstacles can affect the already planned path in the 

most unpredictable ways. In such cases, where a 

person is not able to generate a route model due to 

unpredictable events or a mismatch with 

expectations, they can always simplify the choice 

model to a series of one-time choices (existing “here 

and now”); however, in each new moment, the person 

will again need to make next choice.  

In addition to the existing “points of interest” on 

a map of the area, a traveler can find new “points of 
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attraction” that unexpectedly invite attention. They 

can become intermediate points on the route.  

The scale of the planned route determines the 

features of its formation. When optimizing a route, 

considering points of interest, one can draw an 

isoline, connecting points with the same levels of 

interest. For more flexibility in working with data, 

one can use a dynamic segmentation of events along 

the route. During the formation of the preliminary 

route, it is assumed that both a choice has been made 

and a class of objects to be approached has been 

selected or the routes are offered to all known objects 

within acceptable limits. During the search, objects 

located in the vicinity of the route track can 

supplement the set of criteria for route selection. A 

not-fixed route endpoint increases the significance of 

pointers located near the starting point.  

The presence of a distinguishable choice between 

two options does not imply the presence of a 

predisposition to one of them. In this situation, 

preparation is required for the solution: surveying in 

situation with clarification of route details, external 

interference to the situation, outside signs, and so on. 

An important reason for the change or complete 

cancellation of a route may be the discrepancy 

between expected and real events. 

3 MATERIALS AND METHODS  

3.1 Materials 

▪ Pigeon Flights 

Spatial processing of GPS pigeon tracks was 

performed based on data on bird flights in flocks over 

the combined terrain, published in open repositories: 

Dryad Digital Repository 
https://datadryad.org/resource/doi:10.5

061/dryad.f9n8t, where flocks flew near the 

seashore and Movebank Data Repository 

https://doi.org/10.5441/001/1.33159h1), 

where flocks flew near the foothills. The distance 

between the points of departure and destination was 

about 10 km. The distance in the coordinate sequence 

of pigeon GPS tracks was about 3-6 meters. 

Measurements of coordinates were taken 4–5 times 

per second. The number of pigeons in each flock was 

4-8 birds. 

▪ Remote Sensing Data 

Spatial remote sensing data were obtained from open 

sources, such as Sentinel2 data hub 

(https://www.sentinel-hub.com).  

 

 

3.2 Processing Steps and Metrics 

When analyzing the movement trajectories of birds, 

our processing consisted of the following steps: 

▪ Creating a new project in QGIS 

(http://qgis.org) and uploading data 

about trajectories and terrain; 

▪ Identification of local key objects based on 

remote sensing data, including selection of 

contours of significant extended objects; 

▪ Object recognition using neural networks; 

▪ Calculation of the main indicators of tracks for 

different degrees of learning; 

▪ Calculation of track metrics. 

When analyzing remote sensing data, we 

accomplished data recognition in different versions of 

networks: 

▪ Non-specialized in remote sensing recognition, 

but able to recognize images of a different type,  

▪ Trained for remote sensing recognition,  

▪ Trained, but with modified recognition 

parameters - conditionally untrained. 

Calculation of recognition metrics F1-Score_obj 

(Lipton, Elkan, and Naryanaswamy 2014). To 

calculate the F1-Score values, we used 

sklearn.metrics module from open source machine 

learning library Scikit-learn (https://scikit-
learn.org/stable/modules/generated/skle

arn.metrics.f1_score.html). 

3.3 Applications 

Spatial analysis was performed using QGIS 

applications Extracts contour lines and Heatmap, and 

LF Tools (https://github.com/LEOXINGU/ 

lftools/wiki/LF-Tools-for-QGIS).  

The recognized remote sensing materials was 

obtained using Mapflow AI platform 

(https://github.com/Geoalert/mapflow-

qgis, http://mapflow.ai), which provides 

geoinformation pipelines for recognizing objects 

based on remote sensing data, such as buildings, 

roads, fields, forests, etc. using various neural 

network models. To improve the quality of 

recognition, settings are specified for pre- and post-

processing of the results. Such settings provide a 

fitting variation in recognition depending on sources 

(aerial/satellite) and specifics of the recognized 

classes (density of buildings, urban or forest 

vegetation, etc.). Mapflow's recognition capabilities 

can be used even to segment trees by crown type and 

houses by height (see Figure 3).  
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Figure 3: Segmentation of trees by their crown types. 

4 RESULTS  

4.1 Analysis of Pigeon Flights 

During the calculations, comparisons were made for 

untrained, trained and overfitting cases of bird flights, 

and it was found how pigeons fly without turning off 

the path, depending on the types of flight and degree 

of training.  

Calculations were made for middle distance 

tracks, where all distances between the points of 

departure and destination of the flock of pigeons were 

about 10 km. In GPS measurements were taken 4–5 

times per second, distances between points of pigeon 

GPS tracks was about 3-6 meters. The number of 

pigeons in each group was 4-8 birds. 

The following indicators were calculated: 

▪ Straightness index (ratio of flight length in 

target direction to total flight length); 

▪ Flight around newly found POIs (percentage of 

cases of flying over the buffer zone of the flight 

to explore new POIs).  

 

 

Figure 4: Typical flights: (a) Surveying flight; (b) Trained 

flight; (c) Trained flight. 

Typical pigeon flights are shown in the Figure 4.  

The calculation took into account the pigeon's 

level of training, in accordance with the number of 

flights performed along a given route. It was believed 

that the 1st-3rd flight is an untrained or surveying 

pigeon; the 3rd–7th flight is a trained pigeon; above 

the 7th flight is an overfitting pigeon. 

The calculated results of pigeons’ flight 

efficiency for surveying flights (the bird does not yet 

know the way), trained flights (the bird knows the 

way, but is distracted by external factors), and 

overfitting flights (the bird flies as directed as 

possible towards its target) are shown in the Table 1. 

Table 1: Pigeon’s flight efficiency.  

Evaluation Surveying 

flights 

Trained 

flights 

Overfitting 

flights 

Straightness 

index  

0.09 0.64 0.89 

Flight around 

POIs  

64 % 27% 11% 

4.2 Efficiency of Neural Networks 

Examples of building recognition by untrained, 

trained, and overfitting neural networks (NN) are 

shown in the Figure 5. It is noticeable that the 

untrained neural network tries to find buildings based 

on any minimal features, the trained neural network 

detects buildings with high efficiency, and the 

overfitting neural network correctly recognizes 

buildings in images of a familiar type but at the same 

time makes a large number of errors on unfamiliar 

textures.  

   

 

Figure 5: Buildings recognition: (a) untrained NN; (b) 

trained NN (c) overfitting NN. 

The calculated results of F1-Score are shown in 

the Table 2. 

Table 2: Untrained, trained, and overfitting NN. 

Evaluation Untrained NN  Trained 

NN 

Overfitting 

NN 

Number of 

training samples 

(1 x 1 km2) 

3 9 17 

Recognized 

objects in 

training samples 

265 854 1430 

F1-score  0.17 0.87 0.52 
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5 CONCLUSIONS 

Spatial learning in perception and navigation are 

essential skills in a changing environment. Both in AI 

and in nature, there is a problem of “overfitting” when 

a bird accustomed to the same route fails to notice 

new places to forage, or an artificial neural network 

begins to detect buildings in the ripples of the ocean. 

The “challenge” of overfitting makes it difficult to 

obtain new information and to find optimal solutions. 

Special attention is paid to the problems of overfitting 

when detailed adherence to previously acquired 

behavioral patterns leads to a decrease in efficiency 

and the accumulation of systematic errors. 

Additionally, due to overfitting, the ability to make 

optimal decisions in the presence of significant 

changes in the environment is reduced. 

Our work systematizes general issues related to 

spatial data processing. We examine the problem of 

learning and retraining in spatial cognition and 

navigational behavior in categories: birds’ navigation 

behavior and remote sensing recognition with neural 

networks and demonstrates techniques for solving the 

problem of overfitting. It can be helpful in various 

industry applications, including tracking changes in 

animal migrations in conditions of climate change, 

creating smart interactive tourist routes and adapting 

infrastructure for tourism, and preparing new neural 

network models for recognizing spatial data. 
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