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Abstract: It is known that the hardness of the (two-way) number partitioning problem (NPP) variant of the subset-sum
problem (SSP) depends on the number and distribution of bits in the set of numbers, but beyond this, it is
relatively unexplained for the SSP itself. Thus, we look at the solution space of various problem instances of the
SSP using fractal analysis. Two methods to determine the dimension are used. Plotting the fractal dimension
over the range and distributions of informational bits, we find that it is correlated with this linear model and
also moderately correlated to the hardness of the NPP. This suggests that fractal analysis might be a useful tool
in understanding the complexity of combinatorial problems and, we believe, may help further understand the
hardness in NP. Finally, we introduce a thought experiment derived from the famous Hilbert’s hotel, which
we call Hilbert’s hotel with elevators, to intuitively illustrate how the complexity of the solutions space and the
computational hardness may relate across combinatorial problems.

1 INTRODUCTION
AND RELATED WORK

The subset-sum problem (SSP) is a particularly
interesting problem within the class of NP-complete
(Garey and Johnson, 1990) problems because it is
actually quite simple, both in terms of its definition
and in terms of the computational hardness of many
instances, which consist of a set of integers S ⊂ N+

and a target value t ∈ N. A subset A ⊆ S is a solution
to this instance if ∑A = t. If t =

⌈ 1
2 ∑S

⌉
, this is known

as the (two-way) number partitioning problem (NPP),
which is also NP-complete (Karp, 1972).

Over the years, there have been several insights
into what makes instances of this problem easy or
hard. This is also of particular interest to the cryptog-
raphy community, where the SSP has been the basis
for an early asymmetric cryptosystem (Merkle and
Hellman, 1978; Sharma et al., 2011).

Lemma 1. Superincreasing SSP instances are trivial.

Proof. A set S is superincreasing if all the integers it
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contains are larger than the sum of all smaller ones con-
tained in the set (∀s ∈ S : s > ∑{n|n < s}∩ S). Thus,
the best possible subset for any t is either mins≥t{s} or
mins≥t{n|n < s}∩S, which are both trivial to find.

Beyond superincreasing instances, the hardness of
the problem for a pseudo-polynomial time algorithm
depends on the magnitude of the integers in the in-
stance (Kleinberg and Tardos, 2005, chapter 8.8). Korf
(1998), Mertens (2003) and Hayes (2002) illustrated
that the hardness of the NPP specifically is influenced
by the ratio m/n of the average number of bits m
required to represent each integer over the cardinality
n of the set S. For the NPP, the relation of the number
of solutions (perfect partitions) depends on this ratio
m/n. If n is sufficiently large, the SSP becomes easy
for at least some values of t by the sheer frequency of
solutions, since limn→∞ n× (2m −1)− 2n < 0.1 But
even for the same value of the ratio m/n, some instances
may differ in computational hardness, that is to say
will be solved after fewer or more computational steps
than others. This is not only attributable to the vari-
ation in the frequency of optimal partitions, but also
depends on the concrete integers that make up the set.

1For very small m/n, multisets are unavoidable due to the
limited number of different integers with m bits.
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Van Den Berg and Adriaans (2021) found that the
distribution of informational bits over the integers in
such random instances of the NPP influences the ex-
perimental hardness, which is determined for each in-
stance by the number of recursions required to solve it
using a depth first branch and bound (BB) algorithm.
This algorithm generates candidate subsets from the
list of integers sorted in decreasing order. Compared
to the complete greedy and complete Karmarkar-Karp
BB algorithms for the NPP by Korf (1998), which con-
struct candidate subsets (leaf nodes) according to the
respective heuristic from left to right, in the algorithm
by Van den Berg and Adriaans each node is a candidate
subset following a greedy heuristic and thus, the total
search tree is much smaller.

In order to generate instances with varying dis-
tributions of informational bits across the integers,
Van den Berg and Adriaans introduce the notion of
strict templates, which determine the exact number
of bits for every integer in the instance. They use
seven different templates with 78 bits each over 12
integers to generate instances of the NPP, which
consequently all have on average 6.5 bits per integer
and so m/n ≈ 0.54. Three templates are eccentric,
meaning that their derivative has values greater than
1. Instances generated from such templates contain
mostly small values and few relatively large ones. The
non-eccentric ones range from the linearly increasing
template {1,2, . . . ,n} to the (almost) uniform or
flat template. From each of these templates, ten
instances are randomly generated. For example,
given a template {3,4,5,6, . . .}, the first integer of a
corresponding instance with exactly m1 = 3 bits may
have any value between 2m1−1 = 4 and 2m1 − 1 = 7.
While instances derived from eccentric templates
always have the same hardness, those generated from
non-eccentric templates can be both easier or harder.

This experiment was replicated by Sazhinov et al.
(2023) using 105 bits over 14 integers. They further-
more find that the different templates for generating
instances also affect the performance of heuristic
algorithms for the NPP.

Since both papers pertain to the NPP variant of the
SSP, the parameter t is not covered. For every set S,
there are a some obvious values for t, which will result
in trivial instances (S, t) that can be solved without
backtracking. Beyond this, however, the solution
landscape of the SSP is more opaque. If an instance is
very eccentric, the histogram of the solution frequency
for every value of t will have two large clusters on
either side of the spectrum because all possible subset
sum values are either very small or very large. For
(almost) flat templates, the opposite is the case. Subset
sum values around

⌈ 1
2 ∑S

⌉
are more frequent than

very small or very large ones. The picture is less clear
between these two extremes, yet some patterns can
be expected to emerge in the histogram of subset sum
frequencies: Given some subset A ⊂ S of relatively
small numbers, the histogram of all possible subsets
of A will occur multiple times in the histogram for S
at {∑B|B ⊆ S\A}. Examples for these three cases
are visualized in Figure 1. Our hypothesis is that the
SSP shows fractal properties, which may be correlated
to its hardness. Consequently, we will use the fractal
dimension to measure the statistical self-similarity in
these histograms to describe the unpredictability and
density of the solution space and thus its complexity
(cf. Falconer, 2013, chapter 3).

In the following Section 2, we outline the methods
for our two experiments, which includes generating
and analyzing a dataset for each and describe the
results in the subsequent Section 3. Beyond these
experiment, we make a case for the importance of
the complexity of the solution space for the compu-
tational hardness by illustrating it with a new thought
experiment inspired by Hilbert’s hotel (Ewald and
Sieg, 2013) in Section 4. We conclude our work with
a discussion of the implications and future work in
Section 5 and 6.

All experiments were implemented in Python
3.9 and run on a dual-CPU compute node (72 cores
at 2.4 GHz, 256 GB DDR4 memory) of the cluster
HSUper. A replication package including the dataset
is available in an online repository (Horn et al., 2024b).

2 METHODS

For our experiment, we leverage the template approach
by Van den Berg and Adriaans (2021) in order to gen-
erate random proto-instances (just the sets S without
t) of the SSP. The templates used for this result in
different distributions of the informational bits across
15 integers. For each proto-instance the information
distribution is characterized by the linear regression
slope β, which is the logarithm of the sorted integers:

log2 si ≈ α+βi for si ∈ S (1)
The number of total bits ∑i mi, with mi the number of
bits for the ith integer, is 1

2 n(n+1)where n = |S| as de-
termined by the number of bits in the linearly increas-
ing template (β = 1), in which the number of bits for
each integer corresponds to its index in the template.
For n = 15 the total number of bits is thus ∑i mi = 120.
Lemma 2. The linearly increasing template (β = 1)
and flat template (β = 0) are only possible for the
same ∑i mi if n is odd.

Proof. Otherwise, ∑i mi
n = 1

2n n(n+1) = n+1
2 /∈N.
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Figure 1: Histograms of the subset sum frequency and Gaussian kernel density estimation (KDE) for the eccentric set
{1,2,3,5,14,50,795}, the linearly increasing set {1,2,5,8,30,41,83} and the flat set {8,9,10,11,12,13,14}. All three
instances have 28 bits over 7 integers. The range of the horizontal axis is determined by the sum of each set.

To cover the spectrum of values for β as widely as
possible, including both non-eccentric and eccentric
templates with β ≤ 1 and β > 1 respectively, three
approaches are used to come up with templates from
which random instances are generated. For the non-
eccentric templates, the values for β should cover the
full range [0,1]. For eccentric ones, we chose a ramp
function, as it is a simple method of realizing non-
linear distributions which can still be distinguished in
our dataset using β in Equation (1). The three methods
used for generating templates are described below:

• Non-eccentric templates are generated from
Equation (2) by distributing the number of bits
as linearly as possible following the desired
slope β ∈ (0;1] with uniform distribution of the
remaining bits (Tβ=0).

(⌈iβ⌉ |i ∈ {1..n})+Tβ=0 (2)

This approach predominantly generates templates
with a low value for β closer to 0.

• More non-eccentric templates are generated by
integrating all possible binary sequences {0,1}n.
If the remaining bits cannot be evenly distributed
over the integers, the template is discarded.
Sampling with uniform spacing from all fea-
sible templates generated using this approach
predominantly yields templates with β closer to 1.

• Eccentric templates are generated from Equa-
tion (3) by concatenating a shorter flat template
of 1s and a linearly increasing template (Tβ≥1) of
length i ∈ [2..n) using all remaining bits.(

(1,)n−i,Tβ≥1(i)
)

(3)

This inevitably results in proto-instances contain-
ing multisets. However, this is unavoidable if the
ratio m/n should be the same between all templates.

Admittedly, we still only cover some of the possible in-
formation distributions since, for example, those with
one or multiple plateaus are not represented. However,
as these templates can no longer be adequately char-
acterized by a scalar information slope β and these

distributions may only be possible for larger numbers
of informational bits, this is outside the scope of this
paper. Based on these templates, a proto-instance
is generated by randomly sampling each integer at
index i with the corresponding number of bits mi from[
2mi−1..2mi

)
(cf. Van den Berg and Adriaans, 2021).

The fractal dimension of an SSP proto-instance is
then measured on the histogram of all corresponding
subset-sum frequencies, as shown in Figure 2. We use
standard box-counting, where the slope of multiple
box-counts in a log-log plot yields the Minkowski
dimension (Bishop and Peres, 2016). Others methods,
such as variational box-counting (Pilgrim and Taylor,
2018) or Haar wavelet approach (Zelinka et al.,
2014), may not be feasible or at least not as easy to
implement for large and sparse histograms resulting
from larger proto-instances. A box is placed for every
grid cell that the histogram covers, regardless by how
little. The box-sizes are limited by the histogram to
{2n|n ∈ {0..⌈log2 max t⌉}} bins. Box-counts are only
performed for up to 10 different box-sizes to avoid
excessive runtimes.

By applying the box-counting method to a bi-
nary normalization of the histograms, we obtain a
dimension between 0 and 1 which is the Minkowski
dimension in one dimensional space. We call this the
line-counting dimension of a proto-instance, and it
indicates the distribution of solvable values of t for
a proto-instance. For a set of binary numbers or any
other superincreasing set, the value for the box- and
line-counting dimension are identical because each
bin in the histogram has a value of at most 1.

Figure 2 also shows that a linear fit may not per-
fectly describe the scaling of the histogram. Thus, the
goodness of the fit is computed using the coefficient
of determination R2. In our experiments, the fractal
dimension is considered to be accurately characterized
if R2 ≥ 0.95.

In experiment #1, we measure the fractal dimen-
sion using these methods for random proto-instances
with different ratios of m/n, proportional to α in Equa-
tion (1), with n = 15 and uniform distribution of bits
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Figure 2: Box-counting method applied to the histogram of proto-instance of the SSP like those in Figure 1. This example
uses a multiset S = {4,4,5,5,6,7,7} for better visualization. The right subfigure shows the log-log plot of the number of boxes
touching the histogram in the other subfigures at different sizes. The resulting slope gives the fractal dimension.

(Tβ≈0), inspired by Korf (1998) and Hayes (2002). In
experiment #2, we measure the fractal dimension of
proto-instances with the same number of bits over n =
15 integers but with 39 different informational bit dis-
tribution slopes β, which were generated as described
earlier. For each of these experiments, five proto-
instances are created for every template, resulting in
a total of 500 and 195 proto-instances respectively.

In addition to the fractal dimension of proto-
instances, we also investigate their hardness by
counting the number of recursions required by the
depth-first BB algorithm by Van den Berg and Adri-
aans (2021). While other exact algorithms for the
SSP might have a slightly better (yet still exponential)
time complexity (Howgrave-Graham and Joux, 2010),
this algorithm is exceptionally well suited for solving
many instances in parallel due to its minimal spacial
complexity. For any set S, there are obviously trivial
instances, for example t ∈ S, and both easy and hard
values of t are not the same between different sets of
integers. Thus, we resort to measuring the hardness
of the NPP where t =

⌈ 1
2 ∑S

⌉
for all sets like Van den

Berg and Adriaans (2021) and consider ∑A = t + 1
a perfect solution for all instances where ∑S ≡ 1
mod 2, like Schreiber et al. (2018).

3 RESULTS

As expected, in both experiments, we obtain dimen-
sionalities in the range of [0,1] for the line-counting
and [0,2] for the box-counting method. For experiment
#1 concerning different values for α in Equation (1),
almost exclusively those with α ≤ n (corresponding to
m/n ≤ 1) have an R2 score of at least 0.95, which is also
the range containing multiple solutions for instances
of the NPP (Hayes, 2002). In total, 266 of the 500 sets
have an R2 score of at least 0.95 for both box- and line-
counting and are thus considered characterized by their

respective fractal dimension. The values for the line-
counting dimension are within the range (0.644,1],
with lower values of α seeming to coincide with a
higher maximum dimensionality. However, an incom-
plete arch with a peak at α ≈ 7 is visible in Figure 3a.

Similarly, the box-counting dimension peaks at
α = 3.985 with 1.706. Above and below this point,
the values seem to decrease linearly. Generally, the
fewer bits per integers, the less likely it is that there
are holes for any values of t and so the line-counting
dimension increases. At the same time, the box-
counting dimension also increases with the frequency
of subsets with the same sum. One could say that
the histograms start having a not insignificant height
across multiple values of t. Beyond a certain point, the
number of bits is low enough that all possible values
are likely represented. Say m/n ≈ 0.26, then there are
only 20.26n ≈ 24 = 16 possible integer values. This
may explain the lower box-counting dimension, since
the small size of the histogram is once again covered
by relatively few boxes of any size.

Figure 3b shows the box- and line-counting dimen-
sion of the generated SSP proto-instances over their
corresponding information distribution, and looks
somewhat similar to Figure 3a. Out of the 195 sets,
147 have an R2 scores of at least 0.95 for both box- and
line-counting. The horizontal axis marks the slope of
the information distribution for each instance, from
flat at 0 and non-eccentric over linearly increasing at
1 to increasingly eccentric. The box-counting dimen-
sion increases for values left of the linearly increasing
template with β= 1 while the line-counting dimension
decreases right of this value. We fit a line with a slope
of −0.45 and offset 1.43 through those points with
R2 ≥ 0.98. Since m/n = 8

15 ≈ 0.53, the line-counting
dimension of the non-eccentric instances is very high
and probably almost all values of t have a solution.
Proto-instances with β > 1 have some relatively
large values, so the histogram of subset sum values is
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(a) Box- and line-counting dimension over different bits
per integer α. For values above 15 (m/n ≥ 1.0), the object
appears less fractal, as indicated by the R2 score.
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Figure 3: Fractal dimension of the SSP proto-instances with n = 15 integers over the α in (a) and β in (b) of the information
model Equation (1).

rather sparse, since its range is large. As this value is
increased further, the clusters of possible subset-sum
values t are stretched further apart, since the range
increases. The box-counting method is not applicable
for such instances because, in the extreme, the clusters
of values look like two towers, two lines which stand
orthogonally on the horizontal axis and so any fractal
characteristic is not captured by a linear model over the
entire range of box-sizes. With decreasing values of β

the box-counting histogram becomes more and more
bell shaped and similar to an Irwin-Hall distribution
(Hall, 1927) at β = 0, because using a flat template
with uniform distribution both very low and very high
sums are rare. Thus, the box-counting dimension
increases with the height of the histogram.

The change of the trend in the data for β ≥ 2 can
perhaps be attributed to the fact that very eccentric
proto-instances, due to the limitation on the number of
bits, are inevitably trivial multisets containing mostly
1s. This may not occur so pronounced when increas-
ing the number of bits representing the small numbers,
however, changing the number of bits in an instance
also affects the fractal dimension (cf. Figure 3a).

Figure 4 shows the hardness of the corresponding
NPP instances, the number of recursions for the BB
algorithm by Van den Berg and Adriaans (2021), for
both experiments on a logarithmic scale. For sets
from experiment #1 with a uniform distribution of
bits (β = 0) in the left subplot over α, the number
of recursions increases on average exponentially
until around 1, mirroring the visualization of the
number of optimal partitions (Hayes, 2002), recently
characterized by Horn et al. (2024a). For the sets from
experiment #2 with varying β, this is less clear-cut.
Non-eccentric instances (low value of β) are easier,
but also more varied than eccentric ones, in line with

previous findings by Van den Berg and Adriaans
(2021) and Sazhinov et al. (2023).

The Pearson correlation of the hardness of the
generated NPP instances over α with the box- and
line-counting dimension is −0.666 and −0.688
respectively, while over β it is −0.751 and −0.645.
Although the correlation between the hardness and
the box-counting dimension is higher over varying β

than over varying α, Figure 3a clearly shows that the
latter develops much more similarly to the hardness
for 0.351 ≤ m/n ≤ 1 (3.785 ≤ α ≤ 13.810) with a
correlation coefficient of −0.834 when using the
logarithm of the number of recursions.

4 THE BROKEN ELEVATOR
IN HILBERT’S HOTEL

Our investigations of the solution landscape concern
instances of finite size and therefore finite complexity.
Dilation theory (Adriaans, 2021) studies computable
mappings of infinite sets onto higher dimensional
discrete spaces. For this purpose, we consider P(N)
the set of finite subsets ofN. It is countable, in contrast
to the power set P (N), which is uncountable. Below,
we illustrate how the complex structures that we
observed before and the computational hardness of
combinatorial problems are intricately linked.

The famous thought experiment of Hilbert’s
hotel, named after the German mathematician who
introduced it in 1924 (Kragh, 2014), describes a
hotel with an infinite number of rooms which is fully
booked for a conference of mathematicians and yet
can still accommodate other guests. We propose a
new thought experiment starting from a hotel having
infinitely many elevators (columns) which each lead
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Figure 4: Hardness of the corresponding NPP instances for all generated sets over the number of bits per integer α of a flat
template and different information distributions β from Equation (1). The hardness of an instance is measured in recursions
required by the BB algorithm by Van den Berg and Adriaans (2021).

to the ith room on all infinite floors (rows), thus
transforming the problem from N into N2. Contrary
to the original idea of Hilbert, we are interested in the
variations of the occupancy rate of the hotel under
various mathematical functions used to allocate the
same countable number of guests. We imagine that
all mathematicians who stay at the hotel are identified
by a unique finite set of natural numbers such as
{1,2,5,7}, {n|n < 10!} or /0, effectively defining a
bijection between the infinite set of mathematicians
and the countable infinite set of finite subsets of
natural numbers. When asked to allocate rooms for
the participants of a conference, Hilbert decides to
give each guest two functions to compute their room
based on the set of numbers assigned to them:

• the elevator index function (column) and

• the floor index function (row).

Together these functions give the complete infor-
mation of the location of the room in the hotel: the
elevator index function gives a partial description of
the location, the floor index function gives the missing
information. Hilbert soon realizes there is a complex
interaction between the elevator- and the floor index
function. The occupancy rate of the hotel depends on
the functions the guests use in order to compute the
location of their rooms. When the guests use very little
information from their set of numbers (e.g., the cardi-
nality of the set) to select the elevator, the hotel is fully
booked (defining a two-dimensional space). It is easy
to compute the corresponding floor index. When the
guests use all the information of the numbers in their
sets (i.e., interpret them as integer selection masks
for binary numbers) to select the elevator, the hotel is
almost empty: only the first floor rooms are occupied
(defining a one-dimensional space). For elevator index
functions in between these two extremes, like addition
and multiplication2, the behavior of the floor index
function is chaotic and leads to a fragmented occupa-
tion of the hotel (see Figure 5). These chaotic regions

2Addition and multiplication are associated with the
partition function estimated by Hardy and Ramanujan
(1918) and integer factorization problem (Lenstra, 2011)
respectively.

are associated with fundamental issues in mathemat-
ics, such as factorization and the partition function.

Functions in this region do not allocate guests very
efficiently. At the conference, a young mathematician
discovered this the hard way when she decided
to organize a sub-conference and invite all 2n − 1
colleagues she knows, that is to say, those whose set
is a subset of hers. Since it is a small conference,
she uses addition for the elevator-function so that all
guests have rooms close to the lobby. She leaves the
choice of the floor to each participant, depending on
arrival. A day before the conference, she discovers
that the elevator with the number 141592653 is out of
order. She has to check if this elevator is used at all
during the conference, but she soon realizes she has no
efficient algorithm to answer this question, because it
is an instance of the NP-complete SSP.

Likewise, with addition as the allocation function it
is not easy for attendees to know if they will have direct
neighbors on their floor to talk to, since knowing any
given subset sum does not necessarily say anything
about the frequency or existence of directly neighbor-
ing subset sum values. The take-away message of this
example is that not all efficiently computable elevator
index functions lead to efficiently computable floor
index functions, which is the defining characteristic
of the class NP. Dilation theory predicts that there
is a correlation between the fractal dimension of the
occupancy rate of Hilbert’s Hotel associated with var-
ious elevator index functions and the hardness of the
corresponding problems in NP that use these elevator
index function as a checking function. The empirical
research described in Section 2 and 3 corroborates that
theory. The template approach presented in the first
part of the paper was developed to study phase transi-
tions in these chaotic regions of the SSP (see Figure 5).
The previously measured fractal dimension can be
seen as a measure of how the conference occupies the
hotel. If the set is very eccentric, all subset sums do
not occur more than once. All attendees are staying on
the first floor, rather far apart from each other.
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Figure 5: Different (truncated) histograms for functions defined on P(N). The images (a), (b), (c) and (e) are associated with
standard mathematical functions. The image (d) is a so-called injured set, and (f) shows an eccentric set. These two are designed
to give insight in the behavior of sets in the neighborhood of the scale-free set defined by powers of two. The possible solution
spaces of instances of the SSP are captured by (d)-(f).

5 DISCUSSION

Looking at Figure 5(b) and (d)-(f), we might relate
them to different templates from the previous experi-
ment. The set S = {a..a+ n− 1} ⊂ N for a relatively
large number n = |S| is the flattest SSP proto-instance
possible without including multisets, and there is
an exponential approximation function for a = 1
which describes the number of solutions for every
possible value of t (Hardy and Ramanujan, 1918).
As visualized in Figure 5 (b), its dimension is close
to 2. Increasing the range of the integers but keeping
the number of them constant results in a new instance
corresponding to Figure 5 (d), (e) or (f) depending on
the increase and distribution of the integers across the
range of possible values as described before. The same
number of possible subsets 2|S| is now stretched over
a greater width, not unlike the stretching of a rubber
band. As this rubber band flattens and finally tears,
the fractal dimension decreases below 1 in Figure 5
(e), coming ever closer to 0.

The representation of a problem as counting the
elements in the set P(N) is not limited to the trivial
mathematical functions described here and visualized
in Figure 5 and may be applied to the traveling
salesman problem (TSP) (Hoffman and Padberg,
2001) with integer distances, the maximum satisfia-
bility problem (MAX-SAT) (Bacchus et al., 2021) or
instances of other discrete combinatorial optimization
problems. For the TSP with integer distances, such a
mapping would correspond to the set of selected num-
bered edges which make up the tour and the checking
function being the total (integer) distance of the tour
or zero, if the tour is invalid. For the MAX-SAT the
mapping would correspond to the numbered variables
assigned ⊤ with the number of satisfied clauses as
the checking function. In both cases, one can already
see that there might be alternative representations,
like expanding the satisfiability problem such that
one integer represents multiple variables that are
assigned ⊤. This will undoubtably result in different

topological neighborhoods, like the diagonalization of
the binary numbers, which folds the representation of
P(N) in Figure 5 (e) to completely fill N2.

The SSP belongs to the class of NP-complete
problems, because there is no known algorithm which
can solve the hardest instance in polynomial time. In
the worst case, we have to traverse most of the search
tree just to find out that the subset with sum t does
not exist. Due to the fractal property of the solution
landscape, the concrete values t of the no instances
for a given proto-instance S seem unpredictable. (Or
at least the frequency of such subset sums seems
unpredictable.) The issue of separability of yes- and
no instances therefore seems like an important step
towards understanding the true hardness of the SSP.

6 CONCLUSION

In Section 1 we revisited the SSP. In previous work
(Van den Berg and Adriaans, 2021; Sazhinov et al.,
2023), the statistical properties of its NPP variant have
been investigated, but the solution landscape of the
SSP was not explored. Its fracticality may even have
practical implications, e.g. to assess the feasibility of
resource re-allocation (solution count for changed t).

The countability of the set P(N) of finite subsets
of N has been demonstrated through the mapping onto
different checking functions for basic mathematical
operations in N2 and visualized in Figure 5. The
cardinality of the sets completely fills the plane,
while the binary numbers result in a continuous one
dimensional line. Between these two extremes we
find operations with a non-integer dimension and
which thus have a fractal landscape. For the SSP
this is empirically investigated and supported by the
findings in Section 2 and 3. The topology itself may
not be the only source of complexity. The line of
binary numbers can be re-mapped to N2 by diagonal-
ization, but the resulting topological neighborhoods
are vastly different from those resulting from the
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cardinality. If we have multiple equally valid options
of mapping P(N) onto N2, perhaps this set should
be called semi-countable. We have come up with a
thought experiment in Section 4 that is an extension of
Hilbert’s Hotel in which mathematicians (represented
by sets of numbers) need to be assigned to the rooms
using elevator and floor numbers. Applying it to the
addition operation of finite sets yields the subset sum
histograms we analyzed using the fractal dimension.

Since the instances used in our experiments are
quite small, it may be worth repeating them with larger
ones. To achieve the same bit distribution, however,
the total number of bits must increase accordingly,
requiring custom data representations exceeding basic
64-bit primitives. Future work should also investigate
more complex checking functions for the selection of
columns, such as those discussed in Section 5. Repre-
senting instances of these problems as sets of natural
numbers may not be a trivial task. We suspect that
there are an infinite number of possible functions with
no shared intrinsic information in their (possibly also
fractal) structure. How does this reflect on the relation
between problems in P and NP? This task looks quite
challenging, yet simultaneously promising.
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