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Abstract: The Frequency Fitness Assignment (FFA) method steers evolutionary algorithms by objective rareness instead
of objective goodness. Does this mean the size of the combinatorial search space influences its performance
when compared to more traditional evolutionary algorithms? Our results suggest it does. To address to which
extent the search space size matters for the effectiveness of the FFA-principle, we compare the algorithms on
420 Job Shop Scheduling Problem (JSSP) instances systematically generated in gridwise sizes. The compar-
ison of the FFA-hillclimber and the standard hillclimber is done in both EQ setting, accepting equally good
(or fitness-frequent) solutions, and NOEQ setting, only accepting improvement. FFA-hillclimbers are more
successful than standard hillclimbers on smaller problem instances, but not on larger ones. It seems that the
ratio between jobs and machines, influences the success of the respective algorithms for fixed computational
budgets.

1 THE JOB SHOP SCHEDULING
PROBLEM

The Job Shop Scheduling Problem (JSSP) is a con-
strained optimization problem which entails minimiz-
ing the length, or makespan of a schedule with j jobs
on m machines (Błażewicz et al., 1996; Weise et al.,
2021). In the JSSP, each job needs to be processed
once on each machine exactly once, but what makes
the problem hard is that a job’s m processes have
predetermined processing times and precedence con-
straints. This means, for example, that Job 1 must
first be processed on Machine 0 for exactly 2 minutes,
then on Machine 1 for exactly 5 minutes, and finally
on Machine 2 for 9 minutes (see Fig.1). No longer, no
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shorter, and in exactly that order. A process is com-
pleted in one continuum and cannot be divided in sep-
arate parts, but idle time on a machine between jobs
is possible. Furthermore, a machine can only process
one job at a time, and a job can only be processed by
one machine at a time (Weise et al., 2021; Jain and
Meeran, 1999; de Bruin, 2022).

Practical applications do not require much imagi-
nation, as efficient scheduling of manufacturing pro-
cesses is a way for businesses to reduce costs (Jain
and Meeran, 1999). But also less intuitive and more
mission-critical applications such as surgery schedul-
ing in hospitals and clinics can be modeled as JSSP
(Pham and Klinkert, 2008). Not only do surgical pro-
cedures make up a significant source of revenue (in
some countries1), but scheduling resources like per-
sonnel (surgeons, anaesthetists, nurses) and facilities
(operating rooms, intensive care beds) make up a sig-
nificant chunk of its costs.

Academic interest in the objective of schedule

1Obviously, the objective of ‘revenue’ depends on a
country’s health care system.
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Figure 1: An example of a randomly generated problem instance (top), a random solution in permutation representation
(middle), and the corresponding schedule for that solution permutation, determining its makespan (bottom).

makespan minimization stems back to at least the
1950s, when it was – remarkably enough – consid-
ered an easy problem, even though its search space
increases factorially (See Eq. 1). A few decades
later though, the JSSP was proven to be NP-Hard
(Lawler et al., 1993; Lenstra and Kan, 1979). It
is true that a superpolynomial search space increase
in itself does not mean a problem is NP-hard, as
Leonard Euler demonstrated in 1736 when solving the
Bridges of Köningsberg problem with a polynomial-
time method. For NP-hard problems however, such
an algorithm is not known, making these problems
not solvable (meaning: finding the optimal solution)
in any stretch of reasonable time for realistically sized
instances.

But even if a problem is NP-hard, it is not a fi-
nal verdict on the hardness of an individual instance.
Many nuances exist, for example, the notion of a
phase transition in a problem, (partially) separating
the hardest instances from those that are trivially easy
to solve (Sleegers et al., 2022; Braam and van den
Berg, 2022). For the number partition problem, which
is classified as ‘weakly NP-hard’, the number of in-
formational bits per integer, and even the distribution
of informational bits over the integers exert influence
on the instances’ computational hardness (Sazhinov
et al., 2023).

For the JSSP, something similar is at play, as the
ratio between the number of jobs j and the number of
machines m in an instance also appear to play a part

in the difficulty of finding optimal or reasonable solu-
tions for particular instances. In the extremes, when
the ratio j/m is either really high or really low, “sim-
ple priority rules almost surely generate an optimal
schedule” (Streeter and Smith, 2006). Furthermore,
randomized initial solutions are already close to opti-
mal, making this a region of easy instances for a vari-
ety of algorithms. These results are very strong, and
possibly related to Ruben Horn’s work on the num-
ber partition problem (Horn et al., 2024b; Horn et al.,
2024a), but the converse is also true: when the ratio
j/m is close to 1, the problem is likely hard (Streeter
and Smith, 2006). Randomly generated schedules for
instances with the ratio j/m ≈ 1 are likely to be fur-
ther away from known optimal solutions than for in-
stances with smaller and larger j/m ratios. Local op-
tima in the solution landscape are also known to be
further away from global optima (Streeter and Smith,
2006).

However hard it may be to find an optimal solu-
tion for a JSSP instance, it does allow for easy gener-
ation of random initial solutions from which to start a
heuristic optimization process. Although such a prop-
erty feels natural to have, this is not the case; prob-
lems like the traveling tournament problem (Verduin
et al., 2023b; Verduin et al., 2023a; Verduin et al.,
2024) and HP protein folding (Jansen et al., 2023;
Koutstaal et al., 2024; Kommandeur et al., 2024) lack
a quick procedure for generating a uniformally ran-
dom initial solution. For the JSSP, things are a lot eas-
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ier, as an initial random valid solution (a JSSP sched-
ule) can be created in linear time. Furthermore, there
is also a deterministic constant time connective muta-
tion type available, which is also not trivially guar-
anteed (e.g. the traveling tournament problem and
HP protein folding don’t have one). Both the initial-
ization and mutation procedures will be further ex-
plained in Sections 4 and 5.

When it comes to the question of data sets, a col-
lected set of 242 benchmark instances is commonly
used in JSSP research literature, courtesy of Jelke J.
van Hoorn (Van Hoorn, 2018). In his set,the num-
ber of jobs range between 6 and 100, and the num-
ber of machines between 5 and 20, with the smallest
instance consisting of 6 jobs on 6 machines and the
largest consisting of 100 jobs on 20 machines (van
Hoorn, 2015). The distribution of j and m is some-
what haphazard over the set, but this is understand-
able as the set is comprised of 8 earlier JSSP bench-
mark sets. The advantage is of course the reach-
able generality of comparisons accross earlier stud-
ies. In another more recent study, custom problem in-
stances are generated drawing jobs’ processing times
from different probability distributions, to more fully
understand the landscape of possible JSSP instances
(Strassl and Musliu, 2022).

In this study however, we are less interested in
the absolute performance of the algorithms, but more
in how instance size (and thereby search space size)
influences the performance of frequency fitness as-
signment (FFA). Is it really a “stochastic exhaustive
search” as so aptly formulated by Ege de Bruin?
(de Bruin et al., 2023a) We will find out by answering
the main research question of this paper:

• How does instance size influence the perfor-
mance of the Frequency Fitness Assignment
(FFA) paradigm?

For our experiments, a set of JSSP problem instances
with gradually increasing job and machine numbers is
created for a more granular look into the effect of in-
stance size, but also the aforementioned job/machine
ratios, on hillclimber and FFA-hillclimber perfor-
mance. Using newly created JSSP instances rather
than a known benchmark set does mean that there are
no known optimal makespans for the generated in-
stances. For a performance comparison of the FFA-
hillclimber to the hillclimber however, we won’t be
needing those. The instances and algorithms’ source
code is publicly available (Pijning, 2024).

2 (FFA-)hillclimbers

Possibly the most elementary evolutionary algorithm
is the (1+1)EA, shorthand for “the new generation
is chosen as the best individual of one parent and
one child” (Droste et al., 2002), but colloquially
known as the ‘hillclimber’ algorithm. Hillclimbers
exist in many variants, with best-first moves, propor-
tional probability moves, variable mutability, random
restarts and all sorts of other bells and whistles, but we
will restrict this study to the stochastic hillclimber. In
order to optimize a given problem, the stochastic hill-
climber starts off with an initial valid random solution
and tries to optimize the quality by making one mu-
tation in each generation and accepting the mutated
solution iff better. Moving through the solution space
like this is also called the “choose first positive” (Mac-
Farlane et al., 2010) or “first improvement” (Basseur
and Goëffon, 2013) strategy. These algorithms usu-
ally perform well, but have the risk of getting stuck in
a local optimum rather than moving towards a global
optimum in the solution space (Dijkzeul et al., 2022;
Russell and Norvig, 2010). One decision that needs to
be made when implementing a hillclimber algorithm
is whether to accept only better solutions, or equally
good solutions as well. In analogy for FFA, the de-
cision translates to whether the algorithm should ac-
cept only solutions with less encountered makespan
values, or with equally often encountered makespan
values as well.

The choice of a neutral moves policy should de-
pend on the extent of neutrality in the landscape. Ex-
isting literature indicates a non-trivial proportion of
neutrality in the landscapes of the JSSP (Weise et al.,
2021; Tsogbetse et al., 2022) and, indeed, in schedul-
ing problems more generally (Sutton, 2007). The
presence of neutrality in fitness landscapes can be
helpful (Yu and Miller, 2002) or unhelpful (Collins,
2005) to search; it is likely that this depends on the
type of neutrality (Vanneschi et al., 2007) and design
of the algorithm.

Conceptually, also accepting solutions with equal
objective values might alleviate some of the risk of
the hillclimber getting stuck in a local optimum. In-
deed, this has been ratified in the literature: a study
which systematically compared hillclimbers with dif-
ferent pivot rules and neutral moves policies found ac-
cepting neutral moves to be advantageous to search
(Basseur and Goëffon, 2015).

As it relates to design of the FFA-hillclimber, both
choices for neutral moves policy seem to be appli-
cable on JSSP (Weise et al., 2021; de Bruin, 2022;
de Bruin et al., 2023b). Weise et al. state that ”A
plateau of the objective function is also a plateau un-
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Figure 2: The distribution of makespans for 106 randomly generated unoptimized schedules for a JSSP instance with 50 jobs
and 16 machines.

der FFA” (Weise et al., 2022). Indeed, because all
members of a plateau will share the same frequency
fitness value it seems that acceptance of solutions with
equally-rare fitness may be necessary for escape from
neutral regions. Nevertheless, we would like to study
both neutral move policies in the interest of rigour.

Until now, these considerations have not been dis-
cussed in earlier studies of FFA for JSSP optimiza-
tion. In this study we will, and we will label the set-
tings as EQ for hillclimbers that DO accept equally
good solutions, and NOEQ for hillclimbers that DO
NOT accept equally good solutions. Turns out it
makes quite a difference.

3 FREQUENCY FITNESS
ASSIGNMENT

“Frequency Fitness Assignment” (FFA) is the brain-
child of Thomas Weise, really. A publication in 2013
from his lab in HeFei University, China, introduced
a new way to steer evolutionary algorithms through
the search space of combinatorial optimization prob-
lems (Weise et al., 2013). The new ‘plugin’, Fre-
quency Fitness Assignment, biases an evolutionary al-
gorithm towards rarer objective values, rather than to-
wards better objective values per se. The (a postiori?)
rationale behind this method is that “good solutions
are indeed rare and the better the solutions get, the
rarer they are” (Weise et al., 2021). How universally
applicable this rationale is remains open for debate,
but in the mean time, FFA in evolutionary algorithms
has already shown good results on several optimiza-

tion problems such as the traveling salesman problem
(Liang et al., 2022; Liang et al., 2024) and HP pro-
tein folding (Koutstaal et al., 2024). The results on
the job shop scheduling problem have been indepen-
dently replicated by Ege de Bruin from Amsterdam’s
VU university, and later published at EvoSTAR 2023
(de Bruin, 2022; de Bruin et al., 2023b). Recently,
more in-depth studies on the efficiency, algorithmic
invariance under objective function transformations
and explainability of its performance through entropy
and search space trajectories have appeared, show-
ing that the concept is slowly maturing from a wild
proposal to a well-understood principle (Weise et al.,
2020; Weise et al., 2022; Thomson et al., 2024).

When optimizing an instance of the JSSP with
a hillclimber algorithm (HC) and a hillclimber with
Frequency Fitness Assignment plugged into it (HC-
FFA), the latter shows good but not better results
on most problem instances studied in both (Weise
et al., 2021) and (de Bruin et al., 2023b). However,
the FFA-hillclimber does manage to outperform the
classic hillclimber on some instances in these stud-
ies. One possible reason for this is that the FFA-
hillclimber does not get stuck in local minima like the
hillclimber does (de Bruin et al., 2023b). De Bruin
et al.’s study does however point out that the FFA-
hillclimber seems more likely to outperform the hill-
climber for JSSP on smaller problem instances, and
less so on larger instance sizes. This observation, and
the validation or falsification of it, are the core issues
of the paper you are currently reading. We aim to fol-
low up on this reasoning by specifically comparing
the performance of the hillclimber versus the FFA-
hillclimber on JSSP instances, both when accepting
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equal solutions (EQ setting), or when only accepting
better solutions (NOEQ setting), on a set of systemati-
cally sized JSSP instances.

4 PROBLEM (INSTANCE)
REPRESENTATION

Following the method used in previous studies of FFA
on JSSP (Weise et al., 2021; de Bruin, 2022; de Bruin
et al., 2023b) to transform a problem instance into a
valid schedule, the following constraints must be met:

• In each instance there are j jobs that must be pro-
cessed on all m machines exactly once.

• Each job has to be processed on each machine in
the order specified in the problem instance.

• Each job has a processing time on each machine
specified in the problem instance.

• A job can be processed on only one machine at a
time.

• A machine can process only one job at a time.

A single problem instance consists of a table of m× j
entries holding two integers in each cell: the ma-
chineID and the processing time on that machine
(Figure 1, top table). A solution to the problem in-
stance can be given by a single permutation of m× j
integers, all corresponding to a jobID (Figure 1, cen-
tral array). Each jobID appears in the permutation m
times, as is done in several earlier papers (Weise et al.,
2021; de Bruin, 2022; de Bruin et al., 2023b).

Since the processing order on the machines is a
hard requirement for a job, the m entries in the permu-
tation are identical. Switching two identical jobIDs
from different indexes in the permutation therefore
does not lead to a new solution (e.g. in Figure 1: Job
2 in 4th position and Job 2 in the 9th position). This
reflects in the number of possible ‘reasonable’ sched-
ules (meaning: without trivially unnecessary machine
idle time), which is

( jm)!
j(m!)

(1)

The list of jobIDs, can give rise to a valid schedule in
all of its permutations without further amends. Fur-
thermore, all reasonable schedules can be represented
by such a permutation. Finally, and this is neither triv-
ial nor unimportant, a mutation exists that connects
all representations into one connected combinatorial
state space, making sure that at least principally, ev-
ery solution is reachable from every other solution.
That mutation is the swap mutation, which swaps two
elements in the permutational solution representation.

Other mutations, such as double swaps or triple shuf-
fles, can also connect the entire combinatorial state
space and might function better or worse, depending
on the algorithmic deployment. Finally, we should
understand that having such an operation is a luxury;
many constraint optimization problems appear not to
have such a mutation, making them practically much
harder (Verduin et al., 2023a; Jansen et al., 2023).

Constructing the corresponding schedule from a
permutational solution is relatively straightforward
and can be done in O(n) time. Taking the example in
Figure 1, Job 1 is the first job in the permutation and it
can start right away at time 0 on Machine 0, occupy-
ing it for 2 minutes. Next to be placed in the schedule
is again job 1, this time on Machine 1, and occupy-
ing it for 5 minutes. It can start at the first available
minute on Machine 1 after both Job 1’s previous pro-
cess and Machine 1’s previous job are finished. The
latter of these is the strongest constraint in this case,
and Job 1 can start immediately on Machine1 after it
finishes its process on Machine 0. Note that if either
Job 0 or Job 2 would have been wedged in between,
we would have gotten the same final schedule. In
other words: the permutation representation is some-
what redundant. This might cause some neutrality in
the search space, although the effect might depend on
the instance size.

After all jobs from the permutation are placed, the
time it takes for all jobs to complete all their processes
is called the makespan of the schedule. In the example
in Figure 1 the makespan is 18 minutes. Minimizing
the makespan is the objective of a JSSP instance, and
the makespan’s length is therefore its objective value.

5 EXPERIMENT

For our experiment, we generated JSSP instances
with j ∈ {5,10,15, ...,90,95,100} jobs and m ∈
{5,6,7...,23,24,25} machines in all combinations,
totalling 20 × 21 = 420 instances. These ranges of
j and m completely envelop Weise et al.’s original
study and De Bruin et al.’s replication, which both
use Van Hoorn’s benchmark set (Weise et al., 2021;
van Hoorn, 2015; Van Hoorn, 2018). For each job j,
a random permutation of the m machines is assigned,
after which each job process for every machine gets
assigned a random duration of 1 ≤ dur ≤ 10 minutes.

After creation, all 420 problem instances are at-
tacked with two algorithms, a standard hillclimber
and an FFA-hillclimber, both of which have two set-
tings, EQ and NOEQ. When switched to EQ, the algo-
rithm will accept equally good mutated solutions (or
equally fitness-infrequent in case of FFA), but when
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switched to NOEQ it will only accept better solutions
(or more fitness-infrequent in case of FFA). Our ex-
perimental setup is thereby slightly wider than ear-
lier studies which only studied these algorithms in EQ
setting (Weise et al., 2021; de Bruin, 2022; de Bruin
et al., 2023b). Both the steering of an algorithm and
its EQ - NOEQ setting are fixed aforehand, and do not
change during a run.

The standard hillclimber (“the simplest local
search possible” (Weise et al., 2021)) starts off with
a single random but valid solution, and in every gen-
eration performs one mutation, implemented as a ‘job
swap’. The job swap operation randomly selects two
different job indices in the permutational representa-
tion, and subsequently swaps these iff the jobIDs are
different – else a new random index is selected for
the second job. Iff the makespan of the newly mu-
tated schedule is shorter than the incumbent schedule,
the new schedule is accepted and replaces the incum-
bent schedule. If the hillclimber is in EQ setting for
this run, it will not only accept a better schedule (with
shorter makespans), but also an equally good sched-
ule.

The FFA-hillclimber also has an EQ - NOEQ set-
ting. Its FFA-plugin entails keeping a frequency log
with every encountered makespan value and how of-
ten it was encountered. It starts off with all log entries
set to zero, after which it initializes a random solu-
tion, calculates its makespan value, and increases that
value’s entry in the frequency log by 1. Each gen-
eration, it mutates the incumbent schedule identical
to the hillclimber, randomly selecting two different
job indices in the permutational representation, and
subsequently swapping these iff the jobIDs are dif-
ferent (else a new random index is selected for the
second job). It then calculates the makespan of the
new schedule, increases that makespans observed fre-
quency in the log, looks whether this value was less
encountered than the incumbent objective value and
if so, accepts the mutated schedule as the new in-
cumbent schedule. Different from the standard hill-
climber, the FFA-hillclimber also separately retains
the best-so-far solution, which often is different from
the incumbent solution. Finally, an FFA-hillclimber
run can also be set to EQ, thereby also accepting mu-
tated solutions with makespans that are equally fre-
quently encountered; this is contrary to the NOEQ set-
ting, which ensures accepting only less frequently en-
countered makespan values’ schedules.

In all four algorithmic settings, 3 runs of 106 func-
tion evaluations were completed for each of the 420
problem instances. The runtime of each algorithm on
all 420 problem instances is about 3.5 days on a stan-
dalone machine, meaning that the entire experiment

Table 1: Sums of the best makespans found for all 420
JSSP instances after one million evaluations for each of the
four algorithmic settings versions. The default hillClimber
showed both the worst and the best performance, and the EQ
setting outperformed the NOEQ setting on these instances.

NOEQ EQ
HC-FFA 161,028 158,420
HC 164,420 142,027

took approximately 6 weeks. This is much fewer
than previous studies, that usually deploy 109 func-
tion evaluations per problem instance (Weise et al.,
2021; de Bruin, 2022; de Bruin et al., 2023b). It
has been pointed out that this high number of evalua-
tions may turn the FFA-hillclimber algorithm into an
almost “stochastically exhaustive search” (de Bruin
et al., 2023b). However, even on the scale of 106 func-
tion evaluations we do get some very interesting

6 RESULTS

When comparing the absolute performance of all
four algorithmic settings, the standard hillclimber per-
forms both best and worst. Summing up2 all 420 aver-
age makespans gives 164,420 for the hillclimber that
accepts only mutations that lead to better makespans
(the NOEQ setting), which is the worst performing al-
gorithmic setting. When the same hillclimber does
accept equal-makespan-mutations however (the EQ
setting), it becomes the best performing algorithmic
setting with a total makespan of 142,027. This rat-
ifies findings from the literature on other problems
where acceptance of neutral moves has been found
to be advantageous to search efficiency (Basseur and
Goëffon, 2015).

When it comes to the FFA-hillclimber, it is
again the EQ setting that outperforms the NOEQ set-
ting, at 158,420 total makespan against 161,028 total
makespan. This finding matches with the axiom men-
tioned in Section 2 that a plateau in objective function
space is also a plateau with relation to FFA. It appears
that the freedom of movement afforded by allowing
moves to solutions with equally-rare fitness may be
necessary to escape the plateaus.

On the larger scale of things, these differences
can be regarded as quite small. If we would rescale
the makespan of best algorithmic setting (hillclimber
with EQ) to 1, the setting FFA-hillclimber with EQ

2We do not average these values; a makespan of 5 ma-
chines with 10 jobs is obviously lower than 5 machines
with 100 jobs. The summed end result if doing so how-
ever, would not differ. We do average results over runs with
the same parameters though.
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Table 2: The percentage of wins (or tie) per algorithmic setting for increasing number of evaluations over all 420 JSSP
instances. In the NOEQ settings, the FFA-hilcClimber increasingly outperforms the hillclimber as the number of evaluations
increases. For the EQ settings, hillclimber wins recede over evaluations as the percentage of ties increases.

NOEQ EQ
Number of evaluations HC-FFA win Tie HC win HC-FFA win Tie HC win

10,000 6.905% 0.238% 92.857% 0.476% 2.857% 96.667%
100,000 23.571% 4.286% 72.143% 0% 8.81% 91.19%
250,000 44.286% 4.286% 51.429% 0.476% 13.095% 86.429%
500,000 61.667% 4.048% 34.286% 0.952% 16.905% 82.143%
750,000 71.19% 4.286% 24.524% 0.952% 17.857% 81.19%
1,000,000 81.19% 4.524% 14.286% 1.19% 20.476% 78.333%

would have 1.12, the setting FFA-hillclimber with
NOEQ would have 1.13 and the worst setting, hill-
climber with NOEQ, would have 1.16. These values
are small in the context of this study, where improve-
ment in a run can easily lead up to 50% better objec-
tive values (Figures 5 and 6). The objective of this
study however, was to gather insight on the domi-
nance of the FFA-hillclimber over the standard hill-
climber (and vice versa) relative to the computational
budget. In other words: these values could be strongly
related to the exact budget of 106 evaluations. For
104, 105 or 1010 evaluations, things could be quite
different.

The advantage of creating our own bench-
mark set of 420 instances with the regularity j ∈
{5,10,15, ...,90,95,100} jobs, and machines m ∈
{5,6,7...,23,24,25} is that it allows for a compari-
son of the algorithmic settings’ performance in a grid
view, with m on the horizontal axis, and j on the ver-
tical axis (Figures 3 and 4). Coloring cell (20,55)
red means that for the instance with 20 machines and
55 jobs, the FFA-hillclimber reached the best average
performance after 3 runs of 106 generations. Color-
ing it blue means the standard hillclimber delivered
the best average performance for the same instance.

Taking this idea one step further, we also froze
the runs after 10,000, 100,000, 250,000, 500,000 and
750,000 generations, creating an exact same grid view
for different points in the run. When these inter-
mediate grids are then placed in order from 10,000
generations to 1,000,000 generations, a clear picture
emerges (Figures 3 and 4).

When in EQ-mode, the standard hillclimber is the
dominant algorithm throughout the runs; just a few
red cells for very low numbers of jobs, mostly emerg-
ing later in the run (Fig. 3, percentages can be found
in Table 2). The number of ties though increases
slightly for lower numbers of machines – almost ir-
respective of the number of jobs. This might be taken
as a suggestion that in the very long run, the domi-
nance of the standard hillclimber recedes.

When in NOEQ-mode, the picture is quite differ-

ent. For low numbers of generations, the standard
hillclimber still dominates the grid, but throughout the
evolutionary process, the FFA-hillclimber wins more
and more terrain, starting with the lower numbers of
jobs and machines but eventually taking over almost
the entire grid at 1,000,000 evaluations (Fig. 3, per-
centages can be found in Table 2). It might there-
fore seem that the FFA-hillclimber is favourable in the
long run, but this is clearly not the case, because the
absolute results still favour the standard hillclimber,
in EQ mode, over any other algorithmic setting (see
Table 1 again). On the other hand again, it must be
noted that these results only pertain to our experiment,
and different numbers of generations might give dif-
ferent outcomes.

The convergence in Figures 5 and 6 illustrate
the relative differences between hillclimber and FFA-
hillclimber of either setting EQ or NOEQ. It becomes
apparent that when hillclimber outperforms FFA-
hillclimber, the instances are usually quite large.
When FFA-hillclimber outperforms the standard hill-
climber, the instances are usually on the smaller side.

7 CONCLUSION AND
DISCUSSION

For this benchmark set, using 1 million evaluations,
the performance ranking for the four algorithmic set-
tings is clear (makespan lengths are normalized to fa-
cilitate comparison):

1. (makespan = 1.00): hillclimber with EQ

2. (makespan = 1.12): FFA-hillclimber with EQ

3. (makespan = 1.13): FFA-hillclimber with NOEQ

4. (makespan = 1.16): hillclimber with NOEQ

The mandatory nuance though, is that this indeed per-
tains to 1 million evaluations. It is very likely that for
other numbers of evaluations, the ranking might look
quite different, possibly stronger in favour of FFA in
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Figure 3: Best performance (or tie) per JSSP instance size for EQ settings. On the top row: the best found makespans at 10,000,
100,000, and 250,000 function evaluations. On the bottom row: those at 500,000, 750,000, and 1,000,000 evaluations.

Figure 4: Best performance (or tie) per JSSP instance size for NOEQ settings. On the top row: the best found makespans at
10,000, 100,000, and 250,000 function evaluations. On the bottom row: those at 500,000, 750,000, and 1,000,000 evaluations.
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Figure 5: Some typical runs for the NOEQ setting, with on the left hand side the three instances where the standard hillclimber
outperformed the FFA-hillclimber with the biggest absolute difference. On the right hand side are the three instances where
the FFA-hillclimber found the biggest improvements in makespan over the standard hillclimber. The number of evaluations
are on a logarithmic scale.

Figure 6: Some typical runs for the EQ setting, with on the left hand side the three instances where the standard hillclimber
outperformed the FFA-hillclimber with the biggest absolute difference. On the right hand side are the three instances where
the FFA-hillclimber found the biggest improvements in makespan over the standard hillclimber. The number of evaluations
are on a logarithmic scale.
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both settings. Generally speaking, the more function
evaluations, the better FFA performs.

These findings closely relate to De Bruin et al’s
earlier observation and hypothesis, that plugging the
FFA method into a hillclimber algorithm may result
in a “stochastically exhaustive algorithm” (de Bruin
et al., 2023b). If this qualification is indeed truth-
ful, FFA is expected to perform better on smaller
JSSP instances, as these have smaller combinatorial
search spaces, requiring fewer evaluations to exhaus-
tively explore (either deterministically or stochasti-
cally). Our results appear to confirm this; the results
in Figure 4 show that the FFA-hillclimber in NOEQ
mode indeed overtakes the hillclimber in NOEQ mode
for increasing numbers of evaluations, but more im-
portantly: this process starts at the smaller instances,
visualized by the red area progressively expanding
from the bottom left.

This is also true for both algorithms in EQ mode,
but the effect is much less pronounced, showing just a
slight expansion of the grey area, signifying more ties,
but no convincing dominance of FFA. We are unsure
why this happens in EQ mode, but it might have to do
with the smallness of the mutation, the neutrality of
the landscape, or the relatively small number of eval-
uations (carefully denoting that a budget of 106 eval-
uations is only small compared to the regular budgets
of FFA, which range to 109). We think it is well pos-
sible that for these algorithmic settings, FFA will also
overtake at a budget of 109 evaluations for this setting.

The increase of ties might also signal a degree of
convexity. Considering that these too are found in the
smaller instances, it is possible that ties simply mean
that in both settings the global optimum was found.
Therefore, it is possible that we accidentally discov-
ered that the hillclimber in EQ mode actually reaches
a lot of global minima on these problem instances.
There is no way to structurally check this hypothesis
(as this problem is still NP-hard), but the relatively
low number of possible makespan values might jus-
tify an attempt with an exact algorithm to rigorously
evaluate these problem instances.

Taking this thought one step further, it is quite
possible, that for these low numbers of job duration
(1 to 10 minutes), many global minima exist, similar
to the number partition problem with many low in-
tegers (van den Berg and Adriaans, 2021; Sazhinov
et al., 2023). So even if the combinatorial state space
is sizeable, the number of global optima might be high
too. In fact, if the partition problem is any measure to
go by, it is possible that the number of global optima
increases for larger instances if the range of process-
ing times remains the same (Horn et al., 2024b; Horn
et al., 2024a). The increase might in fact be expo-

nential, but that might still not be enough given the
factorial nature of JSSP.

In future work, it would be nice do quantify the
patterns, mainly in Figure 4, possibly in a way akin to
(Koppenhol et al., 2022). It is well possible, that the
exact state space size for each grid makes a critical
difference, but also increasing the number of runs is
necessary. Also, the margin of a win could be calcu-
lated and, in an ideal case, even compared to a known
global optimum.
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