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Abstract: This study centers on the application of transformer models for general medical image classification, a crucial 
step towards automating medical diagnostics. By comparing transformer models with classical methods 
across diverse medical image datasets, this research aims to enhance performance on specific tasks within 
these datasets. The core model, Medical Vision Transformer (MedViT), effectively learns multi-scale features 
by integrating convolutional layers with specialized transformer modules, thereby catering to various medical 
image classification tasks across different categories. Moreover, this study introduces Ordinal Loss to 
augment the model's performance on ordinal regression subtasks. Unlike conventional cross-entropy loss, 
Ordinal Loss facilitates improved learning of sequential relationships between categories. Experiments 
conducted on MedMNIST validate that MedViT surpasses classical methods on most datasets, with Ordinal 
Loss further enhancing performance on ordinal regression subtasks. Visual analysis also confirms that the 
new loss function aids the model in effectively discerning key differences between adjacent categories. This 
research demonstrates the feasibility of employing a general-purpose transformer model to address medical 
image classification challenges across multiple domains. Additionally, plug-and-play modules can be 
leveraged to optimize the model for specific tasks, underscoring its versatility and potential for broader 
application in medical diagnostics. 

1 INTRODUCTION 

Medical imaging classification is a crucial process in 
healthcare as it involves the automated analysis of 
medical images to identify and categorize various 
medical conditions. This process assists in diagnosing 
diseases, monitoring treatment progress, and 
facilitating early detection of abnormalities, which 
can significantly improve patient outcomes. By 
leveraging advanced algorithms, it enhances the 
precision and speed of interpretation, reducing the 
workload on radiologists and potentially lowering the 
rate of misdiagnosis. Overall, medical imaging 
classification serves as an essential tool in modern 
medicine, enabling more accurate and efficient 
patient care. In recent years, the development of 
convolutional neural networks has greatly aided the 
progress of computer-aided medical imaging 
classification (Lo, 2022; Hu, 2022; Yang, 2021). 

Convolutional Neural Network (CNN) can learn 
key features from images effectively and represent a 
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crucial model architecture for image classification in 
computer vision. VGGNet demonstrated the 
importance of depth in CNN architectures, featuring 
up to 19 layers and achieving remarkable success in 
the ImageNet challenge (Simonyan, 2014). ResNet 
addresses the problem of degradation in network 
depth by introducing residual connections, winning 
the ImageNet challenge and profoundly influencing 
future research on deep learning architectures (He, 
2016).  

Transformer is a model originating from the field 
of natural language processing. Vision Transformer 
transforms images into tokens for classification, 
pioneering the use of transformers in computer vision 
(Dosovitskiy, 2020). Pooling-based Vision 
Transformer innovates by integrating learnable 
pooling operations into the transformer architecture, 
enabling it to dynamically adjust the resolution of 
feature maps and improve efficiency and 
performance across various vision tasks (Heo, 2021). 
Medical Vision Transformer (MedViT) is a kind of 
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Vision Transformer model specifically designed for 
medical imaging tasks. It leverages the transformer's 
ability to capture global dependencies and complex 
patterns within images to improve the accuracy and 
efficiency of diagnosing and analyzing medical 
images (Manzari, 2023). 

This study focuses primarily on utilizing MedViT 
for medical image classification tasks, with a 
comprehensive analysis of factors influencing its 
performance and subsequent enhancements. 
Addressing the challenge of limited dataset sizes, data 
augmentation techniques are deployed to augment the 
model's generalization capability. Moreover, to 
mitigate overfitting concerns, various model depths 
are explored through comparative experiments. In 
response to the performance limitations in ordered 
regression subtasks, a novel loss function termed 
ordinal loss is developed, directly applicable to the 
model. Comparative experiments between ordinal 
loss and the original model are conducted, with 
results visualized using interpretable models. The 
findings indicate that MedViT offers a significant 
advantage over classical methods, and the newly 
designed loss function effectively enhances the 
model's performance in ordered regression subtasks. 
This study marks a notable progress in lightweight 
medical image classification, especially in tackling 
ordinal regression subtasks. 

2 METHODOLOGIES 

2.1 Dataset Description and 
Preprocessing 

MedMNIST (Yang, 2023) is a lightweight, cross-
domain medical image classification dataset 
structured similarly to MNIST. It comprises 12 types 
of 2D data and 6 types of 3D data. This study 
primarily experiments on the 12 types of 2D data, and 
their image types and labels are as follows: 

PathMNIST consists of histopathological slices of 
colorectal cancer tissue, with dimensions of 3x28x28, 
and includes labels for 9 types of tissue. 

ChestMNIST consists of frontal-view X-ray 
images of the chest, with dimensions of 1x28x28, and 
includes 14 disease labels, constituting a multi-label 
binary classification task. 

DermaMNIST consists of dermatoscopic images, 
with dimensions of 3x28x28, and includes labels for 
7 types of pigmented skin diseases. 

OCTMNIST consists of optical coherence 
tomography (OCT) images of the retina, with 

dimensions of 1x28x28, and includes labels for 4 
diagnosis categories. 

PneumoniaMNIST comprises pediatric chest X-
ray images, with dimensions of 1x28x28, constituting 
a binary classification task for pneumonia and healthy 
cases. 

RetinaMNIST consists of retinal fundus images, 
with dimensions of 3x28x28, forming a 5-level 
ordinal regression for diabetic retinopathy severity. 

BreastMNIST consists of breast ultrasound 
images, with dimensions of 1x28x28, forming a 
binary classification task for benign and malignant 
breast cancer. 

BloodMNIST consists of microscope images of 
blood cells, with dimensions of 3x28x28, comprising 
8 labels. 

TissueMNIST comprises microscope slice images 
of human kidney cortex cells, with dimensions of 
1x28x28, containing 8 different category labels. 

OrganMNIST consists of CT images of human 
body organs from different orientations, with 
dimensions of 1x28x28, and includes labels for 11 
organ categories. 

These datasets vary in size and encompass various 
subtasks of image classification. Random scaling, 
rotation, cropping, and horizontal flipping are 
employed as data augmentation techniques. 

2.2 Proposed Approach 

The original dataset provides benchmarking for some 
classical CNNs and AutoML methods on the 12 2D 
datasets, using accuracy (ACC) and area under the 
receiver operating characteristic (ROC) curve (AUC) 
as evaluation metrics. To compare the performance 
differences between MedViT and classical 
convolutional networks, a MedViT model is trained 
on the same datasets and evaluated using the same 
metrics. One of these datasets is RetinaMNIST, used 
for classifying retinal image lesion severity, which 
falls under ordinal regression tasks. Most models, 
including MedViT, generally get low ACC on this 
task. To address this, a new loss function (ordinal 
loss) with hyperparameters is designed to replace the 
original cross-entropy loss function and train it under 
different hyperparameters to compare its 
performance. Subsequently, the researcher selects the 
model with the greatest performance improvement 
and uses GradCAM for visual monitoring to visualize 
and analyze the effect of the new loss function on 
enhancing ordered regression tasks, validating the 
design concept. The entire experimental process is 
illustrated in Figure 1. 
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Figure 1: The pipeline of the research (Photo/Picture credit: 
Original). 

2.2.1 MedViT 

MedViT is a hybrid architecture of CNN and 
transformer. It contains two main modules, Local 
Transformer Block (LTB) and Efficient Convolution 
Block (ECB). Both modules contain a Locally Feed 
Forward Network (LFFN). 
 

 
Figure 2: The architecture of MedViT (Photo/Picture credit: 
Original). 

LFFN rearranges the token sequence into a 2D 
grid and performs convolution, then rearranges it 
back into a token sequence. In this way, it can capture 

the locality information in the data. An ECB block is 
made by a multi-head convolution attention block and 
LFFN connected together. It is used to learn the long-
range dependencies between pixels corresponding to 
the background. In an LTB, an improved version of 
the self-attention block is used to capture low-
frequency signals, while the multi-head convolution 
attention block is used to capture high-frequency 
signals in different parallel representation subspaces. 
Their outputs are then concatenated to achieve a mix 
of high and low-frequency signals. The architecture 
of MedViT is shown in Figure 2 and the specific 
structure of LFFN, LTB and ECB are shown in Figure 
3. A MedViT block consists of one or more ECB and 
LTB blocks stacked together. The image input passes 
through an initial convolutional layer and an ECB 
block. Then, it traverses through multiple sets of 
MedViT blocks of varying scales to comprehensively 
learn features at different scales. Finally, it goes 
through pooling and fully connected layers to obtain 
classification predictions. Given the smaller size of 
the data images, shallower model depths are 
employed to prevent overfitting. However, in other 
application scenarios, stacking more MedViT blocks 
can lead to improved performance. 

 
Figure 3: The structure of LFFN, LTB and ECB (Photo/ 
Picture credit: Original). 

2.2.2 GradCAM 

Gradient-weighted Class Activation Mapping 
(GradCAM) is a technique utilized to visualize the 
significance of specific regions within an image for a 
neural network's predictions. It provides insights into 
the prediction process of the model by highlighting 
the portions of the input image that contribute most 
significantly to its prediction. Although GradCAM 
was initially developed for analyzing CNNs, it can 
also be applied to transformer models. Unlike when 
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applied to CNNs, where GradCAM typically utilizes 
the output and gradients from the last convolutional 
layer, when applied to transformer models, it 
generally leverages the output and gradients from the 
final transformer block. These gradients represent the 
importance of each feature map for the final 
prediction. Using these gradients, the contribution of 
each token to the classification result is calculated. 
These contributions are subsequently correlated with 
the spatial positions on the original image to generate 
a heatmap. Elevated values in the heatmap denote 
areas where the model concentrates its attention 
during predictions. 

By overlaying this heatmap onto the input image, 
it can be visually interpreted which parts of the image 
are most important for the neural network's 
prediction. This can visually represent the process 
and basis of the model’s classification. 

2.2.3 Loss Function 

Cross-entropy loss function measures the difference 
between two probability distributions: the predicted 
probability distribution output by the model and the 
true probability distribution of the labels. This loss 
function penalizes incorrect predictions more 
severely as their confidence increases, leading to 
more effective training of classification models. 
Cross-entropy loss function is commonly expressed 
as: 
 𝐿 = −∑ 𝑦 𝑙𝑜𝑔 𝑦ேୀଵ  (1) 
 

where N is the number of labels, 𝑦  is the true 
probability (0 or 1) of the sample belonging to class i, 
and 𝑦ො is the predicted. 

This research designs a new loss function, Ordinal 
Loss, for addressing ordinal regression tasks. The 
motivation behind this design is that the loss function 
should optimize the model's output towards a 
unimodal distribution closer to the true probability 
distribution, while simultaneously enhancing the 
sensitivity between adjacent categories as much as 
possible. Ordinal Loss is calculated as: 𝑀𝑎𝑟𝑔𝑖𝑛 𝑅𝑎𝑛𝑘ሺ𝑦ା,𝑦 , 𝑡ሻ = maxሺ0,−𝑡ሺ𝑦ା  − 𝑦 ሻ +𝑚𝑎𝑟𝑔𝑖𝑛ሻ                                                                          

(2) 
 𝑅𝑎𝑛𝑘 𝐿𝑜𝑠𝑠 =            ∑ ∑ 𝑀𝑎𝑟𝑔𝑖𝑛 𝑅𝑎𝑛𝑘൫𝑦ො ,𝑦ො , 𝑡൯,ேୀାଵேିଵୀ       (3) 
                         𝑡 = ቊ1, 𝑖𝑓 𝑙𝑎𝑏𝑒𝑙 >  ାଶ   −1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                       (4)        𝑂𝑟𝑑𝑖𝑛𝑎𝑙 𝐿𝑜𝑠𝑠 =  𝛼𝑅𝑎𝑛𝑘 𝐿𝑜𝑠𝑠 + ሺ1 − 𝛼ሻ𝐿    (5) 

 

where α is a hyperparameter, label is the true class of 
the sample, and margin is a parameter fixed at 0.1. It 
can be seen that Ordinal Loss is a combination of rank 
loss and traditional cross-entropy loss. The rank loss 
encourages the model's predicted probability 
distribution to approach a more realistic unimodal 
distribution, while also enhancing the sensitivity of 
the model to adjacent categories. As α increases, the 
model's optimization direction becomes more 
influenced by the rank loss. 

2.3 Implementation Details 

The training is conducted on an Nvidia A800 GPU. 
The model is independently trained for 50 epochs on 
12 datasets, with a batch size of 128. The learning rate 
is set to 0.001 at the beginning, adopting a cosine 
decay strategy over a cycle of 50 epochs. In the 
experimental section of ordinal loss, keeping other 
settings unchanged, training is conducted on 
RetinaMNIST, and   is set to 0, 0.1, 0.2, 0.3, 0.4, and 
0.5, respectively. All training is performed using the 
AdamW optimizer. 

3 RESULTS AND DISCUSSION 

The experimental results include the testing 
performance of MedViT on 12 datasets and the 
accuracy of MedViT with ordinal loss on 
RetinaMNIST. The comparison between MedViT's 
ACC and AUC on all 12 datasets and classical 
methods is illustrated in Table 1. MedViT performs 
exceptionally well on the PathMNIST dataset, with 
the highest AUC of 0.992 and a very high ACC of 
0.909 compared to the other methods listed. This 
suggests MedViT is very effective at distinguishing 
between the different classes in this particular dataset. 
For the PneumoniaMNIST dataset, MedViT again 
has an impressive AUC of 0.978 and ACC of 0.939, 
outperforming all other methods by a notable margin 
in AUC, indicating strong performance in terms of the 
model's ability to rank predictions correctly. In the 
OCTMNIST, MedViT has good AUC and ACC 
scores, but not the highest. Its AUC of 0.960 and ACC 
of 0.783 are strong, but Google AutoML Vision has 
slightly better performance with an AUC of 0.963 and 
ACC of 0.771. MedViT's performance on the other 
datasets is also generally strong, often within the top 
three methods. For example, it performs very well on 
the BloodMNIST with an AUC of 0.997 and an ACC 
of 0.968, suggesting a high capability of 
distinguishing between classes accurately. 
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Table 1: Performance of MedViT and other classical methods on 12 datasets. 
Methods PathMNIST ChestMNIST DermaMNIST OCTMNIST PneumoniaMNIST 

 AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC 
ResNet-18 (28) 0.983 0.907 0.768 0.947 0.917 0.735 0.943 0.743 0.944 0.854 
ResNet-18 (224) 0.989 0.909 0.773 0.947 0.92 0.754 0.958 0.763 0.956 0.864 
ResNet-50 (28) 0.99 0.911 0.769 0.947 0.913 0.735 0.952 0.762 0.948 0.854 
ResNet-50 (224) 0.989 0.892 0.773 0.948 0.912 0.731 0.958 0.776 0.962 0.884 

auto-sklearn 0.934 0.716 0.649 0.779 0.902 0.719 0.887 0.601 0.942 0.855 
AutoKeras 0.959 0.834 0.742 0.937 0.915 0.749 0.955 0.763 0.947 0.878 

Google AutoML 
Vision 

0.944 0.728 0.778 0.948 0.914 0.768 0.963 0.771 0.991 0.946 

MedViT 0.992 0.909 0.550 0.947 0.924 0.768 0.960 0.783 0.978 0.939 
Methods BreastMNIST BloodMNIST TissueMNIST OrganAMNIST OrganCMNIST 

 AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC 
ResNet-18 (28) 0.901 0.863 0.998 0.958 0.93 0.676 0.997 0.935 0.992 0.900 
ResNet-18 (224) 0.891 0.833 0.998 0.963 0.933 0.681 0.998 0.951 0.994 0.920 
ResNet-50 (28) 0.857 0.812 0.997 0.956 0.931 0.68 0.997 0.935 0.992 0.905 
ResNet-50 (224) 0.866 0.842 0.997 0.95 0.932 0.68 0.998 0.947 0.993 0.911 

auto-sklearn 0.836 0.803 0.984 0.878 0.828 0.532 0.963 0.762 0.976 0.829 
AutoKeras 0.871 0.831 0.998 0.961 0.941 0.703 0.994 0.905 0.99 0.879 

Google AutoML 
Vision 

0.919 0.861 0.998 0.966 0.924 0.673 0.99 0.886 0.988 0.877 

MedViT 0.856 0.891 0.997 0.968 0.922 0.672 0.997 0.932 0.993 0.920 
 
For the TissueMNIST dataset, MedViT's 

performance is not as strong as on other datasets, with 
an AUC of 0.922 and an ACC of 0.672. While the 
AUC is relatively high, the ACC is the lowest among 
the reported results for this dataset. For OrganMNIST 
datasets, MedViT maintains high AUC scores (0.997, 
0.992, and 0.975 respectively) and high ACC (ACC 
scores of 0.932, 0.920, and 0.796 respectively), 
indicating robust overall performance across these 
different datasets. Overall, MedViT achieves the top 
two highest ACC in 10 out of the 12 data categories 
and the top two highest AUC in 9 out of the datasets. 
It demonstrates high effectiveness on these medical 
imaging datasets, especially for PathMNIST, 
PneumoniaMNIST, and BloodMNIST, with 
consistently high AUC and ACC scores, indicating 
strong predictive performance and reliability. It 
would be a good choice for tasks similar to those 
datasets where high sensitivity and specificity are 
crucial. 

Table 2 illustrates the training results of MedViT 
on RetinaMNIST with different hyperparameters α 
after replacing the loss function with Ordinal Loss. 
Here, α=0.0 corresponds to using only the original 
cross-entropy loss function. It can be observed that as 
α increases, the weight of the Rank Loss increases, 
and the training performance shows a trend of 
improvement followed by deterioration. At α=0.2, the 
model achieves the best performance, with a 
significant improvement of 4% compared to the 
original, reaching an accuracy close to 60%. This 

indicates that Ordinal Loss indeed effectively 
enhances MedViT's performance in ordinal 
regression tasks. Moreover, the proportion of Rank 
Loss should not be maximized; instead, it needs to be 
balanced with traditional cross-entropy to achieve 
optimal performance. 

Table 2: Performance of MedViT with Ordinal Loss on 
RetinaMNIST. 𝛼 0.0 0.1 0.2 0.3 0.4 0.5 

ACC 0.552 0.570 0.594 0.581 0.557 0.546 

 
Figure 4 shows the attention heatmap of two 

models trained using the traditional loss function and 
α=0.2 Ordinal Loss, respectively, when identifying 
samples from two adjacent classes. The retinal image 
above corresponds to a lesion severity level of 1, 
while the one below corresponds to level 2. The green 
boxes highlight the areas of significant retinal lesions, 
which serve as the primary discriminative features. 
The deeper red regions in the heatmap indicate areas 
that play a more significant role in the model's 
classification process. It can be observed that in the 
heatmap of the model trained with Ordinal Loss, the 
red regions overlap more closely with the green 
boxes, indicating that this model better captures the 
key features for distinguishing between samples from 
two adjacent classes. In contrast, in the heatmap of 
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the model trained with traditional cross-entropy loss, 
the red regions are concentrated mainly in the middle 
of the image, failing to effectively differentiate 
between the two classes of samples. The experimental 
results and visual inspection demonstrate that as 
expected, Ordinal Loss enables the model to better 
distinguish between adjacent classes, thus improving 
the performance on ordinal regression tasks. 

 
Figure 4: Visual inspection of models trained with two 
different loss functions using GradCAM (Photo/Picture 
credit: Original). 

4 CONCLUSIONS 

This study concentrates on utilizing transformer 
models for image classification tasks on MedMNIST 
and enhancing the performance of ordinal regression 
subtasks using a novel loss function. The MedViT 
model, a hybrid architecture combining CNN and 
transformer, is employed to classify all 12 2D datasets 
in MedMNIST and compared against classical CNN 
models. Experimental findings reveal that MedViT, 
adept at capturing multi-scale features, showcases 
significant advantages over traditional methods, 
yielding superior performance across most of the 12 
datasets. The development of Ordinal Loss aims to 
address the observed performance limitations across 
all models on the ordinal regression subdataset, 
RetinaMNIST. This loss function combines 
traditional cross-entropy loss with Rank Loss, 
emphasizing similarity relationships between ordered 
categories during model training. Comparative 
experiments with unmodified cross-entropy loss 
demonstrate that models trained with Ordinal Loss 
achieve higher accuracy on RetinaMNIST for ordinal 
regression tasks. Visual inspection using GradCAM 
further illustrates that Ordinal Loss enables the model 
to better discern key features for distinguishing 
adjacent categories. In the realm of fine-grained 

recognition, certain methods enhance model 
performance by learning pairs of intra-class and inter-
class similar samples. In future research, this 
approach could also be considered for integration into 
the ordinal regression task to further enhance the 
model's ability to discern similar samples effectively. 
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