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Abstract: An automated, efficient, and accurate image classification approach is essential across various domains. This 
research compares different state-of-the-art image classification approaches, including the fine-tuned Vision 
Transformer (ViT), base Contrastive Language-Image Pretraining (CLIP) model, and fine-tuned CLIP model, 
on specialized image classification tasks. The research evaluates classification accuracy, zero-shot 
classification ability for unseen categories, and deployment costs. The findings indicate that while the fine-
tuned ViT model excels in test accuracy, the base CLIP model demonstrates remarkable zero-shot learning 
capabilities, making it highly efficient for unseen categories. However, fine-tuning the CLIP model results in 
a significant loss of its zero-shot ability without a proportional increase in performance, with the fine-tuning 
cost far exceeding that of the ViT model. The author suggests that the fine-tuned ViT model is more suitable 
for tasks requiring high accuracy, while the base CLIP model is preferable for applications valuing versatility 
and lower deployment costs. Fine-tuning the CLIP model is suitable only if the dataset is sufficiently large 
and deployment cost is not a concern. These insights provide a nuanced understanding of the trade-offs 
involved in selecting an image classification model for specialized tasks, emphasizing the importance of 
considering both the task's nature and available resources. 

1 INTRODUCTION 

Image recognition and classification techniques are 
crucial for many fields including medical fields, 
media creation field, design field and data science 
field. However, interpreting images manually is labor 
intensive and sometimes difficult. Like in the medical 
field, the interpretation of medical images requires 
specialized radiologists who are scarce globally. As 
the volume of images all over the world increases, the 
time and labor intensity required is too enormous to 
be applied in actual production environment (He, 
2015). These obstacles are hard to overcome with 
human efforts alone. In machine learning, Image 
classification task is a complex but mature task. In 
recent years, image classification models like LeNet, 
Residual Network (ResNet) (He, 2016), and Vision 
Transformer (ViT) (Dosovitskiy, 2020) are widely 
used on image classification. LeNet and Residual 
Network is based on Convolutional Neural Network 
(CNN), while Vision Transformer (ViT) is an 
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emerging model that applies the Transformer 
architecture to image recognition tasks, and it have a 
best performance in average in all the Computer 
vision (CV) models above (Rawat, 2017). 

However, most of the out-of-the-box image 
classification model only have a great performance 
for common classes like 1000 classes in ImageNet. 
For a more detailed categories, like classify different 
medical images, clothes styles, food types, etc., a 
fine-tune is commonly required. Fine-tuning a model 
requires an annotated dataset and computing power, 
which is costs that need to be considered while 
applying image classification model into production. 
A model called Contrastive Language-Image 
Pretraining (CLIP) introduced by OpenAI aiming to 
provide an approach to make a zero-shot image 
classification, like the “zero-shot” capabilities of GPT 
and other Large Language Models (Radford, 2021). 
CLIP uses contract learning to train an image encoder 
and a text encoder separately, then align these 
encoders with cosine similarity. This feature enables 
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CLIP model to use natural language to perform 
classification and allows CLIP to handle different 
categories way more than the 1000 in ImageNet 
datasets. However, since CLIP is trained with images 
and natural-language descriptions form variant 
aspects, so it might not have a great performance on 
a specific aspect without extra fine-tuning. In actual 
production cases, choosing a correct method to 
perform the image classification task might be 
challenging. Developers must consider a series of 
metrics including the accuracy of classification, 
deployment cost, and other aspects that might impact 
the result of deployment. The main purpose of this 
study is to compare the performance of popular 
transformer-based image classification models in a 
specific case, then provide a conclusion on how to 
choose a model on specific classification task. 
Specifically, first, the training set of food-101 dataset 
is used to finetune the model in this research (if 
finetune is necessary). Second, the valid set of Food-
101 dataset is used for evaluating each model’s 
performance based on several metrics. 

This research compares three different approaches 
for specialized image classification: classification 
with a fine-tuned ViT model (ViT-16/B used in this 
study), classification with the CLIP model (without 
fine-tuning, base), and classification with a fine-tuned 
CLIP model (base). The study evaluates the 
performance of these approaches across three 
metrics: valid accuracy, which measures accuracy 
when inferring on the validate dataset during 
deployment (including fine-tuning); cost, 
representing the computer power required for fine-
tuning; and extended accuracy (for CLIP-based 
models only), measuring accuracy when classifying 
categories not seen during fine-tuning. The primary 
contribution of this study lies in its comprehensive 
comparison and analysis of different methods, 
providing empirical data to support specialized image 
classification and offering insights for further 
research in the field. The findings will aid in 
optimizing the selection and deployment of image 
classification models, improving classification 
accuracy, reducing computational costs, and driving 
technological advancements and applications in 
related domains. 

2 METHODOLOGIES 

2.1 Dataset Description and 
Preprocessing 

In this research, the  author  leverages  the  Food101  

dataset, a comprehensive real-world food dataset 
created from diverse food photos collected from 
internet media, with a manually annotation. Unlike 
previous datasets, such as pfid, which primarily 
consist of standardized fast-food photos collected 
under specific, unified conditions, Food-101 offers a 
diverse collection of images representing 101 
different named dishes around the globe. The dataset 
comprises 101,000 images from real-world. Each 
category consists of 750 images for training and 250 
images for testing. Notably, the training images 
intentionally retain some level of noise, including 
intense colors and occasional mislabeling, to better 
simulate real-world scenarios and challenge 
computer vision algorithms. With a maximum side 
length of 512 pixels, Food101 encompasses a wide 
variety of food classes, ranging from Apple pie to 
Bibimbap, facilitating research into scalable 
recognition algorithms (Bossard, 2014). Examples of 
the dataset are illustrated in Figure 1. 
 

 
Figure 1: Sample Image of food-101 dataset (Photo/Picture 
credit: Original). 

2.2 Proposed Approach 

In this research, the dataset is sliced into 2 parts: The 
first part Cଵ. . Cଵ will be used for extended accuracy 
evaluation for CLIP-based models. Then the 
remaining 91 categories Cଵଵ. . Cଵଵ  will be used for 
model training, and accuracy evaluation. The dataset 
is partitioned into training and validation set at a ratio 
of 0.8:0.2, respectively. The training dataset is used 
to finetune both ViT and CLIP models, while the 
validation dataset is used to evaluate these models’ 
performance. While fine-tuning, the author uses the 
AdamW optimizer to increase the model’s  
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Figure 2: The pipeline of the research (Photo/Picture credit: Original). 

generalization performance and reduce the training 
cost (Loshchilov, 2017). Figure 2 illustrates the 
comprehensive pipeline of the research. 

2.2.1 Transformer 

Both ViT and CLIP uses transformer architecture as 
its encoder. The transformer model is an architecture 
of deep learning model that adopts a self-attention 
mechanism to process sequential data, such as text 
and images (Vaswani, 2017). Transformer generally 
contains two parts, which are an encoder and a 
decoder, both composed of numerous layers of self-
attention and feedforward neural networks. With the 
self-attention mechanism, transformer-based models 
are able to focus on the most important parts of the 
source sequence when making predictions. This 
enables the model to capture long-range 
dependencies and improve the performance when 
performing sequential tasks. 

2.2.2 Vision Transformer (ViT) 

In this study, the author introduces the ViT model for 
image classification tasks, inspired by the success of 
the Transformer architecture in natural language 
processing. Unlike traditional approaches that rely on 
CNN for computer vision tasks, ViT directly applies 
the Transformer architecture to sequences of image 
patches. This departure from CNN-based methods 
demonstrates promising performance across a 
spectrum of image classification benchmarks, 
including ImageNet, CIFAR-100, and VTAB 
(Dosovitskiy, 2020). 

The ViT model operates by initially reshaping 
images into a sequence of flattened 2D patches, which 
are then processed through the Transformer 
architecture. Each patch undergoes a trainable linear 
projection to generate a fixed-dimensional 
embedding. Similar to the BERT model in NLP, ViT 
incorporates a learnable embedding at the start of the 
patch sequence, serving as input representation for 
the encoder of ViT. The encoder consists of several 
alternating layers of multi-head self-attention and 
MLP layers, with layer normalization and residual 
connections at each layer. Position embeddings added 
to the patch embeddings are used for retaining 
positional information. Notably, ViT displays less 
image-specific bias compared to CNNs. The reason is 

that only the MLP layers exhibit local and 
translational equivariance, whereas the self-attention 
layers are global in nature. Furthermore, ViT supports 
a hybrid architecture where the input sequence can be 
generated from CNN feature maps, offering 
flexibility in model design. In this study, the author 
fine-tuned the vit_base_patch16_224 model on 91 
different categories of images from the food-101 
training dataset and evaluated its performance on the 
validation dataset to showcase its effectiveness 
compared to the CLIP model. Detailed descriptions 
of the experimental setup, including training 
procedures and hyperparameter settings, are provided 
in subsequent sections. 

2.2.3 Contrastive Language-Image 
Pretraining (CLIP) 

CLIP is a multimodal model that learns to associate 
images and text through a contrastive objective. CLIP 
is trained on a large-scale dataset of images, together 
with their associated text, such as image captions, to 
learn a joint embedding space in which semantically 
similar image and text pairs have less distance to each 
other. This joint embedding space enables CLIP to 
perform a diverse array of vision-language tasks, 
which includes image classification, image 
segmentation, and detection of objects (Radford, 
2021). CLIP can be seized as a composition of two 
separate components: a vision encoder and a text 
encoder. The images are first resized into a fixed size 
(224 by 224 in CLIP ViT/B-32) and normalized into 
standard pixel values. The image encoder takes the 
normalized images as input, passes the image through 
a CNN backbone, such as ResNet or ViT, to extract 
image features. The extracted image features are then 
projected to a fixed-dimensional embedding using a 
learnable linear projection. 

In this research, the author fine-tuned the CLIP 
model on 91 different categories of images form 
food-101 training dataset which consists of the image 
and it correspond text label. All the text labels are 
extracted from the class names of the image, which 
are then tokenized and processed by the text encoder 
to acquire text embeddings. These embeddings, 
together with the image embeddings processed by the 
image encoder are then compared using cosine 
similarity to determine the semantic similarity 
between the image and labels from the dataset. The 
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result of the classification is determined by the label 
with the highest similarity. Since fine-tuning CLIP is 
challenging and the choose of hyperparameters 
significantly affect the evaluation result, the author 
leverage the fine-tuning approach from Xiaoyi Dong 
to provide a best result possible (Xiaoyi, 2022). The 
author provides detailed descriptions of experimental 
setup in the following sections. 

2.2.4 Cosine Similarity 

In CLIP-based models, Cosine Similarity is used to 
compare the similarity between the image and text 
through their embeddings and determine the best-
match category. Cosine similarity provides a metric 
to measure the similarity of two non-zero vector’s 
direction. The definition of cosine similarity is the 
cosine of the angle between two input vectors. For 
instance, if there are two input vectors (𝑣ଵ and 𝑣ଶ), 
the cosine similarity of them can be represent as: 
 

 1 2

1 2

cos( ) v v
v v

θ ⋅=  (1) 

 

The greater the cosine similarity means the more 
similar the two vectors are. In the research, Cosine 
Similarity is used to determine the corresponding 
categories of image while evaluating CLIP-based 
models. 

2.3 Implementation Details 

This research used Python 3.10 and Pytorch 2.1.1 for 
implementing all the models above. Vit model and 
CLIP model is based on hugging face transformers 
(Wolf, 2020). Data visualization is provided by 
Matplotlib. All the training and testing is completed 
on Ubuntu 22.04 over 2x Nvidia RTX4090 24G with 
cuda version of 12.1 and 64GB of System Memory. 
The training hyperparameters for the Google ViT 
model are detailed in Table 1, while those for the 
CLIP model are provided in Table 2. 

Table 1: Hyperparameters of ViT model fine-tuning. 

Hyperparameter Value 
Base Model vit-base-patch16-224 
Learning Rate 410−  
Batch Size 256 
Weight Decay 0.05 
Epochs 10 
Optimizer AdamW 
β1, β2 0.9， 0.99 
ε  61e−  

Table 2: Hyperparameters of CLIP model fine-tuning. 

Hyperparameter Value 

Base Model CLIP ViT-B/32 
Learning Rate 410−  
Batch Size 2048 
Weight Decay 0.05 
Epochs 10 
Optimizer AdamW 
β1, β2 0.9， 0.999 
ε  61e−  

3 RESULTS AND DISCUSSION 

The result of the research shows a significant better 
performance on the fine-tuned model based on 
Google ViT model then other models. The base CLIP 
model also has a great performance in the research, 
especially considering that it works out-of-the-box 
and no extra training steps are required and have a 
great zero-shot ability to unseen categories. However, 
CLIP model is much harder to fine-tune compared to 
base ViT model, the training cost of fine-tuning clip 
model is larger than ViT while the performance is 
worse. Besides, fine-tuned CLIP model loses most of 
its zero-shot ability. The overall result is as shown in 
Figure 3. 

 
Figure 3: Overall experiment results (Photo/Picture credit: 
Original). 

3.1 Test Accuracy 

For test accuracy, the fine-tuned ViT model gained 
the best result, at 91.87%. Fine-tuned CLIP model is 
about 3% better than clip base, but still worse than 
fine-tuned ViT model. The base CLIP model gained 
an accuracy of 81.24%, which is a promising result 
considering it does not require any training and work 
out-of-the-box. The detailed test result is shown in 
Table 3. 
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Table 3: Test accuracy. 

Model Test Accuracy (%) 
ViT-base (fine-tuned) 91.87 
CLIP-base 81.24 
CLIP-base (fine-tuned) 84.22 

3.2 Extended Accuracy 

Fine-tuned CLIP model has a much lower accuracy 
on unseen categories, of 17.68%. As a contrast, base 
CLIP model's accuracy is 79.82%, basically equal to 
the test accuracy of CLIP model. This shows that clip 
model lost most of its generalize and zero-shot ability 
while fine-tuning and have a much worse ability 
when facing unseen categories. Fine-tuned ViT 
model doesn't have any zero-shot ability, show it isn’t 
included in this test. The result of extended accuracy 
is as shown in Table 4. 

Table 4: Extended accuracy. 

Model Extended Accuracy (%) 
ViT-base (fine-tuned) - 
CLIP-base 79.82 
CLIP-base (fine-tuned) 17.68 

3.3 Deployment Cost 

The base CLIP model doesn't require any extra 
training or fine-tuning, so its training cost is the 
lowest. Both ViT and fine-tuned CLIP require extra 
training, however, CLIP model is much harder to be 
trained, compared to ViT. CLIP is more difficult to 
converge during training than ViT, as shown in 
Figure 4. Choosing a correct hyperparameter for 
CLIP requires testing and an incorrect fine-tune might 
result in worse accuracy then the base model. The 
computing cost of fine-tuning CLIP is also higher 
than fine-tuning ViT. So, the deployment cost of 
Fine-tuned CLIP is higher than fine-tuned ViT. The 
result of deployment cost is shown as in Table 5. 

 
Figure 4: Training loss while fine-tuning two models 
(Photo/Picture credit: Original). 

Table 5: Deployment cost. 

Model Deployment Cost 

ViT-base (fine-tuned) Medium 
CLIP-base Low 
CLIP-base (fine-tuned) High 

4 CONCLUSIONS 

This study proposes a new object detection based on 
transformer modelling. In addition, this paper sets up 
a bidirectional matching loss for prediction. The 
model contains a Resnet-101 model as a backbone, an 
encoder part with an attention mechanism, a decoder 
with an object query input, and a feedforward 
network. The loss function is a two-step set prediction 
loss carefully designed for object detection. In 
addition, migration learning techniques are invoked 
to demonstrate the effectiveness of improving model 
performance through two baseline object detection 
datasets. The paper then conducts various 
experiments to analyse the performance of the model 
on these two datasets. The authors implement Faster 
R-CNN model for comparison. On both datasets, the 
transformer model outperforms the Faster R-CNN 
and has a higher AP by 3.0. Meanwhile, the 
transformer trained on the PASCLA VOC maintains 
AP of 68.8, which is significantly higher than that of 
COCO 2007. the effectiveness of transfer learning is 
well demonstrated. This redesigned approach to the 
detection system presents a number of challenges, 
particularly in the areas of training, optimization, and 
small-object performance. Previous detection models 
have been improved over the years to address similar 
problems. In the future, semantic segmentation tasks 
for transformers will be considered as the next phase 
of research. 
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