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Abstract: The Multi-Armed Bandit (MAB) problem encapsulates the critical exploration and exploitation dilemma 
inherent in sequential decision-making processes under uncertainty. Central to this problem is the balance 
between gaining new knowledge (exploration) and leveraging existing knowledge to maximize immediate 
performance (exploitation). This paper delves into the MAB problem's core, where the Upper Confidence 
Bound (UCB) strategy emerges as a robust solution that does not necessitate an advanced knowledge of sub-
suboptimality gaps. The methodological contribution is the systematic characterization and comparison of 
various UCB variants, including the classic UCB, Asymptotically Optimal UCB, KL-UCB, and MOSS. Each 
variant assigns a UCB index to arms in a bandit setup, by selecting the arm that has the largest index-value in 
every round, aiming to balance the exploration/exploitation trade-off dynamically. Notably, these algorithms 
are designed to operate without the abrupt transition from exploration to exploitation, fostering a more 
seamless and adaptive decision-making process. The paper's conclusion underscores the efficacy of UCB 
algorithms in optimizing long-term rewards in uncertain environments, highlighting their practical relevance 
in fields where machine learning algorithms must operate with minimal prior knowledge. 

1 INTRODUCTION 

In the realm of machine learning and decision 
making, MAB question serves as a foundational 
framework for exploring the challenges of 
exploration and exploitation. At its core, the MAB 
problem encapsulates a situation where the user must 
repeatedly choose among multiple options (or arms), 
each with a reward with unknown distribution, with 
the objective of maximizing cumulative gain over 
time. The quintessential dilemma in MAB lies in 
choosing whether to exploit the arm that has 
historically given the best rewards (exploitation) or to 
explore other less-known arms for potentially better 
rewards (exploration). 

In 1985 Lai and Robbins finished the foundational 
study, establishing the theoretical framework for 
addressing the MAB problem using the concept of 
regret. Regret is defined as the difference in 
expectation of reward between a chosen strategy and 
the ideal strategy. Auer et al. (2002) introduced the 
idea of UCB algorithms, a series of strategies that 
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intelligently balance from exploration to exploitation 
trade-off by constructing confidence interval on the 
rewards of diffident choose of arm. These bounds are 
derived from the concentration inequalities and are 
used to make an optimistic estimation of the potential 
of each arm. 

Building upon this foundation, Auer et al. (2002) 
further advanced the UCB methodology, resulting in 
the development of the UCB algorithm. It simplifies 
the computation of the upper confidence bounds, 
making it more practical for real-world applications. 
It operates by adding a bonus to the estimated rewards 
that increases with the uncertainty or the lack of 
knowledge on the correct rewards of different arms. 
This bonus term, which is influenced by both the 
number of play times of each arm and all arms, 
ensures that arm selection is proportional to their 
respective uncertainties. 

The landscape of UCB algorithms has since 
expanded, with multiple variants being proposed, 
each tailored to different aspects of the MAB 
problem. These variants reflect the diverse thinking 
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of different authors on how to best address the 
exploration-exploitation trade-off. Some, like the 
KL-UCB algorithm, use the Kullback-Leibler 
divergence to tighten the confidence bounds for 
distributions with known parametric forms(Cappé, 
Garivier, Maillard, Munos, & Stoltz, 2013). Others, 
such as UCB-V, incorporate variance estimates to 
adjust the exploration term dynamically, catering to 
environments with varying noise levels(Audibert, 
Munos, & Szepesvári, 2009). 

The study of MAB and specifically UCB 
algorithms is of profound importance as it provides 
insights into optimal decision-making under 
uncertainty —a frequent occurrence in multiple fields 
including finance, healthcare, and online 
recommendation systems. By understanding and 
comparing different UCB approaches, strategies can 
be refined to suit specific situations and distributional 
assumptions, leading to more efficient learning and 
better performance. 

This paper seeks to delve into the topic of UCB 
algorithms within the MAB framework. The method 
involves a comparative analysis of the various types 
of UCB algorithms, assessing their theoretical 
foundations, performance guarantees, and empirical 
results. The target of this study is to elucidate the 
nuanced differences among these algorithms, 
providing guidance for practitioners on selecting the 
most appropriate UCB variant for their specific use 
case. Through this exploration, the goal is to enhance 
the comprehensive understanding of strategic 
decision making in uncertain environments. 

2 MAB PROBLEM 

In general, number of actions has been given, denote 
as k; at each time horizon n = 1, 2, 3..., one of the 
action has been chosen. Once the action i is played, a 
reward has been gained simultaneously, with the 
support in [1, 0] from a fixed but unknown 
distribution. After repeatedly choosing independent 
and identically distributed arms, a random reward 
will be obtained for each round, and the selection of 
each action is independent of others. 
The method behind the MAB problem goes to the 
choice of arm at each horizon n. The choice of 
selection will base on the rewards for previous n-1 
round. The unknown expected rewards of an action i 
is denoted as μ i. In real-time application the 
objective is to make sure that the total rewards in 
horizon is the largest, Ε, where i(n) is the arm that 
has been selected at round t and the algorithm is 

chosen randomly. An equivalent express for the result 
is the expected total regret: the reward lost by taking 
sub-optimal decisions, which denotes the difference 
between the reward gains from the arm has the 
potentially largest reward and the actual reward 
received. 
R(N) = n · μ* - Ε[∑ 𝜇𝑖(𝑛)]ேୀଵ =∑ ∆𝑖 ·  𝛦[𝑇𝑖(𝑛)]     (1) 
where μ* denotes the largest mean reward in all 
actions, denotes the sub-optimality, denotes the 
number of times arm i has been selected in n-1 round. 

2.1 Algorithms Employed 

UCB is a better algorithm compare to the most basic 
method ETC. Comparing with ETC, UCB strategy 
does not require advanced information of the 
suboptimality gaps and tends to outperform ETC 
when there are more than two actions(Auer, Cesa-
Bianchi, & Fischer, 2002). The UCB algorithm 
follows the rules of optimism, operating under the 
assumption that the environment is as favorable as is 
plausibly conceivable.(Lattimore & Szepesvári, 
2020). Consider the sequence of independent random 
variables(Xt)nt=1, which follows normal distribution 
with 1 as standard deviation. 
ℙ(μ ≥ μ᷉+ ඥ[2log(1/c)]/n) ∀c belongs to (0,1)       (2) 

When evaluating the option in round t, the learner 
bases their decision on the Ti(t-1) observed samples, 
which have an mean value of μi(t-1). Under these 
circumstances, a logical estimate for the covered μ of 
the next action would be 
UCBi(t-1, c) = infinity                          if Ti(t-1) = 0 

UCBi(t-1, c) = μi(t-1) + ඥ[2log(1/c)]/n  otherwise  (3) 

When comparing (2) and (3), a great care should be 
taken. As for (2) the number of sample is a constant 
n, while for (3) it comes to the number of selection in 
n-1 round. In the formula, c serves as an approximate 
upper limit on the probability that the given quantity 
underestimates the actual mean value. Then it comes 
to the algorithm of UCB(c), which a input of number 
of actions and the error probability c is required. 
The UCB algorithm, an index-based method(select 
largest value), where the index is represented by the 
summation of the E(μ) observed up to that point. The 
value within the argument of argmax corresponds to 
the index i of the arm.  
For this UCB method on a stochastic k-armed bandit 
problem which follows a 1-subGussian distribution. 
For any horizon n, if c = 1/𝑛ଶ, then 

R(N) ≤ 3∑ ∆𝑖 + ୀଵ ∑ 16𝑙𝑜𝑔(𝑛)/∆𝑖: ∆வ     (4) 
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The regret of UCB algorithm follows a time 
complexity with O(logn), as for the part 3∑ ∆𝑖ୀଵ  
stays constant with the horizon n, and is negligible 
compared to the second term,which is very large, thus 
the time complexity primarily depends on the latter 
part. After analysis the researcher found that the 
worst-case regret of Rn = O(ඥ𝑘𝑛𝑙𝑜𝑔(𝑛)).  
For the previous UCB algorithm that mentioned in 
this section, where c=1/ 𝑛ଶ . This requires the 
knowledge of horizon n, which is not a an anytime 
algorithm(Lattimore & Szepesvári, 2020). Also, the 
exploration bonus does not grow with t, i.e, there is 
no built-in mechanism to choose an arm that the 
number of selection stays constant for many rounds. 
The algorithm of Asymptotically optimal UCB is 
similar to the previous one, just using a new version 
of the UCB index. 
The exploration bonus changes from ඥ[2log(1/c)]/n 
to ඥ[2log(f(t))]/Ti(t − 1) ,where f(t) = 1+ tlog2(t). 
This modification will give a tighter upper bound for 
the user, sometimes user can change f(t) = t, but the 
performance is slightly worse. Before the 
modification, the exploration bonus remains the same 
for the arms that are not selected and the bonus goes 
down for the selected arm. After the changes, the 
UCB index is updated at every round for all arms. 
Exploration bonus increases for arms not selected, 
and decreases for the selected arm. Also, the latter 
form of bonus dose not require a knowledge of n. So, 
it is an anytime algorithm. 
The regret of the asymptotically optimal UCB follows: 
 lim→ஶ 𝑠𝑢𝑝 𝑅𝑛𝑙𝑜𝑔𝑛 ≤  2∆𝑖:∆வ                (5) 

 

After simplification the regret is O(logn). The 
improvement of this method compare to the UCB is 
that the confidence interval is slightly smaller. The 
key insight is that users do not need to show that the 𝜇is ≥ 𝜇1 for all s with high probability, it is sufficient 
to show that 𝜇is ≥ 𝜇1 - c for some small c. Katehakis 
and Robbins (1995), Garivier et al. (2016), remarked 
on the unusual appearance of the function f(t) = 
1+tlog2(t). However, with a more complicated 
calculation user can choose f(t) = tloga(t) for any a 
larger than 0. if the reward follows the normal 
distribution, then a more thorough analysis of 
concentration enables the selection of f(t) = t or 
potentially a function with a slightly slower growth 
rate. Also, the asymptotic regret typically reflects 
finite-time performance, yet caution is advised. 

Lower-order terms, which are hidden in asymptotic 
expressions, may dominate in practical applications. 

In this part, a modification of UCB and basic ETC 
algorithm will be introduced. This method is called as 
Elimination algorithm. This represents a direct 
extension of the ETC algorithm to accommodate 
more arms, which also addresses the issue of selecting 
an appropriate commitment duration, involves the use 
of an elimination algorithm. This algorithm functions 
in distinct phases, each maintaining a group of 
potentially optimal arms known as the active set. 
During the ℓ-Th phase, the objective is to remove the 
arm i, which the inequality ∆i ≥ 2ିℓ holds. 

2.2 MOSS and KL-UCB 

Part 2.1 mentions that in worse-case the UCB regret 
follows O( ඥ𝑘𝑛𝑙𝑜𝑔(𝑛) ) and in the elimination 
method the regret follows O(ඥ𝑘𝑛𝑙𝑜𝑔(𝑛))(Lattimore 
& Szepesvári, 2020). It is feasible to entirely remove 
the logarithmic factor by modifying the confidence 
levels in the algorithm. The MOSS algorithm builds 
on the principles of UCB and was the first to 
implement this adjustment. A detailed presentation of 
the MOSS algorithm follows. 

The MOSS algorithm was introduced as a variant 
of the UCB algorithm specifically designed to 
achieve minimax optimal regret in the problems with 
a number of arms and rewards. The key feature of 
MOSS is its adjustment of the exploration term in the 
confidence bound, which becomes more conservative 
as the number of selections of single arm increases. 
This adjustment allows MOSS to handle the trade-off 
more effectively in certain scenarios. 

The performance of the MOSS algorithm is 
noteworthy. It has been proven to be asymptotically 
optimal, meaning that when the number of rounds 
increases, it achieves the same behaviors as the best 
possible strategy. This optimality holds for both finite 
and infinite action sets(Audibert & Bubeck, 2009). 
The MOSS algorithm strikes a balance between the 
trade-off of exploration and exploitation by 
incorporating an adaptive exploration parameter. This 
allows it to explore arms sufficiently while still 
exploiting the arms with the highest estimated 
rewards. 

The regret of the MOSS follows a log function in 
terms of the time horizon and the number of arms. 

Rn ≤ 39√𝑘𝑛 + ∑ ∆𝑖ୀଵ                       (7) 
This logarithmic regret bound ensures that the 
algorithm learns to make near-optimal decisions over 
time. The MOSS algorithm achieves this by carefully 
balancing exploration and exploitation, resulting in a 
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regret that grows logarithmically with the number of 
rounds.  

Furthermore, the K-armed bandit problem serves 
as a well-known model for studying decision-making 
in uncertain conditions, involving a player's choice 
among K different options, each with unknown 
payout probabilities. The objective is to optimize the 
total payout accumulated over time. A principal 
strategy for addressing this challenge is the KL-UCB 
algorithm, an advanced version of the broader UCB 
methodology. The KL-UCB algorithm is an advanced 
method for the MAB problem(stochastic) designed to 
minimize regret, which is the loss in potential reward 
due to not picking the best arm at each trial. It 
achieves this by balancing exploration (trying out less 
chosen arms to discover their potential) and 
exploitation (picking the arm that has historically 
given the best rewards). The KL-UCB algorithm, is 
particularly well-suited for distributions that can be 
parameterized by a single parameter, like the 
Bernoulli or Poisson distributions(Capp´ e et al. 
2013). 

The algorithm follows the same rule with UCB 
algorithm. In the KL-UCB algorithm, the index 
calculation involves resolving an optimization issue 
that applies the KL divergence to quantify the 
discrepancy between the empirical mean of rewards 
and the possible true mean (Cappe et al., 2011). The 
KL divergence assesses the deviation of one 
probability distribution from another, expected 
probability distribution. 

Garivier & Cappe (2011) points out that when 
there is K arms and rewards is bounded between 0 and 
1 independently, and a* denotes for the optimal arm. 
Then the regret is: 
 lim→ஶ 𝑠𝑢𝑝 𝐸[𝑅𝑛]𝑙𝑜𝑔(𝑛) ≤  𝜇𝑎 ∗ −𝜇𝑎𝑑(𝜇𝑎 ∗,𝜇𝑎): ఓழఓ∗       (6) 
However, in 2002 Auer et al., uses the empirical mean 
plus a term that encourages exploration proportional 
to the square root of the logarithm of the total number 
of plays divided by the number of times that particular 
arm has been played, KL-UCB replaces the 
exploration term with a KL divergence-based 
confidence bound. This change ensures a tighter 
confidence interval and thus a more informed 
selection strategy, particularly for reward 
distributions that are not sub-Gaussian (Garivier & 
Cappe, 2011). Garivier & Cappe (2011) also did more 
comparison in more difficult situation, with the 
Bernoulli rewards. In this experiment, the distinction 
between KL-UCB and UCB was marked, and the 

performance of UCB-T,which is another UCB 
method, was considerably less notable. 

2.3 Comparisons 

In this section the performances of UCB, 
Asymptotically Optimal UCB(AO-UCB), MOSS and 
KL-UCB is going to be compared. 
Auer’s UCB method (2002) is designed to balance 
exploration and exploitation by using an upper 
confidence bound to select actions. The basic UCB 
algorithm adds a confidence interval to the estimated 
rewards, which depends on the number of times an 
arm has been pulled. The term ensures that arms not 
recently chosen are revisited, thus exploring 
potentially underestimated options. 

Asymptotically Optimal UCB (AO-UCB), on the 
other hand, refines the confidence bounds to 
minimize the regret asymptotically. According to 
Lattimore and Szepesvári (2020), AO-UCB adjusts 
the exploration term to be more sensitive to the 
variance in arm rewards, which theoretically reduces 
the cumulative regret more efficiently than standard 
UCB in the long run. Empirical studies, such as those 
by Cowan and Katehakis (2015), have shown that 
AO-UCB outperforms UCB in environments with 
high variance in rewards, primarily due to its more 
nuanced exploration mechanism. 

MOSS, introduced by Audibert and Bubeck 
(2009), aims to minimize the worst-case regret across 
all sub-optimal arms. Unlike AO-UCB, which adapts 
based on the variance of rewards, MOSS sets a 
uniform exploration term that decreases only with the 
number of times an arm is played, independent of the 
total number of pulls. This approach can lead to better 
performance in situations with many arms or non-
stationary reward distributions.In comparing AO-
UCB and MOSS, Bubeck and Slivkins (2012) found 
that MOSS tends to perform better in scenarios with 
many arms, as it does not over-penalize less 
frequently chosen arms, unlike AO-UCB. However, 
in settings with fewer arms and clear distinctions in 
arm quality, AO-UCB's variance-sensitive 
exploration can achieve lower regret. 

Cappe et al.(2013) Proposed KL-UCB that uses 
the KL divergence to tailor the exploration term more 
closely to the true distribution of rewards. This 
approach is particularly beneficial in environments 
where the reward distributions are known to be non-
Gaussian, as it can more accurately estimate the upper 
confidence bounds.When comparing MOSS and KL-
UCB, in 2012 Garivier and Cappé noted that KL-
UCB often achieves significantly lower regret in 
practice, especially in problems with skewed or 
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bounded reward distributions, like Bernoulli or 
exponential rewards. The tailored exploration term in 
KL-UCB allows for more efficient exploration by 
focusing more precisely on the statistical properties 
of each arm's reward distribution.However, KL-UCB 
is not without its limitations. Calculating the KL 
divergence can be computationally more intensive 
than the simpler calculation required for UCB. This 
can make KL-UCB less appealing for problems 
where computational resources are constrained or 
when very fast decision-making is required. 
Additionally, KL-UCB's performance guarantee is 
mainly for single-parameter distributions; for more 
complex distribution families, its optimality isn't 
always guaranteed(Maillard, 2018).  

In this paper there are four popular multi-armed 
bandit (MAB) algorithms have been explored: UCB, 
Asymptotically Optimal UCB, MOSS, and KL-UCB. 
Each algorithm aims to achieve a balance arise from 
explore and exploit, addressing the challenges posed 
by MAB problems. Firstly, UCB algorithm offers a 
simple and effective approach, providing an effective 
balance between exploration and exploitation. It 
achieves sublinear regret and follows the function of 
O(klogt), where k means the number of arms and t 
denotes the number of time steps. Asymptotically 
Optimal UCB, on the other hand, comes with a more 
sophisticated exploration strategy. It achieves an even 
lower regret rate than UCB, specifically a logarithmic 
regret. However, it comes at the cost of increased time 
complexity, O(klog2t). Moving on to MOSS, this 
algorithm introduces a different exploration 
mechanism by focusing on the arms that have shown 
promising rewards in the past. It achieves sublinear 
regret, similar to UCB, but with a slightly higher time 
complexity of O(k2logT). Lastly, KL-UCB algorithm 
leverages the Kullback-Leibler divergence to balance 
exploration and exploitation. It achieves logarithmic 
regret also obeys the performance of O(klogt). 
Although it requires more computations compared to 
UCB, it can lead to improved performance in certain 
scenarios. Determining which algorithm is better 
depends on the specific problem and its requirements. 
Asymptotically Optimal UCB is preferable in settings 
with significant reward variance, MOSS excels in 
environments with a large number of arms, and KL-
UCB is ideal for handling non-Gaussian reward 
distributions. The choice of algorithm should thus be 
guided by the nature of the reward structure and the 
specific goals of the exploration-exploitation trade-
off. 

There are several potential future extensions to 
explore. Firstly, this algorithm can expand into more 
diverse field, UCB algorithms have already made 

significant impacts in areas such as recommendation 
advertisement systems, clinical medicine trials, and 
financial management. Future research could expand 
these applications into more complex and dynamic 
environments. For example, in the field of 
personalized medicine, UCB algorithms could be 
employed to adaptively select among treatment 
options for patients based on real-time responses. 
Similarly, in automated trading systems, these 
algorithms could dynamically adjust trading 
strategies to maximize financial returns under volatile 
market conditions. Furthermore, integrating this 
algorithm with Emerging Technologies can improve 
a lot, the integration of UCB algorithms with 
emerging technologies such as artificial intelligence 
(AI) and machine learning could open more spaces 
for smarter, more efficient decision-making systems. 
For instance, incorporating UCB algorithms into AI-
driven IoT (Internet of Things) devices could enhance 
decision-making processes in smart homes and smart 
cities by learning and adapting to the preferences and 
behaviors of users. Thirdly, UCB algorithm can gain 
Enhancement through Advanced Computational 
Techniques, the development of more sophisticated 
computational techniques can further enhance the 
performance of UCB algorithms. Techniques such as 
deep learning could be used to approximate the 
reward distributions more accurately, especially in 
complex scenarios where traditional statistical 
methods fall short. This could lead to more refined 
and effective exploration-exploitation balances in 
UCB implementations. Also, people should focus on 
the Ethical Considerations and Bias Mitigation of 
UCB, as UCB algorithms and their applications grow, 
it becomes crucial to consider the ethical implications 
of automated decision-making systems, particularly 
in terms of fairness and bias. In the future researchers 
should also focus on developing mechanisms within 
these algorithms to detect and mitigate biases, 
ensuring that decisions made by automated systems 
do not inadvertently disadvantage any group or 
individual. 

3 CONCLUSION 

In conclusion, each of the four MAB algorithms that 
have been discussed has its pros and cons. The choice 
of algorithm is decided on the specific situation and 
trade-offs between performance and computational 
complexity. By considering future extensions and 
adapting these algorithms to different scenarios, 
people can continue advancing the field of multi-
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armed bandit problems and finding even more 
effective solutions. 
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