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Abstract: Refineries, operating with millions of dollars at stake, face significant economic consequences even with just 
30 minutes of non-ideal operation. To address this challenge, this paper presents an industrial application of 
seamless integration of two different data sources into a complicated decision support tool that enables 
feedforward decisions. The integration is done in Node-RED, facilitating the data flow from two sources 
leveraging SOAP calls and COM interfaces in Python to automate the model manipulation, thus generating 
live estimates before operation takes place. A dashboard is developed, provides a user-friendly interface for 
visualizing the data and making informed decisions on how to increase efficiency and feed the existing model 
predictive control architecture. This use-case demonstrates the effectiveness of Node-RED in streamlining 
data integration, automation, and decision-making processes in industrial settings is demonstrated, 
contributing to improved operational efficiency and profitability in the refinery industry.

1 INTRODUCTION 

The refining industry, being one of the oldest, stands 
to gain greatly from advancements in technology 
through automation and data science in the last 
decades. Cracking and treatment units in an oil and 
gas refinery are crucial to refining process, where 
minor optimizations in their operation can lead to 
improvements in overall efficiency and output. A 
practical approach to improving the process would be 
to focus on the final outcome and adjust the 
operational parameters accordingly (Yasmal et al., 
2022; Kaya et al., 2023). One key process we focus 
on is the Diesel Hydro Processing (DHP) unit, which 
is critical due to its role in the catalytic conversion of 
a naphtha and diesel mixture. The DHP unit plays an 
essential part in the reactors, where this conversion 
occurs, making it a central element in optimizing the 
overall process. In this context, diesel 
hydroprocessing is an important refining process that 
consists of hydrodesulphurization to remove the 
unwanted sulfur from the diesel cut. The process 
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consists of hydrocracking and hydrotreating to 
produce a diesel product with the required 
characteristics (Aydın et al., 2015). Related to this, 
the plant model comprises two distinct parts: 
hydrodesulphurization (HDS) (Kabe et al., 1999) and 
hydrocracking (HC) (Ward, 1993). In accordance 
with BS EN regulation (Automotive fuels, 2023), the 
use of the HDS process is a key factor in achieving a 
product with superior cleanliness and ultra-low sulfur 
content, eliminating all negative environmental 
impacts such as sulfur dioxide emissions and water 
pollution (Safari & Vesali-Naseh, 2018). The 
hydrocracking process breaks down hydrocarbon 
molecules into lower molecular weight carbon chains. 
This is a high temperature process, around 650K to 
700K (Park et al., 2018), with strong dependency on 
its catalysis’ performance and very difficult to 
optimize due to being a black box. When done 
correctly, it can convert fuels into high-value 
products with a high hydrogen/carbon ratio and low 
metal contaminants within one catalysis life cycle 
(Rana et al. 2007). 
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The aim of this study is to establish links between 
a substantial quantity of data sources, implement live 
estimation models in an automated manner, and 
devise an interactive decision-making assistive 
mechanism to the control of hydrocracking reactor 
and separation units. The written manuscript is 
structured as outlined below: Section 1, problem 
description Section 2 presents the methods, system 
design, representational state transfer, application 
programming interface, historian database server, and 
hardware implementation. In Section 3, the 
performance and advantages of the experiment, and 
the experimental results are described in detail. 
Section 4 includes a brief discussion about 
operational efficiency, technical and economic 
benefits, and potential future directions. Finally, 
Section 5 concludes the whole study and provides 
potential future research directions. 

2 PROBLEM DESCRIPTION 

The DHP, which is the plant this study focuses on, 
while producing LPG, naphtha as side products, 
mainly produces vast amounts of clean and cracked 
diesel. It should be noted that highly exothermic 
reactions occur in the reactors. Due to the substantial 
presence of hydrogen in the system, the highly 
exothermic reaction is mitigated through the 
introduction of cooling hydrogen quenches. This 
cooling process necessitates additional hydrogen to 
be fed to the circulation because hydrogen is 
consumed. Simultaneously, catalytic reactivity is 
maximized to maintain reactor temperatures above a 
certain threshold, as higher temperatures enhance 
reactivity. However, this cannot be pushed to the 
extreme, because higher temperatures not only 
increase reactivity, but it also favors multiple 
processes that reduce catalysis life cycle such as 
faster coke deactivation or support sintering (Gruia, 
2006). It is a delicate balance that involves optimizing 
the cracking process, ensuring reactor safety, 
extending catalyst lifespan, and managing the 
optimum hydrogen ratio. This equilibrium, while 
crucial for the operation's success and profitability, is 
complex to maintain, but the challenges that it brings 
with it are also significant 

For instance, the plant can encounter issues with 
off-spec diesel product accumulating at the base of 
the stripper column, resulting in significant product 
mismatches. In addition to that, it can also encounter 
significantly over-cracked diesel, which means the 
catalyst and the reactors are unnecessarily 
overworked. To mitigate these issues and maintain 

the high quality of diesel produced, it is essential to 
implement a feed-adaptive control system. This is 
especially important because the characteristics of the 
incoming diesel feed often vary, necessitating various 
operating conditions to consistently achieve the 
desired results.   

In response to these problems, the application 
described in this work presents a decision support tool 
for estimating the remaining operational life of major 
plant components. By offering this prediction, the 
tool allows plant personnel to solve potential issues 
before they have an impact on the final product's 
profitability. This proactive strategy ensures that the 
facility performs optimally and produces high-quality 
products. 

3 METHODOLOGY 

This study's methodology focuses on integrating real-
time operational data with predictive modeling and 
simulation tools to improve decision-making 
capabilities in refinery operations. To accomplish 
this, we have implemented a multi-faceted approach 
involving live data extraction, predictive modeling 
using hydroprocessing and separation simulations, 
and a flow-based architecture for data handling and 
model integration. The system leverages a 
combination of SOAP API for secure and structured 
data retrieval, MATLAB for hydroprocessing 
estimations, commercial simulation software for 
separation modeling, and Node-RED for 
orchestrating data flows and presenting live results on 
a user-accessible dashboard. This integrated 
framework supports proactive adjustments in 
processing operations, aligning closely with the 
dynamic requirements of refinery environments to 
improve operational efficiency and reduce potential 
risks. The complete flow diagram of the solution can 
be seen in Fig. 1. 

3.1 Data Connections 

Continuous operation required a continuous solution 
that can support the decisions made live, so the 
challenge ahead was obvious.  The first step was to 
feed live operational data into accurate models that 
run faster than the decision support requirements.  
These models are hydroprocessing estimation model 
enhanced in MATLAB and separation simulation 
models created using commercial simulating 
software. To achieve that goal, we opted to use an 
application programming interface (API) that utilizes 
Simple Object Access Protocol (SOAP) calls. The 
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Figure 1: Flow Diagram of the complete application. 

SOAP API is a widely used protocol for exchanging 
structured information in web services. In the context 
of our application, the SOAP API serves as a 
communication bridge between the application 
developed and the historian database server (World 
Wide Web Consortium, 2010). As a large enterprise 
we are using SOAP instead of RESTful APIs because 
SOAP provides a more structured and standardized 
approach that aligns well with our complex enterprise 
requirements (Fielding, 2000). SOAP's reliance on 
XML ensures consistent data representation, which is 
crucial for our integration with diverse systems. 
Additionally, SOAP's support for various transport 
protocols allows us to seamlessly communicate with 
different platforms within our enterprise architecture. 

To retrieve the required data, the SOAP request is 
constructed from an xml-based envelope and the 
secure server parses the envelope, identifies the 
action and its parameters, runs the query and prepares 
response.  The response contains the requested data 
prepared by using the parameters supplied, such as 

operation data point tag name of the operation data 
point in Table 1. (e.g.: 10TIC5.PV), tag name prefix 
represents the plant number, this table consists tags 
from plant 10 and plant 15. A temperature controller 
process value (PV) on first row. A flow controller's 
set point (SP) on second row. A pressure indicator's 
process value (PV) on third row and the same 
pressure indicator’s respective valve opening (OP) on 
fourth row. Confidience represents the sureness of the 
collected value and very rarely reads something other 
than 100 or 0 (100 represents correct, 0 represents 
incorrect values). Due to data privacy, we cannot 
share real operational data. 

Table 1: Dummy Sample Plant 10 and 15 data response. 
Timestamp Tag Name Value Confidence 

10.01.2023T12:30:00 10TIC5.PV 35°C 100 

10.01.2023T12:30:00 10FIC2.SP 500 
m3/h 

100 

10.01.2023T12:30:00 15PI12.PV 12 
bar 

100 

10.01.2023T12:30:00 15PI12.OP 25% 0 

To achieve the level of predictive control we 
needed, feeding live operational data into our models 
was not enough. A traditional feedback loop makes 
adjustments in response to system output, which can 
cause delays and inefficiencies. The goal was a feed-
forward system that would proactively adjust on the 
basis of input data before problems occurred. Hence, 
an online analyzer was installed to the input feed of 
the system to model the chemical properties of the 
incoming liquid. Analyzer uses Near-Infrared (NIR) 
(Falla et al., 2006) spectroscopy technology. It 
estimates feed total boiling point using the internally 
developed statistical models and sends the data to its 
own on-site computer. From behind the firewall, a 
trivial bat script writes the data to an intermediate 
server that has one-directional communication with 
the analyzer computer and to our solution server. 
Although the analyzer can take measurements once 
every couple of seconds, it is set to work once every 
five minutes. Results are sent to the solution server 
within a similar frequency. This is due to the time 
required to run the other models reliably. There was 
no need to create more input data if the models cannot 
run fast enough. 
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3.2 Hydro Processing Estimation 
Model 

The solution models’ first part consists of  
distinct hydrodesulphurization calculations and 
hydrocracking calculations. While we are modelling 
the reactor, due to the different bed types and bed 
lengths of the reactors, each bed has been considered 
as a separate reactor in series and calculations have 
been made accordingly. In the HDS reactor, sulfur 
compounds are removed from the feed based on the 
sulfur specification. Cracking of the feed carries out 
in the HC reactor. One of the underlying purposes of 
this study is to keep the boiling point of the product 
within the desired values of the unit. In the MATLAB 
part (The MathWorks Inc., 2022), models are 
constructed to predict the composition of reactor exit 
and reactor bed exit temperatures. Certain properties 
of the feed are used as inputs. These include TBP 
values at different temperatures, flow rate, sulfur 
content, and bed inlet temperatures.  During the 
calculations, some assumptions are made for both 
HDS and HC reactions. In the HDS beds, it is 
assumed that the formation and effects of Hydrogen 
Sulfide (H2S) are ignored, and no cracking reactions 
occur. For both reactors, it is assumed that reactions 
are adiabatic, homogeneous, and liquid phase, 
reactions are first order, heat capacities of 
components are constant, and activation energies for 
the beds are constant. For this estimation, feed 
properties are used, and the pseudo-true boiling point 
is calculated. 

Feed characterization data is taken from the 
summary day of each month. Summary day is a 
special day where extra examples are taken from the 
plant to be analysed in the laboratory, like an offline 
snapshot of the operation. Using this data, the cost 
function is tried to be minimized. The cost function 
for optimizing the kinetic parameters considers the 
reactor bed outlet temperatures and the weight 
fractions of the reactor effluent. Thus, optimum 
parameters are determined through an iterative study 
for each month. 

The models are fed 32 different tags, including the 
estimated incoming feed characteristics combined 
with the current operating conditions of the plant. 
From these 32 tags, 10 represents the incoming feed 
characteristics; however, the other 22 tags are 
selected after careful field tests to encapsulate the 
maximum amount of operational meaning while 
using the least amount of tag load possible. They are 
pulled for the last 15 minutes of operation and the 
mean values of the 15 minutes are used in our models. 
The model successfully estimates the creation of the 

major products of the plant, but because of the black 
box nature of the system, results cannot be validated 
until the products are separated from each other. From 
the first model results, only the reactor temperatures 
are something that can be meaningful to use, the 
cracked diesel compositions consist of 145 features 
cannot be used anywhere before second model runs. 
These temperature values can be further used to fine-
tune the overall solution in an iterative way to find the 
optimal operating conditions for the desired outcome. 

The MATLAB model is compiled using the 
MATLAB Compiler Toolbox, and it is hosted as a 
web application using Microsoft Internet Information 
Services (IIS) (The MathWorks Inc., 2022). We opted 
for this approach because it meant similar HTTP 
requests for both models.  

3.3 Separation Simulation Model 

The solution models’ second part consists of 
separation processes that are simulated using 
commercial simulation software. The simulator 
model consists of three separator columns and 
estimates the separation, and thus it creates DHP 
unit’s four different end products. Results from the 
first model are fed to the second model as significant 
inputs and the remaining operation parameters that 
the model requires are pulled with a similar simple 
SOAP call as explained previously. Because of this, 
22 different features are pulled from the historian on 
top of the 145 features coming from the first model. 
A Python script utilizing the simulator’s COM 
interface existing on its backend was used to feed 
these features to the simulator. The script consists of 
4 different sections and employs the Win32com 
library to manipulate simulator classes and objects. 

 
Figure 2: Live dashboard of the solution. 

The application runs with the simulator already 
opened in the operating system, so the first section 
does not open the simulator but only attaches to the 
respective process, finding the flowsheet of the 
simulator and assigning individual stream and 
equipment to respective Python variables. Then, in 
the second section, the output of the first model, 
which is the input of the second model, is 
characterized as an oil mixture using the 145 features 
mentioned earlier. After that, it is attached to the input 
stream in the simulation flowsheet. The paused 
simulation is run to steady state in Section 3, and any 
errors are caught and handled in this section. If the 
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simulation breaks due to any reason, such as bad data 
or a momentary server downtime, the simulation file 
is re-launched from a safe point for the next run in 15 
minutes. And finally, in Section 4, the end results of 
the separator columns (temperatures and pressures 
mainly) and the product specifications that are 
significant for the daily operation are read from the 
simulator and fed back to Node-RED flow as a JSON 
file. 

Though navigating the object-oriented topology 
of the simulator was challenging, the COM interface 
provided a crucial role in automating the software and 
streamlining task management. By automating this 
part of the solution, we were able to eliminate the 
most repetitive manual section. In addition, since the 
Python script manipulates the simulation and runs it 
to a steady state, we can read any important results 
from the simulator and send them back to the Node-
RED flow as a JSON file. This operation takes less 
than 30 seconds, and the same simulator file can be 
used indefinitely if the simulation does not break. In 
which case, the simulation file is closed without being 
saved, reopened, and restarted from a safe point.  

The simulator model is hosted as a web 
application using flask framework. Flask was chosen 
because it requires no additional tools and offers 
simplicity and flexibility through the implementation 
of a minimal web server. (Flask Documentation 
User's Guide, 2010).  

3.4 Node-RED Flow 

Node-RED is an open-source, versatile, flow-based 
development ETL tool (Rymaszewska et. al., 2017). 
JavaScript based interface, modifiable and flexible 
nature, low overhead are why Node-RED was used in 
this study. The explained communications in 
previous sections, besides the analyzer data 
communication, all occur in the respective Node-
RED flow by the help of different processes.  

Analyzer data is directly written to a specified 
directory in the Node-RED server by a bat script 
operating on its own computer. The latest written csv 
file in the analyzer directory is read by a node in the 
flow. SOAP calls that bring the process data to the 
flow is handled within a simple Python process for 
easier code maintenance. Both are combined to 
generate the total input data.  

The Node-RED flow uses the input data in HTML 
request nodes to send requests to the models that are 
hosted at a local IP address as flask applications. 
Results are sent back to the Node-RED flow as 
JSONs. The direct estimated results that have 
significant and urgent operational meaning are fed to 

a simple Node-RED dashboard to be used as a 
decision support measure. The complete flow is on a 
loop that repeats itself every five minutes, thus the 
dashboard refreshes itself every five minutes.  Four 
product specifications can be seen in color coded 
gauge graphs showing the operation engineers the 
estimated outcome of the current state (Fig. 2.).  

The dashboard is hosted at a specific IP address 
and port that can be accessed by the authorized users 
on the company intranet. With this method, we aimed 
to let users see the live results directly. The entire 
results are written to a SQL database for further use 
and additional statistical analysis applications.  

4 RESULTS AND DISCUSSION 

This study demonstrated that we achieved our 
objective of creating a system that helps the operation 
make accurate decisions before any operational errors 
happen. Operating at 5-minute frequencies, the 
solution works with the previous 5-minute average 
unit data that has been collected from temperature, 
flow, and pressure indicators. The frequency was 
chosen as 5 minutes because the unit's operating 
procedures and operational parameters cannot change 
significantly faster than 5 minutes. Also, the overall 
flow of the solution (Fig.2) runs for 2 minutes before 
writing its results, so it could not run faster than that. 
However, 5 minutes was a balanced midpoint, as 
running the model more frequently would not provide 
any benefit. 

Using live data streams in combination with 
predictive modelling can greatly improve the 
effectiveness of operations too. The properties of the 
feed, which include but are not limited to True 
Boiling Point, are fully utilized through the decision 
support tool to correct possible deviations in process 
variation before they occur. This is in great contrast 
to the backward mechanisms of feedback that mostly 
respond too late to avoid losses. An easy-to-use 
dashboard allows plant operators to make fast, 
informed decisions, reducing out-of-specification 
products and unnecessary reactor loadings. 

Strong data management in the system is due to 
flow development by Node-RED and proper, secure 
data movement structure by SOAP APIs. The 
intuitive interface of Node-RED made the co-
ordination possible with varying sources of data to 
run complex decision-making automated smoothly 
and efficiently.  The choice of technologies, such as 
Node-RED, is based on the specific operational 
requirements of the organization technology 
structure, ensuring system efficiency and reliability. 
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Collecting all available data further enabled 
statistical modelling, data analysis, machine learning, 
and physical modelling work. One can exploit similar 
ease-of-access to live data to transfer their offline 
practices to an online context. In addition, by 
connecting the physical models we have developed to 
live data and automating them, we have enabled 
further simulations or mathematical models to work 
with live data with the methods we have developed 
in-house automatically. In addition, by linking our 
physical models to live data and automating them, we 
have facilitated the use of additional simulations or 
mathematical models with live data automatically 
using our proprietary methods. Given that 
simulations and models integrated with live data or 
databases are often sold commercially as separate 
packages or licences, this capability represents a 
significant economic advantage of our approach. 
Several issues arose, mainly, how to ensure that 
models could run faster than the decision support 
requirements and how complex data flows could be 
managed securely. For instance, an online analyzer 
was installed to model the chemical properties of the 
feed coming in, and an intermediate server was also 
installed for the secure handling of the data. Such is 
the kind of careful planning that has gone into 
building a balance between real-time processing 
capacity and data surety (Aldoseri et. al.,2023). 

Economically, massive savings could be realized 
through real-time optimization of DHP unit 
operations by minimizing off-spec diesel and 
extending catalyst life (Aydin, 2015). Even hydrogen 
consumption is lowered under optimal conditions in 
the reactor, producing further decreases in operational 
costs. Environmentally, more controlled sulfur 
removal processes yield diesel products that meet and 
surpass-stringent environmental regulations, thereby 
limiting harmful emissions and producing greater 
sustainability. 

Forthcoming, future research efforts might focus 
on refining the models to further enhance accuracy 
and improve the response times to higher levels. 
Predicting long-term trends in addition to predicting 
trends of potential issues would be a big added value 
toward the decision support. Further enhancement of 
the system to include interaction with other units 
within the refinery could provide a more 
comprehensive approach toward the refinery 
optimization by extending the benefits realized in the 
DHP unit across the facility.  

 
 
 
 

5 CONCLUSIONS 

In this paper, we tried to describe the automated 
application we developed by combining multiple 
different software and data sources to improve and 
support the current operation and reduce potential 
errors by giving them the ability to react before errors 
occur. We developed a data connection to two 
different data sources through the unit firewall to our 
server using SOAP calls and a simple bat script to 
access the data. By feeding the pre-processed 
versions of this data to the two models we developed 
in MATLAB and using commercial process 
simulators, we produced results to predict the course 
of the current operation. The complete connection 
between data points, and models and databases are 
done via the open-source project, Node-RED and we 
automated commercial simulators using the COM 
interface of the Windows operating system in Python 
and delivered live results to users in Node-RED 
interfaces. 

In summary, with this decision support system, 
unit engineers will be able to make more controlled 
interventions, intervene with prior knowledge of 
product characteristics, operate in a manner that is 
more aligned with maintenance schedules, and follow 
production planning objectives. 
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