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Fully training each candidate architecture generated during the Neural Architecture Search (NAS) process
is computationally expensive. To overcome this issue, surrogate models approximate the performance of a
Deep Neural Network (DNN), considerably reducing the computational cost and, thus, democratizing the
utilization of NAS techniques. This paper proposes an XGBoost-based surrogate model to predict the Peak-
Signal-to-Noise Ratio (PSNR) of DNNs for Super-Resolution Image Restoration (SRIR) tasks. In addition
to maximizing PSNR, we also focus on minimizing the number of learnable parameters and the total number
of floating-point operations. We use the Non-dominated Sorting Genetic Algorithm III (NSGA-III) to tackle
this three-objective optimization NAS problem. Our experimental results indicate that NSGA-III using our
XGBoost-based surrogate model is significantly faster than using full or partial training of the candidate archi-
tectures. Moreover, some selected architectures are comparable in quality to those found using partial training.
Consequently, our XGBoost-based surrogate model offers a promising approach to accelerate the automatic
design of architectures for SRIR, particularly in resource-constrained environments, decreasing computing

time.

1 INTRODUCTION

Neural Architecture Search (NAS) automates the de-
sign of neural networks, discovering near-optimal ar-
chitectures for specific tasks (Wistuba et al., 2019).
However, its high computational demands often re-
quire access to powerful hardware and large architec-
tural datasets (Xie et al., 2023). This constraint limits
the broader application of NAS (Elsken et al., 2018).
To address this challenge, surrogate-assisted NAS
has emerged as a promising solution. This approach
uses surrogate models to estimate the performance of
neural architectures without full training (Hutter et al.,
2011). By minimizing reliance on costly training
procedures, surrogate-assisted NAS makes the search
process more accessible (Kandasamy et al., 2018).
Recent advances in performance estimation
within NAS have introduced various innova-
tive methodologies, such as Gaussian processes,
graph neural networks, and recurrent neural net-
works (White et al., 2021; Luo et al., 2018; Real
et al., 2019). These techniques work in reducing
computational requirements (Falkner et al., 2018).
The integration of surrogate models into NAS
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presents significant potential for advancing applica-
tions in areas such as Super-Resolution (SR) (Ahn
and Cho, 2021; Huang et al., 2022). These tasks are
challenging due to their ill-posed nature, making it
difficult to determine the characteristics of a network
that captures sufficient information during training.
Moreover, as dense prediction problems, they require
considerable computational resources, escalating the
computational cost of the NAS process. However,
models capable of performing SR have diverse appli-
cations in fields such as medical imaging, biometric
recognition, surveillance, and remote sensing (Wis-
tuba et al., 2019).

Recent NAS research focuses on optimizing eval-
uation within the search pipeline, enhancing effi-
ciency under limited data and constrained condi-
tions (Ahn and Cho, 2021). Surrogate models im-
prove NAS applicability, making it more versatile and
efficient (Lu et al., 2022; Elsken et al., 2018). De-
spite their success in other areas (Sun et al., 2019;
Xue et al., 2024; White et al., 2021), the use of sur-
rogate models in image super-resolution remains lim-
ited. This gap underscores the need to develop and
validate surrogate approaches for rapid and accurate
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performance evaluation in SR tasks.

Given the success of surrogate assisted NAS (Xie
et al., 2023), we here investigate its use in SR,
but using an Evolutionary Multi-Objective Algorithm
(EMOA) that makes use of a regressor model for esti-
mating the performance of candidate neural networks.
For our EMOA, we used NSGA-III for solving an op-
timization problem that includes several conflicting
objectives, including maximizing the Peak-Signal-to-
Noise Ratio (PSNR), minimizing the number of learn-
able parameters, and minimizing the total floating-
point operations (FLOPs). For the regressor, we have
trained XGBoost on a reduced dataset, created with
Latin hypercube sampling.

Our experiments demonstrate the significant dif-
ference that surrogate-assisted NAS has in reducing
computational overhead and accelerating evaluation
speed, highlighted by a decrease in evaluation time
from approximately 30 GPU hours per generation us-
ing partial training to just 3 CPU hours for 500 gener-
ations.

Section 2 provides the fundamental background,
Section 3 describes our surrogate model and method-
ology, Section 4 highlights our results and Section 5
presents our conclusions and future work.

2 RELATED WORKS

This section defines SR task, explores NAS architec-
ture evaluation strategies, and reviews surrogate mod-
els for NAS.

2.1 Super-Resolution Image Restoration

SR aims to obtain a high-resolution image from a
degraded low-resolution sample. SR systems com-
pensate for inadequate image acquisition conditions.
Mathematically, SR is modeled as y = Hx + ¢, where
x is the non-degraded image, y is the low-resolution
observation, H is a degradation matrix, and e is addi-
tive noise. Solving this problem efficiently requires
models that can extract high-resolution information
from low-resolution samples. Deep learning offers ef-
ficient solutions by mapping low-resolution samples
to higher-resolution reconstructions, and NAS can be
helpful in discovering architectures that enhance SR
models.

2.2 Architecture Evaluation Strategies

Optimal architecture search requires exploration
guidance, typically through performance evaluation
across multiple objectives. However, training for this

evaluation is often challenging and computationally
expensive. (Real et al., 2017; Real et al., 2019; Zoph
et al., 2018).The traditional method of training and
evaluating each model on validation data is impracti-
cal due to its high computational demands. To address
this, various techniques have been developed to esti-
mate model performance more efficiently.

Some early and recent works in NAS have ex-
plored using lower fidelity estimates to approxi-
mate model performance. These estimates are typ-
ically obtained by training models for shorter dura-
tion (Chu et al., 2020; Zoph et al., 2018) or on partial
datasets (Chen et al., 2020b). While these approaches
can provide a quick indication of a model’s potential
performance, they do not always guarantee accurate
rankings compared to full training. Then, these meth-
ods have become less popular in contemporary NAS
research but remain useful for reducing time costs.

Weight sharing and inheritance are techniques
used to expedite the estimation of model performance
by reducing or eliminating the need for training from
scratch (Zhu et al., 2019; Chen et al., 2020a; Wei
etal., 2016). Network morphism, introduced by (Wei
et al., 2016), simplifies the process of weight inheri-
tance among models, leading to more effective net-
works and reducing the total training time needed for
NAS (Zhu et al., 2019; Chen et al., 2020a).

Performance predictors, such as Gaussian pro-
cesses and regression tree models, offer an indirect
estimation of model performance, by evaluating can-
didate architectures without full training (Xie et al.,
2023). In surrogate-assisted NAS, these models pre-
dict architecture performance based on network en-
codings and performance metrics, significantly reduc-
ing computational costs. In NAS, surrogate models
enhance both efficiency and effectiveness by replac-
ing computationally intensive processes with faster,
cost-effective alternatives. Their use has led to in-
novative approaches and methodologies, driving ad-
vancements in NAS research and enabling more effi-
cient exploration of architectural spaces.

2.3 Surrogate-Assisted NAS

Several notable approaches in NAS have leveraged
surrogate models to improve efficiency and effective-
ness. In (Hutter et al., 2011) introduced sequential
model-based optimization (SMBO), employing Gaus-
sian processes to predict algorithm configuration per-
formance. Within (Kandasamy et al., 2018) devel-
oped Neural Architecture Search with Bayesian Op-
timization and Optimal Transport (NASBOT), using
Gaussian processes for performance modeling and
optimizing the architecture search space. In (White
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et al., 2021) combined neural networks and Gaussian
processes in Bayesian Optimization with Neural Ar-
chitectures for NAS (BANANAS) to enhance NAS ef-
ficiency through architecture space representation and
uncertainty management. Authors in (Falkner et al.,
2018) integrated Bayesian Optimization with Hyper-
Band (BOHB) for robust and efficient NAS evalua-
tion. Luo et al. (Luo et al., 2018) proposed Neural
Architecture Optimization (NAO), using graph neu-
ral networks and recurrent neural networks to map
architecture topological structures into higher dimen-
sions and optimize architectures in a continuous la-
tent space, respectively. These works demonstrate a
diverse range of surrogate modeling techniques that
have significantly enhanced the efficiency and effec-
tiveness of NAS.

In domains with limited published NAS works,
such as SR, integrating surrogate models presents an
opportunity. This focus on surrogate models is ev-
ident in the work of (Lu et al.,, 2022), Surrogate-
assisted Multi-objective Neural Architecture Search
for Real-time Semantic Segmentation (MoSegNAS),
which applies sparse coding, classification loss, and
synthetic data to a multi-layer perceptron model as
a way to predict the segmentation performance of
neural architectures. Additionally, (Huang et al.,
2022) demonstrate innovative approaches using un-
supervised learning and differentiable search levels
to enhance efficiency and performance in SR tasks.
In (Ahn and Cho, 2021) showcases a simplified and
fast representation of the original neural architecture
search system, trained with a limited dataset to pre-
dict new architecture performance, avoiding exhaus-
tive evaluation of each one. These advancements
align to expand knowledge and tools in this dynamic
field of research.

3 METHODOLOGY

Our methodology comprises three integral compo-
nents: a search space tailored for DNNs in SR tasks,
an evolutionary search strategy, and a performance
evaluation mechanism. Although our focus is the last
two components, we assume there exists a suitable
search space.!

3.1 Optimizing Architectures

NSGA-III serves as the cornerstone of our approach
to NAS for SR by considering multiple critical objec-

IFor the sake of reproducible research, it is available
upon request by sending an e-mail to raulm@tec.mx
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tives in architecture design. Our goal is to craft net-
works that achieve the highest performance within our
search space while minimizing complexity and mem-
ory requirements. To achieve this, we formalize three
objectives. Let A be an architectural search space and
o € A an architecture with optimized learning param-
eters or weights w*(a) achieving the minimal loss.
We aim to find an o that solves the following multi-
objective problem, given an SR dataset D split into
Dirain and Dyjiq:

F(a,w* () = (f1, /2, /3)

where:

L—1
fi =max (PSNRap,,,) = 20-logy (m)

1 m—1n—1 )
MSE=— Y Y (0;;—Di))
mn =y j=o

The objective f; maximizes the PSNR between a
super-resolved image and its high-resolution counter-
part, where L represents the maximum possible inten-
sity of RGB pixels (0 to 255), and MSE measures the
average squared difference between the original and
super-resolved images. In the MSE equation, O de-
notes the original high-resolution image pixels, and
D represents the SR image produced by o, w*(a). m
and n are the dimensions of the image.

The second and third objectives are defined as:

Jf> =min (FLOPs), f3 = min (Parameters),

where f, represents the minimization of the total
number of floating-point operations required for pre-
diction, and f3 represents the minimization of the
number of learnable parameters within the model.

3.2 Accelerating Evaluation

Evaluating architectural designs in SR tasks is com-
putationally intensive due to the high volume of pre-
dictions involved. To address this, we replace di-
rect PSNR calculation from objective f; with a ma-
chine learning surrogate-based approach, employing
a regression technique to approximate the PSNR of
untrained architectures. This surrogate model lever-
age 28 features derived from architectural configura-
tions. These features encompass various architectural
aspects, including operation types, kernel sizes, rep-
etition patterns, and channel numbers. The surrogate
model shall use these features to predict how architec-
tural variations influence final performance, utilizing
a dataset of architecture-performance pairs.

To generate the dataset for surrogate training, we
trained a diverse set of 541 neural architectures for
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Table 1: The different Regression Models tested to find the
best surrogate alternative and Hyperparameters for tuning.

Model Hyperparameters

Linear Regression “fit_intercept’: [True, False]
Ridge Regression “alpha’: [0.1, 1, 10]

Lasso Regression “alpha’: [0.1, 1, 10]

“alpha’: [0.1, 1, 10],

’11_ratio’: [0.2, 0.5, 0.8]
"max_depth’: [None, 10, 20, 30],
’min_samples_split’: [2, 5, 10],
’min_samples_leaf’: [1, 2, 4]
’n_estimators’: [100, 200, 300],
’max_depth’: [None, 10, 20, 30],
’min_samples_split’: [2, 5, 10],
*min_samples_leaf’: [1, 2, 4]
’n_estimators’: [100, 200, 300],
‘max_depth’: [3, 4, 5],
’learning_rate’: [0.01, 0.1, 0.2],
*subsample’: [0.8, 0.9, 1.0]
‘n_estimators’: [50, 100, 200],
’learning_rate’: [0.5, 1.0, 1.5]
“n_estimators’: [100, 200, 300],
*max_depth’: [None, 10, 20, 30],
‘min_samples_split’: [2, 5, 10],
’min_samples_leaf’: [1, 2, 4]
‘n_neighbors’: [1,3,5,7,9, 11],
*weights’: ["uniform’, *distance’],
pi[1,2,3,4],

*algorithm’: ["auto’, "ball_tree’, ’kd_tree’, brute’]
*C’:[0.1, 1, 10],

Support Vector Regression | 'gamma’: [’scale’, "auto’],
’kernel’: [linear’, 'rbf”, "poly’]

ElasticNet Regression

Decision Tree Regression

Random Forest Regression

XGboost Regression

AdaBoost Regression

Extra Trees Regression

KNN Regression

Table 2: The table shows the time taken, average MSE, and
average R? for each algorithm. The best on each column
are highlighted in bold text. The one that achieved a good
balance between time and performance is highlighted with
italics.

Algorithm Time (sec) | Avg MSE | Avg R?
Linear Regression 0.11 18.5383 | 0.4053
Ridge Regression 0.16 18.5229 | 0.4034
Lasso Regression 0.10 16.9799 | 0.2130
ElasticNet Regression 0.15 169799 | 0.2130
Decision Tree Regression 1.55 21.1536 | 0.7481
Random Forest Regression 413.10 17.1595 | 0.2937
XGBoost Regression 170.99 16.9618 | 0.2327
AdaBoost Regression 9.25 19.3816 | 0.6329
Extra Trees Regression 255.00 17.0304 | 0.2383
KNN Regression 23.05 17.4596 | 0.3468
SVM Regression 22.46 17.3736 | 0.1090

SR, strategically sampled using a Latin hypercube
from our search space. These architectures are uni-
formly distributed, ensuring the representation of dif-
ferent regions of the space. Training was performed
on a high-resolution image subset of the DIV2K
dataset, consisting of 522,000 training patches from
800 training instances and 66,700 validation patches
from 100 validation instances. Due to time con-
straints, only 541 architectures were evaluated.

We tested 11 different regression algorithms in
predicting the PSNR of untrained models, experi-
menting with various hyper-parameters to identify the
best configuration for each?. The efficacy of our sur-
rogate model was validated by comparing its predic-

>The code and dataset required to replicate the training
results of each model can be found at: https://github.com/
SergioSarmientoRosales/Training-Regression-Models

tions with the outcomes of partially trained architec-
tures. This validation method was chosen to accom-
modate time constraints, as fully training the archi-
tectures would be exceedingly time-consuming and
computationally demanding. By comparing the sur-
rogate model’s predictions with P.T. results, we gain
valuable insights into its performance and accuracy
without incurring exhaustive computational costs as-
sociated with full training.

4 EXPERIMENTAL PROTOCOL
AND RESULTS

To thoroughly validate our Surrogate-assisted ENAS
pipeline, we conducted a series of experiments. Our
goal was to compare its performance with partially
trained, fully trained, and standard NAS approaches,
taking into account the constraints of time, and com-
putational and environmental resources.

4.1 Regression Model Comparison

To determine the most suitable regression model for
our application, we conducted a comprehensive grid
search using the hyperparameters delineated in Ta-
ble 1. This systematic exploration was undertaken to
ascertain a good configuration for each model. We
selected the best-performing configurations for each
model and subjected them to a rigorous 10-fold cross-
validation separating the dataset into 10 pieces with
instances allocated randomly. The results, as summa-
rized in Table 2 and endorse XGBoost as the most
effective model across all metrics considered.

Among the 11 regressors, XGBoost exhibited a
training time of 170.99 seconds, an average MSE of
16.9618, and an average R? of 0.2327. While XG-
Boost did not attain the highest accuracy in isolation,
its balance between computational efficiency and per-
formance makes it a surrogate candidate for our appli-
cation. Future research endeavors could potentially
delve into even more refinement of hyperparameters
or the exploration of ensemble techniques that further
augment the model’s performance.

4.2 Surrogate vs. Partial Training

To validate the efficacy of our XGBoost-based surro-
gate model as a NAS evaluation protocol, we com-
pare it against partial training (P.T.). This approach
was chosen to accommodate time constraints, as fully
training the architectures would be exceedingly time-
consuming and computationally demanding. By com-
paring the NAS results using surrogate model with the
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NAS results using P.T., we gain valuable insights into
the performance and accuracy of our approach.

In our initial NAS experiment, we utilized NSGA-
IIT to optimize a population of 20 individuals over 500
generations, resulting in 10,000 evaluation functions.
Then, we tested the two evaluation approaches under
the same conditions. The first approach focused on
P.T. to evaluate architecture performance. This in-
volved training with the following parameters: epochs
=5, learning rate = 3e-4, epsilon = le-7, and weight
decay = le-8, based on established standards (Huang
et al., 2022). Limiting the training epochs to five re-
duced the training time, aiming for a more agile and
efficient search. Despite this reduction, the need for
numerous training processes still demanded signifi-
cant computational resources.

The second approach leverages an XGBoost-
based surrogate model to predict an architecture’s
PSNR from its design features, dramatically speeding
up the NAS process compared to P.T.. This optimiza-
tion reduced evaluation time from 30 GPU hours per
generation to just 3 CPU hours for 500 generations on
an Intel® Xeon® Gold CPU, demonstrating the effi-
ciency of surrogate-assisted techniques in evolution-
ary algorithms.

To ensure robustness, 30 runs with different seeds
were performed, showing the surrogate-assisted ap-
proach’s superiority over P.T., which only evolved 9
full generations in its initial run. The top 20 mod-
els from the architecture-performance dataset were
selected using Pareto dominance for a fair baseline,
providing a benchmark for comparing algorithm per-
formance.

Our primary quality indicator is the hypervolume
(hv), which gauges the proximity and distribution of
solutions relative to the Pareto frontier. Tables 3 and 4
summarize the hv, average normalized approximated
PSNR, average parameters, and average FLOPs for
each of the different seeds, P.T. and our baseline.

Among all the seeds, seed 25 achieved the best
balance between parameter count, FLOPs, and PSNR.
Specifically, seed 25 reached a normalized PSNR of
0.1037 with a standard deviation of 0.1200, main-
taining a moderate parameter count of 2.95e+5 and a
FLOPs count of 1.21e+9. The hv indicator is vital for
assessing both the convergence and diversity of solu-
tions. Seed 25 achieved a hv of 1.2088, significantly
higher than the baseline’s 1.0949, indicating that the
surrogate-assisted approach not only better converged
toward the Pareto front but also preserved a diverse set
of high-quality solutions.

This approach also drastically reduced computa-
tional demands, cutting down from 30 GPU-hours per
generation in the P.T. approach to just 3 CPU hours for
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500 generations. This underscores the efficiency and
practicality of surrogate models in large-scale NAS
tasks.

To validate the surrogate model’s accuracy, we
partially trained the last generation using the median
seed, achieving a real PSNR of 33.25 compared to the
predicted 34.7, with a low error rate of approximately
4.27%, confirming the model’s predictive accuracy.

These findings emphasize the effectiveness of
surrogate-assisted NAS in enhancing the efficiency
of evolutionary algorithms, achieving high-quality so-
lutions with significantly reduced computational re-
sources.

Table 3: Summary for the 30 seeds of the NAS algorithm
going for 500 generations.

Quality indicator | Mean SD Minimum | Maximum
Hypervolume 1.1400 | 0.0400 1.0195 1.2088
Normalized PSNR | 0.1720 | 0.0790 0.0586 0.5215
Parameters 119k 102k 3k 732k
FLOPs 556M | 826M 277TM 3020M

Table 4: Quality indicators for the best, worst, median
seeds, P.T., and Baseline.

Quality indicator | Best Seed | Worst Seed | Median Seed | P.T. Baseline
Hypervolume 1.2088 1.0195 1.1977 1.0240 1.0949
Normalized PSNR 0.0551 0.5215 0.0586 0.4932 | 0.2804
Parameters 35k 732k 360k 78k 335k
FLOPs 146M 3020M 1470M 322M 1380M

4.3 Additional Generations

To assess performance with extended computing
time, we tested key populations from 30 experiments
across 1250 generations, totaling 25,000 function
evaluations, while keeping resource consumption low
and striving for optimal results. This extended analy-
sis examines the algorithm’s long-term behavior and
ability to approach the global optimum, thoroughly
evaluating its efficiency and effectiveness. The con-
vergence plots in Figures 1, and 2 display the hyper-
volume, inverted normalized PSNR, learnable param-
eters, and FLOPs, illustrating these findings.

Analyzing the aggregated results from the 30
seeds enables a more accurate evaluation of the pro-
posed method’s effectiveness and facilitates compari-
son with other approaches. This methodology is crit-
ical to ensuring the study’s conclusions are valid and
broadly applicable.

The results indicate that approximately 800 gen-
erations are sufficient to achieve hv stability. No sig-
nificant improvement is observed in the different ob-
jectives beyond this point, and some objectives may
even worsen, making the evaluation of new architec-
tures unnecessary. This conclusion is corroborated by
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Figure 1: The figure shows hypervolume improvement with surrogate-assisted NSGA-III, including average (blue dots),
standard deviation (red lines), central tendency (dashed line), and maximum average (red ’x’). Average predicted PSNR and

its statistics are also depicted.
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Figure 2: The figure shows progress in discovering SR deep neural networks with surrogate-assisted NSGA-IIL. It includes
average parameters (blue dots), standard deviation (red lines), central tendency (dashed line), and maximum average (red "x’).

Average FLOPs and their statistics are also shown.

Table 5: Summary for the 30 seeds of the NAS algorithm
going for 1250 generations.

Quality indicator | Mean SD Minimum | Maximum
Hypervolume 1.1972 | 0.0378 1.1149 1.2059
Normalized PSNR | 0.1108 | 0.0957 0.0628 0.2370
Parameters 1172k | 572k 253k 1840k
FLOPs 1470M | 1330M 28M 2800M

comparing the hypervolumes of random seeds. Ta-
ble 5 shows the behavior of the 30 seeds, and it can
be concluded that, although in some cases there may
be an improvement, this is not generalizable and in
certain cases the results may worsen.

4.4 Tradeoff Analysis

Based on the analysis of our architectures compared
to the baseline summarized in Table 6, our models
exhibit a nuanced performance profile. The average
PSNR (34.2097) of our architectures is slightly higher
than the baseline’s average PSNR (34.3201). This
suggests that our models are more effective at main-
taining fine textures and other subtle features in im-
ages, resulting in better overall quality in these as-
pects compared to the baseline.

In terms of model complexity, our architectures
generally feature a higher number of parameters, indi-
cating the potential for more detailed representations.
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Table 6: Comparison of Final Architectures.

Architecture PSNR (Predicted) | PSNR (Real) | Model Size FLOPs
Surrogate 1 34.0966 34.8696 4,592 19,562,496
Surrogate 2 34.4465 34.9078 3,207,264 | 13,132,562,432
Surrogate 3 33.8144 342638 2,272 10,321,920
Surrogate 4 34.4816 35.0541 35,712 146,866,176
Surrogate Avg 34.2097 34.7738 812,460 3,327,328,256
Baseline 1 - 34.1874 4,992 21,268,480
Baseline 2 - 34.9011 1,380,192 5,699,436,544
Baseline 3 - 342617 3,904 17,009,664
Baseline 4 - 33.9305 22,784 95,478,784
Baseline Avg. - 34.3201 352,968 1,458,298,368

This additional complexity can be related to our mod-
els ability to capture intricate features in the data.

However, this increased complexity also leads to
a higher computational cost, as more parameters re-
quire more computation during training and infer-
ence. Similarly, our architectures tend to have higher
FLOPs, indicating an increased computational de-
mand.

Despite these complexities, the number of param-
eters and FLOPs in our models remains relatively low,
with several model examples having at most thou-
sands of parameters rather than millions. This sug-
gests that our models remain computationally effi-
cient given the balance in objectives used during the
search. This, also means that our models have a limi-
tation to the maximum PSNR they can achieve due to
this diminishment of parameters and operations.

In conclusion, our architectures demonstrate com-
petitive performance and even surpass that of the
baseline in terms of PSNR. However, they come with
a tradeoff of higher model complexity and compu-
tational cost. Further analysis could focus on un-
derstanding the specific architectural differences that
lead to these tradeoffs, as well as their implications
for practical deployment and scalability.

S CONCLUSIONS AND FUTURE
WORK

This research presents a novel NAS approach that
combines an EMOA with a regressor model for pre-
dicting performance. The methodology effectively
manages conflicting optimization objectives, produc-
ing architectures with thousands of parameters that
demonstrate competitive results on the DIV2K val-
idation dataset. This advancement is significant as
it allows for deploying DNNs across various hard-
ware platforms, thereby reducing computational and
energy costs.

Extensive experimentation identified XGBoost as
the most effective regression algorithm due to its per-
formance in terms of MSE and training time. This has
led to a substantial reduction in computational needs,
cutting the training time from approximately 30 GPU-
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hours per generation to about 3 CPU-hours for 500
generations of a full search.

A key strength of this framework is its use of
surrogate models, which predict architecture perfor-
mance without exhaustive evaluations. However, the
quality of these surrogate models is currently subop-
timal, potentially impacting prediction accuracy. The
existing approach involves sampling and training a
subset of architectures, which is more feasible than
evaluating each architecture individually. Future im-
provements in dataset sampling are expected to en-
hance the understanding of the relationship between
architectural features and performance.

The P.T. approach used for 30 seeds in the sur-
rogate model could either be time-consuming or
resource-intensive. While the focus has been on SR,
the NAS pipeline has potential for broader applica-
tions if initial architectural data is sufficient and the
framework can be adapted for different tasks.

Future research should address the limitations of
current surrogate models and explore enhancements.
Incorporating online learning to continuously update
the model with new data and transfer learning to
leverage knowledge from related tasks could improve
the surrogate model’s accuracy and adaptability. This
study lays the groundwork for more efficient neural
architecture design, with future work aimed at refin-
ing surrogate models and exploring additional learn-
ing paradigms to advance the field of machine learn-

ing.
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