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Abstract: In image generation tasks, this study aims to explore the advantages and potential of a fusion model that 
integrates transformer and diffusion models. Specifically, research propose a novel diffusion Diffusion 
Transformers (DiT) architecture, where the transformer model is incorporated into a diffusion probability 
model for image generation. This architecture replaces the U-Net backbone in traditional diffusion models, 
harnessing the transformer's robust sequence modelling and long-range dependency capture capabilities. By 
employing a "patchify" layer to convert images into token sequences, followed by processing through the 
transformer block and decoder, the DiT architecture transforms the input into the desired output format. The 
experimentation conducted on the ISLVRC2012 dataset, a lightweight version of ImageNet, demonstrates 
that DiT outperforms other generation models in key image generation quality indicators such as Frechet 
Inception Distance and Inception Score. These results underscore the model's prowess in generating high-
quality images efficiently. The proposed DiT architecture amalgamates the strengths of transformer and 
diffusion models, offering enhanced image generation quality and processing efficiency. Despite 
encountering challenges, this framework paves the way for advancements in multimodal learning, 
reinforcement learning, and the development of controllable and interpretable generative models. 

1 INTRODUCTION 

In recent years, diffusion models have achieved 
remarkable progress in image generation tasks. 
Although the concept of Diffusion Probabilistic 
Models is not novel, the emergence of Denoising 
Diffusion Probabilistic Models has provided a 
systematic framework comprising forward denoising, 
reverse denoising, and training for subsequent 
research on diffusion models (Ho, 2020).Diffusion 
models showed performance that surpassed the 
current SOTA generative models in 2021.(Dhariwal, 
2021).With the introduction of classifier guidance, 
diffusion models became capable of class-conditional 
generation. Transformers were initially employed in 
the natural language processing domain. In the visual 
domain, attention mechanisms were utilized either in 
conjunction with convolutional networks or to 
replace specific components while preserving the 
overall convolutional structure. However, recent 
studies have demonstrated that the reliance on 
Convolutional Neural Networks (CNNs) is 
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unnecessary and came up with the Vision 
Transformer architecture as pure transformers 
applied directly to image patch sequences can 
effectively perform image classification tasks 
(Dosovitskiy, 2020). The research led to the proposal 
of U-ViT, a new architecture based on U-net and ViT 
that treats all inputs as markers and utilizes long jump 
connections between shallow and deep layers. 
Remarkable performance is achieved on the 
ImageNet dataset (Bao, 2022). 

The amalgamation of transformers and diffusion 
models has achieved superior efficiency. By 
substituting the U-Net backbone network in the 
Diffusion model with Transformers, analyses reveal 
that these Diffusion Transformers (DiTs) are not only 
more computationally efficient but also attain 
superior performance in ImageNet image generation 
tasks under 512×512 and 256×256 category 
conditions, with the state-of-the-art Frechet Inception 
Distance index implemented on 256×256 (Peebles, 
2022). The study observed that diffusion probabilistic 
models typically lack contextual reasoning abilities to 
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learn relationships between the parts of an object in 
an image, leading to a sluggish learning process.The 
masking DiTs approach addresses this problem by 
introducing a Masking Latent Modeling scheme to 
explicitly enhance the diffusion probabilistic model's 
capacity to learn contextual relationships between 
semantic parts of objects in images(Gao, 2023). The 
diffusion model still has certain limitations in terms 
of high-resolution images and their associated high 
computational complexity. The unconstrained 
Transformer architecture is employed to achieve 
parallel prediction of vector quantization markers, 
and a novel discrete diffusion probability model prior 
is proposed in this paper (Bond-Taylor, 2021). To 
capture the interactions between modalities in large-
scale multimodal diffusion models, UniDiffuser 
utilizes a transformer-based backbone structure. It 
unambiguously fits all relevant distributions into a 
single model without introducing additional training 
or inference overhead. The key insight was to learn 
that the diffusion model of all distributions can be 
unified to predict noise in the perturbed data, where 
the perturbation level (i.e., time step) can vary for 
different modalities (Bao, 2023). The text generation 
field suggests the use of SeqDiffuSeq as an approach 
for generating sequence-to-sequence sequences as a 
text diffusion model. To enhance generation quality, 
SeqDiffuSeq utilizes a encoder-decoder 
Transformers architecture for modeling the denoising 
function.Adaptive noise scheduling is challenging to 
remove noise uniformly over time steps, and the 
experimental results of proprietary noise scheduling 
considering markers of different position orders show 
that The text quality and inference time of sequence-
to-sequence generation are both satisfactory (Yuan, 
2022). 

This study aims to underscore the advantages of 
integrating transformers and diffusion models in 
processing both images and text. Initially, it discusses 
the efficacy of this fusion and underscores the 
interchangeability of U-Net within conventional 
CNN architectures. While a diffusion model 
necessitates a graph-to-graph denoising network, 
transformers excel in handling one-dimensional 
sequences but necessitate flattening feature maps for 
image processing. The article delves into embedding 
conditions into transformer models, pinpointing 
Adaptive Layer Norm-ZERO as the prevailing model, 
leveraging zero initialization and residual modules 
with identity functions. Following diffusion 
denoising, the feature map undergoes reconstruction 
via a Variational Autoencoder decoder for image 
restoration, while a transformer decoder translates the 
one-dimensional sequence output into a feature map. 

In comparison, transformers demonstrate greater 
scalability and performance enhancement with 
augmented parameters and computational complexity, 
surpassing traditional U-Net CNN structures. Despite 
U-net's efficiency, recent breakthroughs like 
OpenAI's Sora underscore the potential of 
transformers in video generation, indicating a future 
where the fusion of transformers and diffusion 
models will become prevalent. 

2 METHODOLOGIES 

2.1 Dataset Description and 
Preprocessing 

This project uses ISLVRC2012 dataset from Kaggle. 
ImageNet, a project focused on computer vision 
system recognition, is at present the largest database 
for image recognition in the world. ISLVRC2012 is a 
lightweight version of the ImageNet dataset. The 
dataset was built to simulate a human recognition 
system. Be able to recognize objects from pictures. 
ImageNet is a very promising research project that 
could be used in robots in the future to identify objects 
and people directly. More than 14 million image 
URLs are annotated by ImageNet to indicate objects 
in the picture, and images with at least one million 
pixels also receive bounding boxes.ImageNet boasts 
more than 20,000 categories; a common category, 
like 'ballot' or'strawberry,' has hundreds of images per 
category. 

2.2 Proposed Approach 

Introducing diffusion models for image generation 
involves elucidating the denoising diffusion 
probability model, comprising a forward diffusion 
chain gradually adding noise to data to transform the 
data distribution into a simpler prior such as a 
Gaussian. This forward process can be manually 
designed. Additionally, there's a reverse chain that 
learns to map the noisy data back to the original data 
distribution. Explaining how transformer models can 
be integrated into diffusion models, a transformer 
encoder-decoder architecture is trained to operate on 
2D images/feature maps by flattening them into 1D 
sequences. The advantages of transformers over 
traditional convolutional U-Net architectures for this 
task are discussed. Combining the diffusion 
probabilistic model with the transformer architecture, 
it's noted that the diffusion algorithm merely 
necessitates a general graph-to-graph denoising 
network, not specifically a U-Net. Transformers can 
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fulfill this role by mapping noisy images to denoised 
versions, leveraging their prowess in modeling long-
range dependencies. The combined DiT model is then 
trained on image data, optimizing the reverse 
diffusion process by training the transformer to 
denoise images across the reverse diffusion chain. 
Finally, the model's performance on image generation 
quality metrics is evaluated compared to baselines. 
The pipeline is illustrated in Figure 1. 

 
Figure 1: The pipeline of the model (Picture credit: 
Original). 

2.2.1 Diffusion Model 

The process of diffusion involves the gradual addition 
of Gaussian noise to data until it becomes entirely 
random. In the diffusion process for raw data, there 
are a total of T steps. The data from the previous step 
is supplemented with Gaussian noise at each step: 
 

 1 1( | ) ( ; 1 , )t t t t t tq X X N X X Iβ β− −= −  (1) 
 

Each step is assigned a variance β୲௧ୀଵ்
 that 

ranges from 0 to 1.Variance schedules or noise 
schedules are often used to set the variance of 
different steps in the diffusion model.A larger 
variance is expected in the subsequent steps when 
things are normal.A well-designed variance schedule 
can result in a resulting result X୲ that If the number 
of diffusion steps T is too large, the original data will 
completely lose its original meaning and become 
random noise.The diffusion process is characterized 
by noise generated in each step, and as it progresses, 
the entire process forms a Markov chain: 
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Also, it is worth mentioning that the diffusion 
process is generally fixed, which means that a pre-set 
variance schedule is employed. For instance, DDPM 
employs a schedule that has a linear variance. 

It's crucial to bear in mind that the diffusion 
process allows for direct sampling of any t-step X୲ 
from the original data X0. Through heavy parameter 
technology (similar to VAE). 

The importance of this property of the diffusion 
process cannot be overstated. To begin with, it is 
possible to view Xt as a linear combination of both 
raw data X and random noise ∈,where the sum is 
the combination coefficient. The sum of their squares 
is equal to 1. These two can also be called signal rate 
and noise rate respectively. Further, noise scheduling 
can be defined based on 𝛼௧ rather than 𝛽௧ , which is 
a more straightforward process, for example, by 
directly setting a value  𝛼௧  close to 0, The final 
approximation is a random noise, which is guaranteed. 

2.2.2 Transformer and U-Net 

The DiT model introduces a significant architectural 
difference by replacing the traditional U-Net 
backbone with a transformer structure, highlighting 
the distinct advantages and disadvantages of 
transformers and U-Nets in diffusion models for 
image generation tasks. Transformers excel at 
capturing long-range dependencies within the input 
data, which is highly beneficial for image generation 
tasks requiring global context and coherence. Their 
self-attention mechanisms allow for direct 
connections between distant elements, enabling better 
modeling of complex spatial relationships in images. 
Additionally, transformers can process input 
sequences in parallel, enabling efficient computation 
on modern hardware accelerators, making them 
computationally more efficient than convolutional 
architectures involving sequential operations. 

Transformers exhibit robust scalability, with 
performance bolstering alongside model size and 
computational resources. However, they lack the 
innate spatial processing bias found in convolutional 
architectures, necessitating additional measures to 
convert images into token sequences. Moreover, 
transformers suffer from quadratic computational 
complexity concerning input sequence length, posing 
challenges for ultra-high-resolution images or 
lengthy sequences. Unlike U-Nets, which possess an 
inherent bias for image data, transformers require 
positional encoding mechanisms to capture data order 
and spatial relationships, potentially introducing 
complexity and limitations. Although U-Nets are 
efficient for smaller models and lower computational 
budgets, their convolutional operations have a 
restricted receptive field, hindering the capture of 
long-range dependencies and global context. As 
model sizes grow, scalability becomes a concern for 
U-Nets. The DiT model seeks to harness 
transformers' strengths in long-range modeling, 
parallelization, and scalability by replacing the U-Net 
backbone. Nonetheless, it grapples with challenges 
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like the absence of an image data bias and complexity 
in handling high resolutions. The choice between the 
two involves balancing computational efficiency, 
scalability, and spatial relationship capture. 

2.2.3 DiT 

The DiT architecture innovatively merges 
transformer and diffusion models for image 
generation, aiming to overcome CNN limitations in 
capturing long-range dependencies. Replacing the U-
Net backbone with transformer-based components, it 
adapts images into token sequences via a "patchify" 
layer. Transformer blocks process these tokens, 
incorporating conditional inputs like noise time step 
and class labels. Four transformer block variants are 
explored: in-context conditioning, cross-attention, 
Adaptive Layer Normalization (adaLN), and adaLN-
Zero. These variants effectively integrate conditional 
inputs, enhancing the model's flexibility and 
performance. 

After processing the input sequence through the 
transformer blocks, a transformer decoder is 
employed to convert the one-dimensional sequence 
output into the desired output format, such as noise 
prediction and diagonal covariance prediction.  This 
decoder applies a final layer normalization (adaptive 
if adaLN is used) to each token and linearly decodes 
it into a tensor with the same shape as the original 
spatial input. The DiT architecture offers several 
advantages over traditional CNN-based approaches.  
Firstly, it leverages the transformer's ability to capture 
long-range dependencies, which is particularly 
beneficial for image generation tasks where global 
context is crucial.  Secondly, the DiT model 
demonstrates superior computational efficiency 
compared to the U-Net backbone, achieving faster 
performance in ImageNet image generation tasks 
across various resolutions (512×512 and 256×256). 

Furthermore, the authors explored different 
conditioning mechanisms to effectively incorporate 
additional information, such as class labels or noise 
levels, into the transformer model.  The adaLN-Zero 
approach emerged as the dominant model, utilizing 
zero initialization and residual modules with identity 
functions, which mitigated degradation issues in 
deeper transformer models. 

Overall, the DiT architecture represents a 
promising integration of transformer and diffusion 
models, combining the strengths of both approaches 
to facilitate high-quality image generation and 
efficient processing.  By leveraging the transformer's 
ability to model long-range dependencies and the 
diffusion model's noise-based generation framework, 
the DiT model offers a powerful tool for image 
synthesis and exploration of diverse generative tasks. 

3 RESULTS AND DISCUSSION 

Table 1 presents a performance evaluation of various 
generative models on the Class-Conditional 
ImageNet 256x256 task, using metrics such as 
Frechet Inception Distance (FID), separable FID 
(sFID), Inception Score (IS), Precision, utilizing 
metrics like Frechet Inception distance, separate FID, 
Inception score, precision, and Recall.The ADM-G 
variant, along with the combination of ADM-G and 
ADM-U, demonstrates significant performance, 
surpassing other ADM models in terms of FID, 
Precision, and Recall, showcasing their proficiency in 
generating realistic and diverse samples. 
Additionally, the LDM-4-G models with cfgs of 1.25 
and 1.50 exhibit competitive FID and precision 
scores, highlighting their potential for high-quality 
image synthesis. Notably, the DiT model using the 
new cfgs 2.0 shows changes in indicators. Due to the 
large size of the original dataset, the ISLVRC2012  

Table 1: Class-conditional image generationon ImageNet 256×256. 

Model FID sFiD IS Precision Recall 
BigGan-deep 6.95 7.36 171.4 0.87 0.28 
StyleGan-XL 2.30 4.02 265.12 0.78 0.53 
ADM 10.94 6.02 100.98 0.69 0.63 
ADM-U 7.49 5.13 127.49 0.72 0.63 
ADM-G 4.59 5.25 186.70 0.82 0.52 
LDM-8 15.51 - 79.03 0.65 0.63 
LDM-4 10.56 - 103.49 0.84 0.35 
DiT-XL/2 9.62 6.85 121.50 0.67 0.67 
DIT-XL/2-G(cfg=2.00) 2.46 5.13 244.15 0.77 0.60 
DIT-XL/2-S 10.33 27.78 276.43 0.83 0.56 
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dataset was utilized in this project, with relevant 
configuration files adjusted to ensure optimal training 
outcomes. Following several days of training, the 
final outcome was the DiT-XL/2-S model, evaluated 
using ADM's TensorFlow evaluation suite. 
Verification of DiT-XL/2-S yielded an IS of 276.43, 
indicating its effectiveness. Furthermore, based on 
the IS index, DiT demonstrates significant advantages 
over other generation models, affirming its 
competence for the image generation task. 

The self-attention mechanism in the transformer 
structure enables DiT to capture long-term spatial 
dependencies between objects in the image and 
produce high-quality images with global consistency. 
This capability goes beyond the limits of traditional 
CNN. Compared with CNN architectures such as U-
Net,DiT model has more advantages in parallel 
computing power and computational efficiency, 
especially in the generation of high-quality samples 
in large-scale models and high-resolution image 
generation tasks Through an efficient noise denoising 
process, the DiT model can generate detailed, 
globally consistent high-resolution images that excel 
in image fidelity and diversity. After sampling the 
locally trained model, Figure 2 is generated. A wide 
variety of animals, including dogs, otters, red pandas 
and Arctic foxes, have realistic appearance and fine 
hair texture. Diverse scenery scenes, including 
spectacular hot air balloons, mountains and lakes, 
geysers erupting, etc., reflect the strong scene 
generation ability of DiT model. Objects are detailed, 
such as contrasting color stripes on hot air balloons 
and bright feathers on red macaws. The composition 
is reasonable, and there is a good spatial hierarchical 
relationship between the various elements to avoid 
imbalance or congestion. Overall, this image does a 
good job of demonstrating the excellent performance 
of DiT models in generating realistic and rich and 
diverse images. Compared with other generation 
models, it has stronger generation quality control and 
diversity. 

 

 
Figure 2: Sample picture (Picture credit: Original). 

4 CONCLUSIONS 

In conclusion, the application and analysis of 
Diffusion Transformer models have yielded 
promising results and insights across various tasks 
and domains. These models, which combine the 
strengths of transformer architectures with diffusion 
probabilistic models, have demonstrated their 
capability to generate high-quality samples while 
offering improved controllability and interpretability. 
This study provides an in-depth examination of the 
evolution of DiT from the diffusion model, 
delineating the fundamentals of the diffusion model, 
and subsequently delving into the U-net and 
Transformer structures, respectively. Moreover, it 
underscores the feasibility and efficacy of integrating 
the diffusion model and Transformer, discussing their 
merits and demerits compared to current generation 
models. While the present study focused on specific 
tasks and modalities, the Diffusion Transformer 
framework harbors significant potential for broader 
applications in multimodal learning, reinforcement 
learning, and other domains where controlled and 
interpretable generative models are desired. 
However, it is crucial to acknowledge certain 
limitations and challenges associated with Diffusion 
Transformers, including the computational 
complexity of the diffusion process, the necessity for 
large-scale pretraining, and the potential for mode 
collapse or lack of diversity in generated samples. 
Future research directions may involve exploring 
more efficient diffusion processes, devising improved 
conditioning mechanisms for controlled generation, 
and exploring the integration of Diffusion 
Transformers with other paradigms such as energy-
based models or hierarchical latent variable models. 
Overall, the utilization and analysis of Diffusion 
Transformer models have demonstrated their 
potential as a robust and adaptable framework for 
generating high-quality samples while enhancing 
controllability and interpretability, paving the way for 
further advancements in generative modeling and its 
applications across diverse domains. 
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