
FSL-LFMG: Few-Shot Learning with Augmented Latent Features and
Multitasking Generation for Enhancing Multiclass Classification on

Tabular Data

Aviv A. Nur1, Chun-Kit Ngan1 and Rolf Bardeli2
1Data Science Program, Worcester Polytechnic Institute, 100 Institute Rd., Worcester, MA, U.S.A.

2thyssenkrupp Materials Services GmbH, Essen, Germany
{aanur, cngan}@wpi.edu, rolf.bardeli@thyssenkrupp-materials.com

Keywords: Few-shot Learning, Machine Learning, Deep Learning, Multiclass Classification, Autoencoders, Random
Forest, CatBoost, One vs Rest Classifier, STUNT, Prototypical Network, Tabular Data.

Abstract: In this work, we propose advancing ProtoNet that employs augmented latent features (LF) by an autoencoder
and multitasking generation (MG) by STUNT in the few-shot learning (FSL) mechanism. Specifically, the
achieved contributions to this work are threefold. First, we propose an FSL-LFMG framework to develop
an end-to-end few-shot multiclass classification workflow on tabular data. This framework is composed of
three main stages that include (i) data augmentation at the sample level utilizing autoencoders to generate
augmented LF, (ii) data augmentation at the task level involving self-generating multitasks using the STUNT
approach, and (iii) the learning process taking place on ProtoNet, followed by various model evaluations in
our FSL mechanism. Second, due to the outlier and noise sensitivity of K-means clustering and the curse of
dimensionality of Euclidean distance, we enhance and customize the STUNT approach by using K-medoids
clustering that is less sensitive to noisy outliers and Manhattan distance that is the most preferable for high-
dimensional data. Finally, we conduct an extensive experimental study on four diverse domain datasets—Net
Promoter Score segmentation, Dry Bean type, Wine type, and Forest Cover type—to prove that our FSL-
LFMG approach on the multiclass classification outperforms the Tree Ensemble models and the One-vs-the-
rest classifiers by 7.8% in 1-shot and 2.5% in 5-shot learning.

1 INTRODUCTION

The increasing volume of data across various sectors,
such as telecommunications, agriculture, and finance,
has led to a pressing demand for effective multiclass
classification (Hollmann et al., 2022). For instance,
the telecom industry has utilized many machine-
learning (ML) models, such as random forest, deci-
sion trees, and discriminant feature analysis, to fore-
cast customer attrition and enhance investment opti-
mization. These techniques strive to predict customer
behavior and enhance investment choices (Sikri et al.,
2024; Şahin, 2023; Abdulsalam et al., 2022; Louk-
ili et al., 2022). In the field of agriculture, ML and
deep learning (DL) improve crop monitoring, yield
estimation, and productivity, showcasing their essen-
tial impact on improving farm management and pro-
ductivity (Attri et al., 2024; Khan et al., 2023; Adebiyi
et al., 2020). In the finance industry, ML and DL ad-
dress tasks such as risk assessment, pricing, and the
development of optimal insurance packages through

various methodologies such as artificial neural net-
works and clustering algorithms. These approaches
underscore the crucial role of data and the necessity
to adapt to changing financial patterns for improved
decision-making and efficiency (Matloob et al., 2021;
Blier-Wong et al., 2020).

The widespread use of data in multiple industries
typically involves the utilization of tabular data that
has been demonstrated by a 2023 Kaggle survey of
14,000 data scientists. The poll indicated that a sub-
stantial portion of professionals within those indus-
tries, ranging from 50% to 90%, relied on tabular
data in their work environments (Tunguz et al., 2023;
Sun et al., 2019). The inclination towards tabular
data presents distinct challenges such as high dimen-
sionality, heterogeneity, and critical interdependen-
cies among features, which are not found in images or
other data modalities (Borisov et al., 2022). Despite
these challenges, the adoption of innovative multi-
class classification methods is still growing demon-
strating the importance of those methods in enhancing

Nur, A., Ngan, C. and Bardeli, R.
FSL-LFMG: Few-Shot Learning with Augmented Latent Features and Multitasking Generation for Enhancing Multiclass Classification on Tabular Data.
DOI: 10.5220/0012934200003837
In Proceedings of the 16th International Joint Conference on Computational Intelligence (IJCCI 2024), pages 531-542
ISBN: 978-989-758-721-4; ISSN: 2184-3236
Copyright © 2024 by Paper published under CC license (CC BY-NC-ND 4.0)

531

decision-making and operational efficiency across in-
dustries.

Presently, the existing approaches for multiclass
classification on tabular data can be broadly divided
into two categories: DL Models and Tree Ensemble
(TE) Models (Shwartz-Ziv and Armon, 2022). Re-
cent advances in DL models, such as TabNet, Neu-
ral Oblivious Decision Ensembles (NODE), and Dis-
junctive Normal Formulas (DNF-Net), have demon-
strated exceptional outcomes across diverse domain
datasets (Arik and Pfister, 2021; Katzir et al., 2020;
Popov et al., 2019). These models possess the abil-
ity to delve into intricate connections among features,
resulting in heightened efficiency and performance
for tasks involving high-dimensional, structured data.
Each model utilizes distinct mechanisms for process-
ing feature selection, which further improves their
overall effectiveness. However, these models present
challenges in terms of complexity and computation,
as well as interpretability. On the other hand, the
TE models, including Random Forest and Gradient
Boosting, offer enhanced interpretability and reduced
computational complexity. In particular, Gradient
Boosting, such as XGBoost, exhibits significantly
better performance in tabular data compared to DL
models (Borisov et al., 2022; Shwartz-Ziv and Ar-
mon, 2022). However, the remarkable performance of
these models is highly reliant on the utilization of co-
pious amounts of training data, which are inadequate
in some domains and require substantial storage space
(Wang et al., 2021; Tian et al., 2020). Additionally, if
the amount of training data is insufficient, it results in
an overfitted model that lacks generalizability.

Few-shot learning (FSL) is an ML technique that
trains on a small number of labeled samples, typically
one to five samples per class, providing a potential so-
lution to the aforementioned issues (Li et al., 2023;
Wang et al., 2020). This technique enables efficient
learning of multiclass classification tasks with only
a limited amount of data (Parnami and Lee, 2022).
Although FSL has achieved noteworthy success in
the domain of image classification, research on these
techniques on tabular data has been widely under-
explored (Nam et al., 2023). Furthermore, the appli-
cation of FSL in conjunction with TE models on tab-
ular data is very challenging because of the models’
limitations in generalizing on a few data samples per
class.

An effort to address the limitations of TE mod-
els led to the implementation of the One-vs-the-rest
(OvR) multiclass technique (sklearn, 2024). This
method is specifically designed for multiclass clas-
sification and involves dividing the tasks into a se-
ries of binary tasks. The OvR classifier strategy can

be integrated into various existing ML conventional
models, including TE models, as the base estimators.
This technique is expected to enhance the classifi-
cation capabilities of tree-based models by splitting
tasks into binary tasks. However, there is an oppor-
tunity that this technique provides suboptimal results
due to the potential loss of significant data character-
istics, such as complex inter-class correlation and in-
teraction, which could result in unsatisfactory perfor-
mance in classification tasks.

To improve and generalize the ability of models
is to augment the data, thereby increasing data vari-
ability. Data augmentation can be conducted either
at the sample or task level (Zhang and Liu, 2023).
At the sample level, typical methods for image data
involve modifying pixel properties through actions,
such as rotation, scaling, cropping, and other similar
approaches. These actions are performed to increase
the variety of data. On the contrary, when it comes
to tabular data, there is currently no recognized ap-
proach that can complete this data augmentation task.
In order to tackle this issue, we investigate the use
of autoencoders to extract significant latent features.
Two methods have been experimented in this context:
one is to directly apply the extracted latent features to
a classifier, and the other is to concatenate these en-
coded latent features with the original data in order to
enhance the number of features. The main contribu-
tions in this work is to utilize the knowledge found
in large datasets to improve the accuracy of multi-
class classification that leads to higher levels of ac-
curacy. Despite its potential merits, this methodology
is not reliable for comprehending new tasks, as it pri-
marily concentrates on a single task, i.e., the process
of learning to predict a single outcome, including bi-
nary, multiclass, or continuous values, respectively,
from a labeled dataset. Hence, in addition to latent
features, it is essential to employ task-level data aug-
mentation methods that can improve the precision of
classification, while also facilitating the model to ef-
ficiently learn new tasks. The task-level augmenta-
tion entails generating new tasks to offer the model a
broader range of learning experience.

The incorporation of Self-generated Tasks from
unlabeled Tables (STUNT) is recognized as a promi-
nent task-level data augmentation strategy (Nam
et al., 2023). Through the treatment of data as un-
labeled, this technique has the potential to generate
various tasks for a single dataset. This outcome is
attained by applying the K-means clustering method
to create new labels. It is anticipated that the gen-
eration of self-tasks leads to effective generalization,
as the model acquires knowledge from multiple tasks,
i.e., the process of jointly learning to predict multi-

NCTA 2024 - 16th International Conference on Neural Computation Theory and Applications

532

ple outcomes on inputs of the same dataset, simul-
taneously. In order to capture the generalized knowl-
edge, a meta-learning scheme called Prototypical Net-
works (ProtoNet) is utilized as a classifier (Snell et al.,
2017). In contrast to ProtoNet, tree-based models
lack capabilities to perform generalization on small
datasets because their complicated structures tend to
overfit specific training samples instead of capturing
broader patterns. A lack of data also makes methods,
such as bagging, less useful, resulting in trees that are
not varied and less-than-ideal decisions at splits (Biau
and Scornet, 2016). ProtoNet has proven to be highly
accurate and effective across various types of data
(Nam et al., 2023; Yu et al., 2022; Snell et al., 2017).
This approach successfully generates representative
prototypes or mean embeddings for each class by uti-
lizing Euclidean distance to determine the proximity
of a target task to its prototype.

To incorporate the advantages of the above meth-
ods into our approach, we propose advancing Pro-
toNet that employs augmented latent features (LF) by
an autoencoder and multitasking generation (MG) by
STUNT in the few-shot learning mechanism. Specif-
ically, the achieved contributions to this work are
threefold. First, we propose an FSL-LFMG frame-
work to develop an end-to-end few-shot multiclass
classification workflow on tabular data. This frame-
work is composed of three main stages that include
(i) data augmentation at the sample level utilizing au-
toencoders to generate augmented LF, (ii) data aug-
mentation at the task level involving self-generating
multitasks using the STUNT approach, and (iii) the
learning process taking place on ProtoNet, followed
by various model evaluations in our FSL mechanism.
Second, due to the outlier and noise sensitivity of K-
means clustering (Arora et al., 2016) and the curse
of dimensionality of Euclidean distance (Yu et al.,
2022), we enhance and customize the STUNT ap-
proach by using K-medoids clustering that is less sen-
sitive to noisy outliers and Manhattan distance that
is the most preferable for high-dimensional data. Fi-
nally, we conduct an extensive experimental study on
four diverse domain datasets—Net Promoter Score
(NPS) segmentation, Dry Bean type, Wine type, and
Forest Cover type—to prove that our FSL-LFMG ap-
proach on the multiclass classification outperforms
the TE models and the OvR classifiers by 7.8% in 1-
shot and 2.5% in 5-shot learning.

The remainder of this paper is organized as fol-
lows: Section 2 introduces our proposed FSL-LFMG
framework. Section 3 describes the process that
learns the LF by using autoencoders. Section 4 ex-
plains the MG approach by using the STUNT. Sec-
tion 5 explains the meta learning process using Pro-

toNet. Section 6 details the experimental results, anal-
yses, and discussion. Finally, in Section 7, we pro-
vide a conclusion and outline our future work for this
project.

2 FSL-LFMG FRAMEWORK

In this section, we describe and explain our proposed
FSL-LFMG framework that is an end-to-end pipeline
consisting of four main modules shown in Figure 1.
The modules include Data Preprocessing (DP), Latent
Features Augmentation (LFA), Multitasking Genera-
tion (MG), and Prototypical Network (PN). First, raw
tabular data is passed into the DP module that pro-
cesses and cleans the data in three separate steps in
sequence. In STEP 1, the data is divided into three
parts, i.e., training set, validation set, and test set. The
ratio among them is 64:16:20. For instance, in the
NPS telecom dataset, which comprises 100,000 sam-
ples, the dataset is divided into 64,000 samples for
the training set, 16,000 samples for the validation set,
and 20,000 samples for the test set. In STEP 2, to
deal with numerical features in the dataset, we apply
the Min-Max scaler to ensure that all those features
are on the same scale, for instance, between 0 and
1. The Min-Max scaling is defined by the following
equation:

xscaled =
x− xmin

xmax− xmin
, (1)

where xscaled is the new scaled value, xmin is the mini-
mum value of the feature, xmax is the maximum value
of the feature, and x is the original value. This ap-
proach helps minimize the influence of varying scales
and measurements among different numerical fea-
tures. For example, the ’data usage’ feature of our
NPS dataset has a range of 100 to 90,000, while the
’upload’ feature has a range of 1 to 1,250. By us-
ing the Min-Max scaler, we transform these features
into the same range of 0 to 1. In STEP 3, to manage
categorical features, we employ the one-hot encoding
technique to encode categorical data into numerical
ones suitable for ML models to understand. For in-
stance, the ’tariff’ feature has three unique categorical
values, i.e., Level 1, Level 2, and Level 3. By per-
forming the one-hot encoding technique on this fea-
ture, we convert the values in the categorical variable
into a numeric form, i.e., the binary variable (1/0),
which can be understood by the model while main-
taining its categorical nature.

After the data is cleaned, they are passed into the
LFA module that augments the existing features with
the latent features learned from the autoencoder. This

FSL-LFMG: Few-Shot Learning with Augmented Latent Features and Multitasking Generation for Enhancing Multiclass Classification on
Tabular Data

533

Figure 1: FSL-LFMG Framework.

module aims to increase the data variation at the sam-
ple level by increasing the number of input features.
Specifically, the core of the LFA module involves
training the autoencoder and then utilizing the trained
encoder to extract the most important and compact
latent features, which are then concatenated with the
existing features to obtain a larger number of features.
This process is further detailed in Section 3.

After the features are augmented, they are fed
into the MG module, where the STUNT methodol-
ogy (Nam et al., 2023) is implemented to facilitate
the multitasking generation process. This approach is
designed to address the challenges of FSL and aims to
enhance the diversity of data at the task level by gen-
erating a range of diverse tasks. In each task, a ran-
dom selection process is conducted with a specified
number of samples according to the designated sup-
port and query sets. The support set consists of exam-
ples that are used for training, while the query set con-
tains examples that are used for testing. For instance,
in Task i-th, where i = 1, ...,m, in the 1-shot setting
with three classes, one sample is randomly selected
from each class, so the number of support set is three.
Then the number of queries is set at fifteen samples
per class to evaluate the performance of the model
in Task i-th. This process is replicated in the prede-
termined number of tasks. In our work, we employ
K-medoids rather than K-means for the task genera-
tion process, as K-medoids is a more robust method
for overcoming the influence of noisy outliers in the
dataset. In contrast to the original method, which uti-
lizes K-means for segmentation and produces pseudo
labels that resemble existing labels, our work employs
K-medoids to improve the accuracy and reliability of
the results. This process is thoroughly explained in
Section 4.

Finally, the tasks corresponding to the selected
data and features are passed into our meta-learning
paradigm of the PN module, which effectively gen-
eralize from minimal examples by shaping a met-
ric space conducive to distance-based classification
which is explained in detail in Section 5. This holistic
framework not only addresses the complexities inher-
ent in FSL but also sets a new benchmark for process-
ing tabular datasets more efficiently and accurately.

3 LATENT FEATURES
LEARNING AND
AUGMENTATION

The process of latent features learning and augmenta-
tion consists of three steps, as follows:

NCTA 2024 - 16th International Conference on Neural Computation Theory and Applications

534

Figure 2: A high-level architecture of autoencoders adapted from Ye and Wang (2023).

Step 1: Encoding. Autoencoders are employed in
high-dimensional data for feature extraction to gener-
ate compact representations that accurately reflect the
original data (Ye and Wang, 2023). This technique is
particularly advantageous for image and video data,
as it minimizes storage requirements. For tabular
data, autoencoders extract critical features that aim to
replicate the original dataset’s characteristics fully.

The training of autoencoders shown in Figure 2
utilizes a substantial portion of data to capture preva-
lent attributes, yielding the encoder, depicted by green
layers that consist of three hidden layers (i.e., h1, h2,
and h3) to map the input features x to a latent repre-
sentation z that extracts the significant features. The
decoder, shown in the blue layers that consist of three
symmetrical hidden layers with the encoder’s hidden
layers (i.e., h

′
1, h

′
2, and h

′
3), reconstructs the input fea-

tures x̂ from z, aiming to minimize the difference be-
tween x and x̂. The trained encoder can then trans-
form the new input data into the latent representations
z that is useful for the downstream tasks, including
data augmentation and classification, respectively.

Mathematically, the encoder E and decoder D can
be formulated in the following transformations:

Encoder :

h1 = σ(W (E)

1 x+b(E)1)

h2 = σ(W (E)
2 h1 +b(E)2)

h3 = σ(W (E)
3 h2 +b(E)3)

z = σ(W (E)
4 h3 +b(E)4)

, (2)

Decoder :

h
′
3 = σ(W (D)

4 z+b(D)
4)

h
′
2 = σ(W (D)

3 h
′
3 +b(D)

3)

h
′
1 = σ(W (D)

2 h
′
2 +b(D)

2)

x̂ = σ(W (D)
1 h

′
1 +b(D)

1)

, (3)

where x is a set of input features, z is a set of latent
features, x̂ is a set of reconstructed input features, Wi

is a weight matrix, bi is a bias, h j is a hidden layer, and
σ is the ReLU activation function shown in Equation
(4), for i = 1,2,3,4 and j = 1,2,3,

σ = ReLU(x) = max(0,x). (4)

In this work, we develop a three-layer symmet-
ric autoencoder architecture with the ReLU activation
functions to regularize the process. During the learn-
ing process, we utilize the mean squared error (MSE)
loss criterion to optimize the architecture by using the
Adam optimizer with a learning rate set at 10−3. To
prevent overfitting, the early stopping is implemented
with a patience parameter of 5 that not only ensures
the optimal model performance but also reduces the
likelihood of training divergence. The optimization of
autoencoder quantified using MSE between the orig-
inal inputs x and the reconstructed outputs x̂ can be
defined as follows:

MSE = L(x, x̂) =
1
N

N

∑
i=1
∥xi− x̂i∥2. (5)

This loss function MSE shown in Equation (5) guides
the training process that encourages the model to find
the most representative latent features, where N is the
total number of data instances in the training set. The
Adam optimizer, which adaptively adjusts the learn-
ing rate for each parameter based on the estimations
of first and second moments of the gradients and the
learning rate η = 10−3, can be defined as follows:

W(E),b(E),W(D),b(D)← Adam(∇L ,η). (6)

Once the encoder is trained, it transforms the
original data x to the latent features z shown in Figure
3.

Step 2: Min-Max Scaling of Latent Features.
After obtaining the latent representations z, min-max
scaling is applied, using Equation (1), to ensure that
the latent features have the same scale as the original
features. This step is crucial to maintain consistency

FSL-LFMG: Few-Shot Learning with Augmented Latent Features and Multitasking Generation for Enhancing Multiclass Classification on
Tabular Data

535

Figure 3: Process of augmentation latent features.

and enhance the effectiveness of the subsequent data
augmentation process.

Step 3: Concatenation with Original Input Features.
Once scaled, these latent features are concatenated
with the original dataset to generate the augmented
data, denoted as xaugmented, shown in Equation (7).
This augmented dataset enhances the overall feature
set and increases data variability, which is expected
to improve the model’s generalization capabilities.

xaugmented = [x : z] (7)

This augmented dataset is then used in the MG
process.

4 MULTITASKING GENERATION

Data augmentation at the task level is to build the
common knowledge by performing multiple tasks
from a dataset. STUNT is a specific framework that
can generate those multiple diverse tasks using the K-
means clustering as a pseudo-label generator (Nam
et al., 2023). The idea behind this approach is that
each feature can serve as a label for the other features.
For instance, Figure 4 is an original dataset with three
input features (x) (i.e., complaints, data usage, and
age) and a target binary variable (y) (i.e., cancellation
(yes/no)). In this example, we assume that there is a
positive correlation between complaints and cancel-
lation, from which we can use complaints as a new
target variable and use the other variables as the input
features. By generalizing this concept, we can first

Figure 4: Example data from telecom dataset, adapted from
Nam et al. (2023).

consider the data that is unlabeled; and this STUNT
method randomly selects some features and then uti-
lizes the K-means algorithm to perform the cluster-
ing. In each cluster, the pseudo-label can be obtained
by computing the center of the cluster, also known as
the centroids. By iteratively applying the task genera-
tion process using different combinations of features,
we can generate the corresponding new datasets with
their own labels from the original dataset.

More specifically, following Nam et al. (2023),
given a dataset X of unlabeled tabular data, we
summarize their approach and formalize the process
as follows:

Step 1: Masking Ratio Sampling. Sample a masking
ratio p from a uniform distribution over a range of
hyperparameter [r1,r2], where 0 < r1 < r2 < 1.

Step 2: Binary Mask Creation. Generate a ran-
dom binary mask m ∈ {0,1}d , where d is the number
of features and the sum of elements in m is ⌊d p⌋
where ⌊·⌋ is floor function applied to d p.

Step 3: Column Selection. Use the mask m to
select columns from the unlabeled data X. The
selected data is denoted by sq(x ◦ m), where ◦
indicates element-wise multiplication, and sq(·) rep-
resents a squeezing operation that removes elements
corresponding to zeros in m.

Step 4: K-means Clustering. Apply K-means
clustering on the selected columns to generate
pseudo-labels ỹ. The objective function for the
K-means is given by:

min
C∈R⌊d p⌋×k

1
N

N

∑
i=1

min
ỹi∈{0,1}k

∥sq(xi ◦m)−Cỹi∥2
2 , (8)

such that ỹT
i 1k = 1,

where C is the centroid matrix, k is the number of
centroids, 1k is a vector of ones and xi represents the
i-th sample in the dataset. ∥ · ∥2

2 indicates squared
Euclidean distance, used here to measure the distance
between the transformed data points and the cluster
centroids.

Step 5: Data Perturbation. To prevent trivial
learning by the classifier, perturb the selected column
features by:

x̃ := m◦ x̂+(1−m)◦x, (9)

where x̂ is sampled from the empirical marginal dis-
tribution of each column feature.

NCTA 2024 - 16th International Conference on Neural Computation Theory and Applications

536

Step 6: Task Definition. The generated task TSTUNT
from the process is defined as:

TSTUNT := {(x̃i, ỹi)}N
i=1. (10)

Figure 5: Multitasking generation using K-medoids,
adapted from Nam et al. (2023).

In our work, we enhance and customize the
STUNT approach by using the K-medoids as an al-
ternative clustering method to the K-means shown in
Figure 5 that is a high-level overview of the modified
STUNT approach. We propose this approach because
the K-medoids clustering is more robust to outliers,
as it uses the actual data points as the centers, also
known as medoids, thereby avoiding the influence of
extreme values, unlike K-means. Thus, in Equation
(8) above, we change to use the K-medoids clustering
instead of the K-means clustering.

More precisely, we apply the K-medoids cluster-
ing on the selected features to generate the pseudo-
label ỹ. The objective function for the K-medoids
clustering using the Manhattan distance is given by:

min
C∈R⌊d p⌋×k

1
N

N

∑
i=1

min
ỹi∈{0,1}k

∥sq(xi ◦m)−Cỹi∥1 , (11)

such that ỹT
i 1k = 1,

where C is the centroid matrix which is the medoids
matrix, k is the number of medoids, and xi represents
the i-th sample in the dataset. ∥ · ∥1 represents the
Manhattan distance to measure the distance between
the transformed data points and the cluster medoids.
The medoids are selected from the dataset X, and each
data point xi is assigned to the nearest medoid based
on the Manhattan distance.

After the completion of diverse tasks generation,
the learning process is undertaken by ProtoNet, which
aims to develop a model capable of generalizing
based on diverse inputs from various tasks.

5 PROTOTYPICAL NETWORKS

ProtoNet is a neural network that employs meta-
learning to learn variety of tasks. Specifically, after
the MG module generates the diverse tasks by Equa-
tion (10), data samples are taken from a collection of
those tasks. For each task, the support (S) set and the

query (Q) set are then selected. As shown in Figure
6, i.e., a high-level framework of few-shot learning
concept using ProtoNet, the model is trained on the
support set and evaluated on the query set, with the
meta-learner being updated based on the query set’s
performance. Following this, the meta-learner is uti-
lized for adaptation and prediction on a new test set
using a fresh batch of labeled data, with a small por-
tion serving as the support test set.

Several advantages have been identified by Nam
et al. (2023) regarding the use of ProtoNet as an em-
bedding function or learner in few-shot settings, in-
cluding flexible centroids, agnostic application, and
optimal performance. Flexible centroids refer to the
adaptability of ProtoNet to various cases by adjust-
ing the number of k or centroids. Agnostic appli-
cation allows for the direct application of this archi-
tecture to tabular data without significant difficulty.
Additionally, ProtoNet has demonstrated strong per-
formance in various modalities, as reported in some
studies (Nam et al., 2023; Yu et al., 2022; Snell et al.,
2017). This study also highlights the flexibility of
ProtoNet as a benefit. The original ProtoNet employs
the Euclidean distance for metric learning, but the re-
search work conducted by Yu et al. (2022) on image
classification suggests that the Manhattan distance is
a strong substitute for this metric, potentially improv-
ing performance. It would therefore be intriguing to
apply this substitution to tabular data, as the Manhat-
tan distance has advantages over the Euclidean one,
especially in high-dimensional data. The differences
between the Euclidean and the Manhattan distance are
visually shown in Figure 7. The Euclidean distance
(i.e., the red line) measures the shortest straight-line
distance between the two points that is calculated by
using the Pythagorean theorem. The Manhattan dis-
tance (i.e., the blue path) measures the distance be-
tween the two points by summing the absolute differ-
ences of their coordinates.

In this work, the architecture of ProtoNet follows

Figure 6: Few-shot learning concept using ProtoNet
adapted from Snell et al. (2017).

FSL-LFMG: Few-Shot Learning with Augmented Latent Features and Multitasking Generation for Enhancing Multiclass Classification on
Tabular Data

537

Figure 7: Comparison between Euclidean distance and
Manhattan distance.

a multilayer perceptron (MLP) design that consists of
a 2-layer fully connected neural network with a hid-
den dimension of 1,024, as recommended by Nam
et al. (2023). Given a task selected by Equation (10),
we construct the classifier using the episodic training
way. Training episodes are created by selecting ran-
dom subsets of classes and examples, with some ex-
amples acting as (S) and (Q) from each task. The
Prototypical networks create a prototype or an aver-
age representation for each class using an embedding
function Fθ with a learnable parameter θ. Each pro-
totype is the mean of the embedded points in its class
calculated as follows:

ck =
1
|Sk| ∑

(x̃i,ỹi)∈Sk

Fθ(x̃i), (12)

where Sk is the support set associated with the proto-
type k. Using a distance function d, which is the Man-
hattan distance, the network calculates the probability
of a class for a query point x̃i by taking a softmax over
distances to the prototypes:

pθ(y = k | x̃i;S) =
exp(−d(Fθ(x̃i),ck))

∑k′ exp(−d(Fθ(x̃i),ck′))
, (13)

where the Manhattan distance is

d(Fθ(x̃i),ck) =

NSk

∑
i=1
∥Fθ(x̃i)− ck)∥1 . (14)

Next, we compute the cross-entropy loss on the clas-
sifier pθ as follows:

LCE(pθ, ỹi) =−∑
j=1

(ỹi) j log pθ. (15)

The ultimate objective is to minimize the meta-
learning loss over diverse tasks generated by Equation
(10) as follows:

Lmeta(θ,Q) := ∑
(xi,yi)∈Q

LCE(pθ, ỹi). (16)

After we finish the model training, we use the
model obtained to adapt with the few-shot sample
(xi,yi), where yi is the existing label from 100 dif-
ferent seed. Finally, using an independent test set,
we compute the mean test accuracy of this few-shot
learning process.

6 EXPERIMENTAL RESULTS,
ANALYSES, AND DISCUSSION

In our experimental studies, we utilize four different
domain datasets. Three of them are publicly available
from the UCI Machine Learning Repository, includ-
ing Wine (Aeberhard and Forina, 1991), Dry Bean
(UCI, 2020), and Forest Cover Type (Blackard, 1998).
One of them is a proprietary dataset provided by a
telecommunications corporation, specifically related
to the NPS segmentation. The Wine dataset contains
178 instances and 13 attributes that are used for the
classification of wine variants. The Dry Bean dataset
includes 13,611 instances and 16 attributes that are
aimed at classifying different types of beans. The
Forest Cover Type dataset is composed of 581,012
instances and 54 attributes that are used for predict-
ing forest cover types based on cartographic variables.
The proprietary NPS segmentation dataset consists of
customer demographic profile and feedback data, seg-
mented into promoters, passives, and detractors based
on their likelihood to recommend the company’s ser-
vices. Table 1 provides the detailed descriptions of
these four datasets, including the number of instances
and attributes, as well as the primary classification ob-
jective for each dataset.

During our experimental evaluations, we examine
various TE models as the benchmark, including Ran-
dom Forest, CatBoost, and One-vs-Rest (OvR) Clas-
sifier. We also combine these three baseline models
with augmentation techniques utilizing autoencoders
to enhance the feature representation and improve
classification performance. Random Forest, known
for its robustness and ease of implementation, pro-
vides a strong baseline through its ensemble of deci-
sion trees. CatBoost, a gradient boosting algorithm,
is particularly effective in handling categorical fea-
tures and improving accuracy. The OvR Classifier,
a strategy for multiclass classification, breaks down
the problem into multiple binary classification tasks.
In addition to these models, we employ the stan-
dard STUNT framework as a comparison benchmark
for our proposed method. The STUNT framework,

NCTA 2024 - 16th International Conference on Neural Computation Theory and Applications

538

Table 1: Summary of Datasets.

No Name # N # features Description Source
1 Net Promoter

Score (NPS)
segmentation

100,000 11 Predict a customer segmentation into three
groups: promoters, passives, detractors,
based on demographics and customer expe-
riences.

Private

2 Drybean types 13,611 16 Predict seven various sorts of dry beans
according to market conditions, including
form, shape, type, and structure.

Public

3 Wine types 178 13 Predict three different types of wines using
the findings of a chemical analysis of wines
grown in the same region of Italy.

Public

4 Forest cover types 581,012 54 Predict seven forest cover classes based on
variables such as elevation, aspect, slope,
hill shade, soil type, and others.

Public

Table 2: Baselines Details.

No Methods Description
1 Random Forests (RF) An ensemble of tree predictors, where each tree’s predictions are

based on the values of a random vector that is separately sampled
and has the same distribution for all trees in the forest.

2 CatBoost (CB) A gradient boosting method that utilizes binary decision trees as
its base predictors.

3 Autoencoders (AE) + Classi-
fier

Using only encoded features to be trained into classifier (RF or
CB)

4 Concatenation Autoencoders
(ConcatAE) + Classifier

Using original and encoded features (concatenation) to be trained
into classifier (RF or CB)

5 One-vs-the-rest (OvR) multi-
class strategy

The one-vs-the-rest (OvR) multiclass strategy, often referred to as
one-vs-all, involves training a separate classifier for each class.

6 Self-generated Tasks from
unlabeled Tables (STUNT)

A few-shot tabular learning system that utilizes meta-learning to
train on self-generated problems derived from unlabeled tables.

known for its comprehensive approach to generate
multiple tasks on tabular data setting, served as a rig-
orous benchmark to evaluate the efficacy of our pro-
posed enhancements. Table 2 shows a more detailed
and extensive explanation of these baseline methods.

In the 1-shot learning, we observe varying levels
of performance among the baseline models in terms
of mean test accuracy. The results in Table 3 illus-
trate several noteworthy trends in the performance of
different classification methods across the datasets ex-
amined. First, RF classifier generally outperforms CB
classifier in all cases by 0.74% in average. Second,
OvR strategy specifically on CB, consistently out-
performs the baseline models (RF and CB) on most
datasets by 0.99% in average. Additionally, Con-
catAE approach surpasses both the OvR strategy by
2.7% in average and the base models by 2.8% in
average. These findings suggest that employing ad-
vanced techniques such as OvR and ConcatAE can
significantly enhance classification accuracy in 1-shot
learning scenarios. Compared to standard STUNT,

our method, which employs ConcatAE in conjunc-
tion with K-medoids clustering and Manhattan Pro-
toNet, achieved the highest mean test accuracy across
all datasets and tasks by 4.03% in average, showcas-
ing the superiority of this approach in 1-shot learning
classification.

In the 5-shot learning, the performance patterns
observed in Table 4 are similar to those seen in 1-
shot settings for various datasets in base models and
when combined with augmentation techniques. For
instances, RF classifier generally still outperforms CB
classifier in all cases by 2.04% in average. Then,
OvR strategy specifically on CB, consistently out-
performs the baseline models (RF and CB) on most
datasets by 2.13% in average. In addition, ConcatAE
approach surpasses both the OvR strategy by 0.99%
and the base models by 1.09%. These findings sug-
gest that employing advanced techniques such as OvR
and ConcatAE can significantly enhance classifica-
tion accuracy in 5-shot learning scenarios. Compared
to standard STUNT, our method, which employs Con-

FSL-LFMG: Few-Shot Learning with Augmented Latent Features and Multitasking Generation for Enhancing Multiclass Classification on
Tabular Data

539

Table 3: Mean test accuracy on 1-shot setting.

Methods NPS Dry Bean Wine Cover Type Average
RF 32.74 68.41 81.39 24.19 51.68
CB 34.01 64.48 84.17 22.54 51.30
AE + RF 34.41 63.14 85.56 22.41 51.38
AE + CB 33.99 61.77 86.53 22.57 51.22
ConcatAE + RF 32.54 68.47 87.64 23.76 53.10
ConcatAE + CB 33.14 66.15 87.92 23.81 52.76
OvR RF 32.31 69.24 81.25 22.46 51.32
OvR CB 33.42 69.54 81.81 22.47 51.81
AE + OvR RF 33.99 60.49 86.94 21.38 50.70
AE + OvR CB 32.91 63.03 86.81 22.02 51.19
ConcatAE + OvR RF 31.77 68.28 87.36 22.39 52.45
ConcatAE + OvR CB 32.40 70.63 87.36 23.43 53.46
STUNT (k-Means + Euclidean ProtoNet) 35.69 67.44 85.75 24.66 53.39
ConcatAE + STUNT 34.47 70.43 87.64 23.76 54.07
ConcatAE + k-Medoid + Manhattan ProtoNet 36.06 71.17 88.86 26.07 55.54

Table 4: Mean test accuracy on 5-shot setting.

Methods NPS Dry Bean Wine Cover Type Average
RF 39.56 84.37 92.50 35.73 63.04
CB 38.51 82.68 88.47 37.44 61.78
AE + RF 39.47 80.62 89.58 31.49 60.29
AE + CB 39.96 79.84 90.97 31.78 60.64
ConcatAE + RF 40.52 84.68 92.92 34.91 63.26
ConcatAE + CB 40.06 83.71 89.86 38.07 62.93
OvR RF 39.55 84.54 92.92 33.54 62.64
OvR CB 39.88 85.25 91.81 35.44 63.10
AE + OvR RF 38.69 79.85 90.28 30.52 59.84
AE + OvR CB 39.47 81.69 92.64 31.69 61.37
ConcatAE + OvR RF 40.18 84.66 94.03 33.43 63.08
ConcatAE + OvR CB 40.53 85.53 93.15 35.82 63.91
STUNT (k-Means + Euclidean ProtoNet) 40.76 83.48 94.03 34.72 63.25
ConcatAE + STUNT 40.93 84.15 95.00 31.76 62.96
ConcatAE + k-Medoid + Manhattan ProtoNet 41.25 85.62 95.28 34.58 64.18

catAE in conjunction with K-medoids clustering and
Manhattan ProtoNet, achieved the highest mean test
accuracy in 3 out of 4 datasets — NPS, Dry Bean,
and Wine — by 1.47%, showcasing the optimal per-
formance of this approach in 5-shot learning classifi-
cation.

We also observe some significant result on com-
parison between scenarios with augmentation —
ConcatAE + k-Medoid + Manhattan ProtoNet (our
approach)— and no augmentation — RF, CB, OvR
RF, and OvR CB. Figure 8 clearly shows that the
method with augmentation gives improvement both
on 1-shot and 5-shot settings. Specifically, our ap-
proach outperforms the traditional ensemble (TE)
models and the OvR classifiers by 7.8% in the 1-shot
setting and 2.5% in the 5-shot setting. This enhance-
ment underscores the effectiveness of our approach in
multiclass classification, demonstrating optimal gen-

eralization capabilities compared to models without
augmentation.

7 CONCLUSIONS AND FUTURE
WORK

In this paper, we propose advancing ProtoNet that em-
ploys augmented LF by an autoencoder and MG by
STUNT in the few-shot learning mechanism. Specif-
ically, the achieved contributions to this work are
threefold. First, we propose an FSL-LFMG frame-
work to develop an end-to-end few-shot multiclass
classification workflow on tabular data. This frame-
work is composed of three main stages that include
(i) data augmentation at the sample level utilizing au-
toencoders to generate augmented LF, (ii) data aug-

NCTA 2024 - 16th International Conference on Neural Computation Theory and Applications

540

Figure 8: The effect of data augmentation techniques compared to base models.

mentation at the task level involving self-generating
multitasks using the STUNT approach, and (iii) the
learning process taking place on ProtoNet, followed
by various model evaluations in our FSL mechanism.
Second, due to the outlier and noise sensitivity of K-
means clustering and the curse of dimensionality of
Euclidean distance, we enhance and customize the
STUNT approach by using K-medoids clustering that
is less sensitive to noisy outliers and Manhattan dis-
tance that is preferable for high-dimensional data. Fi-
nally, we conduct an extensive experimental study on
four diverse domain datasets— NPS segmentation,
Dry Bean type, Wine type, and Forest Cover type—to
prove that our FSL-LFMG approach on the multiclass
classification outperforms the TE models and the OvR
classifiers by 7.8% in 1-shot and 2.5% in 5-shot learn-
ing. Moving forward, we plan to investigate more
data augmentation techniques for tabular data includ-
ing variational autoencoder and generative adversarial
network. We also aim to explore more state-of-the-art
few-shot learning techniques, such as meta-learning
algorithms and advanced metric learning approaches,
which have shown the promising results on tabular
data in other real-world domains and areas.

REFERENCES

Abdulsalam, S. O., Arowolo, M. O., Saheed, Y. K., and
Afolayan, J. O. (2022). Customer churn prediction in
telecommunication industry using classification and
regression trees and artificial neural network algo-

rithms. Indonesian Journal of Electrical Engineering
and Informatics (IJEEI), 10(2):431–440.

Adebiyi, M. O., Ogundokun, R. O., Abokhai, A. A., et al.
(2020). Machine learning–based predictive farmland
optimization and crop monitoring system. Scientifica,
2020.

Aeberhard, S. and Forina, M. (1991). Wine.
UCI Machine Learning Repository. DOI:
https://doi.org/10.24432/C5PC7J.

Arik, S. O. and Pfister, T. (2021). TabNet: Attentive Inter-
pretable Tabular Learning. Proceedings of the AAAI
Conference on Artificial Intelligence, 35(8):6679–
6687.

Arora, P., Varshney, S., et al. (2016). Analysis of k-means
and k-medoids algorithm for big data. Procedia Com-
puter Science, 78:507–512.

Attri, I., Awasthi, L. K., and Sharma, T. P. (2024). Ma-
chine learning in agriculture: a review of crop man-
agement applications. Multimedia Tools and Applica-
tions, 83(5):12875–12915.

Biau, G. and Scornet, E. (2016). A random forest guided
tour. Test, 25:197–227.

Blackard, J. (1998). Covertype. UCI Machine Learning
Repository. DOI: https://doi.org/10.24432/C50K5N.

Blier-Wong, C., Cossette, H., Lamontagne, L., and
Marceau, E. (2020). Machine learning in p&c in-
surance: A review for pricing and reserving. Risks,
9(1):4.

Borisov, V., Leemann, T., Seßler, K., Haug, J., Pawelczyk,
M., and Kasneci, G. (2022). Deep neural networks and
tabular data: A survey. IEEE Transactions on Neural
Networks and Learning Systems.

Hollmann, N., Müller, S., Eggensperger, K., and Hutter, F.
(2022). Tabpfn: A transformer that solves small tabu-

FSL-LFMG: Few-Shot Learning with Augmented Latent Features and Multitasking Generation for Enhancing Multiclass Classification on
Tabular Data

541

lar classification problems in a second. arXiv preprint
arXiv:2207.01848.

Katzir, L., Elidan, G., and El-Yaniv, R. (2020). Net-dnf: Ef-
fective deep modeling of tabular data. In International
conference on learning representations.

Khan, M. S., Nath, T. D., Hossain, M. M., Mukherjee, A.,
Hasnath, H. B., Meem, T. M., and Khan, U. (2023).
Comparison of multiclass classification techniques us-
ing dry bean dataset. International Journal of Cogni-
tive Computing in Engineering, 4:6–20.

Li, W., Wang, Z., Yang, X., Dong, C., Tian, P., Qin, T., Huo,
J., Shi, Y., Wang, L., Gao, Y., et al. (2023). Libfew-
shot: A comprehensive library for few-shot learning.
IEEE Transactions on Pattern Analysis and Machine
Intelligence.

Loukili, M., Messaoudi, F., and El Ghazi, M. (2022). Su-
pervised learning algorithms for predicting customer
churn with hyperparameter optimization. Interna-
tional Journal of Advances in Soft Computing & Its
Applications, 14(3).

Matloob, I., Khan, S. A., Hussain, F., Butt, W. H., Rukaiya,
R., and Khalique, F. (2021). Need-based and opti-
mized health insurance package using clustering algo-
rithm. Applied Sciences, 11(18):8478.

Nam, J., Tack, J., Lee, K., Lee, H., and Shin, J.
(2023). Stunt: Few-shot tabular learning with self-
generated tasks from unlabeled tables. arXiv preprint
arXiv:2303.00918.

Parnami, A. and Lee, M. (2022). Learning from few exam-
ples: A summary of approaches to few-shot learning.
arXiv preprint arXiv:2203.04291.

Popov, S., Morozov, S., and Babenko, A. (2019). Neural
oblivious decision ensembles for deep learning on tab-
ular data. arXiv preprint arXiv:1909.06312.

Şahin, C. (2023). Predicting base station return on invest-
ment in the telecommunications industry: Machine-
learning approaches. Intelligent Systems in Account-
ing, Finance and Management, 30(1):29–40.

Shwartz-Ziv, R. and Armon, A. (2022). Tabular data: Deep
learning is not all you need. Information Fusion,
81:84–90.

Sikri, A., Jameel, R., Idrees, S. M., and Kaur, H. (2024). En-
hancing customer retention in telecom industry with
machine learning driven churn prediction. Scientific
Reports, 14(1):13097.

sklearn (2024). sklearn Documentation. https:
//scikit-learn.org/0.15/modules/generated/sklearn.
multiclass.OneVsRestClassifier.html. Accessed:
April 4, 2024.

Snell, J., Swersky, K., and Zemel, R. (2017). Prototypical
networks for few-shot learning. Advances in neural
information processing systems, 30.

Sun, B., Yang, L., Zhang, W., Lin, M., Dong, P., Young,
C., and Dong, J. (2019). Supertml: Two-dimensional
word embedding for the precognition on structured
tabular data. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition
workshops, pages 0–0.

Tian, Y., Wang, Y., Krishnan, D., Tenenbaum, J. B., and
Isola, P. (2020). Rethinking few-shot image classi-

fication: a good embedding is all you need? In
Computer Vision–ECCV 2020: 16th European Con-
ference, Glasgow, UK, August 23–28, 2020, Proceed-
ings, Part XIV 16, pages 266–282. Springer.

Tunguz, B., Dieter, or Tails, H., Kapoor, K., Pandey, P.,
Mooney, P., Culliton, P., Mulla, R., Bhutani, S., and
Cukierski, W. (2023). 2023 kaggle ai report.

UCI (2020). Dry Bean. UCI Machine Learning Repository.
DOI: https://doi.org/10.24432/C50S4B.

Wang, R., Pontil, M., and Ciliberto, C. (2021). The role of
global labels in few-shot classification and how to in-
fer them. Advances in Neural Information Processing
Systems, 34:27160–27170.

Wang, Y., Yao, Q., Kwok, J. T., and Ni, L. M. (2020). Gen-
eralizing from a few examples: A survey on few-shot
learning. ACM computing surveys (csur), 53(3):1–34.

Ye, A. and Wang, Z. (2023). Modern deep learning for
tabular data: novel approaches to common modeling
problems. Springer.

Yu, Z., Wang, K., Xie, S., Zhong, Y., and Lv, Z. (2022). Pro-
totypical network based on manhattan distance. Cmes-
Comput. Model. Eng. Sci, 131:655–675.

Zhang, R. and Liu, Q. (2023). Learning with few sam-
ples in deep learning for image classification, a mini-
review. Frontiers in Computational Neuroscience,
16:1075294.

NCTA 2024 - 16th International Conference on Neural Computation Theory and Applications

542

