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Abstract: A runner’s foot strike angle (FSA) can be relied on to assess performance, comfort, and injury risk. However, 
the collection of FSA datasets is time-consuming and costly, which may result in small datasets in practice. 
Therefore, the creation of synthetic FSA datasets is of great interest to researchers to improve the performance 
of machine learning models while maintaining the same effort in data collection. We evaluate data 
augmentation (jittering, pattern mixing, SMOTE) and synthetic data generation (Generative Adversarial 
Networks, Variational Autoencoders) methods with four subsequent machine learning models to estimate the 
FSA on a dataset involving 30 runners across a range of FSAs. The results show promising results for the 
SVM and MLP, as well as for the jittering and pattern mixing augmentation methods. Our findings underscore 
the potential of data augmentation to improve FSA estimation accuracy.

1 INTRODUCTION 

Running is a widespread activity around the world, 
largely due to its limited equipment and facility 
requirements. It also has a positive impact on physical 
and mental health (Mikkelsen et al., 2017; Oswald et 
al., 2020). However, due to the physical forces acting 
on the joints, it is important to use proper footwear 
and running techniques to improve comfort and 
reduce the risk of injury and long-term joint health 
issues (Nigg et al., 2015). Therefore, the foot strike 
pattern (FSP) is a significant consideration, 
particularly in choosing suitable footwear (Zrenner et 
al., 2018). 

Previous works have employed machine learning 
techniques for the estimation of foot strike angle 
(FSA) and FSP classification from pressure sensors 
(Moore et al., 2020). FSA is the angular degree of the 
foot at the moment of ground contact, and it is of 
importance because it affects numerous performance-
related outcomes, such as vertical compliance, ankle 
and knee stiffness, vertical impact force, and 
instantaneous loading rates (Lieberman et al., 2010; 
Hamill et al., 2014; Cheung and Davis, 2011). Moore 
et al. (2020) compared the accuracy and precision of 
continuous FSA prediction and FSP classification 
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using multiple regression, conditional inference tree, 
and Random Forest (RF) (Breiman, 2001), employing 
data derived from Loadsol™ pressure insoles. The 
results have led to significant insights; however, the 
quest for enhanced accuracy in FSA estimation 
necessitates further investigation. 

This study extends the work of Moore et al. (2020) 
who demonstrated the feasibility of two-sensor 
pressure insoles for detecting foot strike patterns and 
achieving over 90% FSP classification accuracy 
using multiple regression, conditional inference tree, 
and Random Forest. Moreover, the same methods 
were applied on the regression task of FSA 
estimation. However, the study is limited by the 
amount of mid-foot steps, types of evaluated machine 
learning models, and an ungrouped cross-validation 
scheme. Moore et al. (2020) proposed in their 
discussion that over- or under-sampling techniques 
and more complex machine learning algorithms may 
lead to an increased performance. Thus, we decided 
to employ state-of-the-art machine learning methods 
and applying data augmentation and synthetic data 
generation techniques to investigate the potential for 
enhanced FSA model accuracy when synthetic data is 
used.  These techniques offer promise for enhancing 
the performance of machine learning models in FSA 
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estimation, thereby facilitating an even more nuanced 
understanding of running biomechanics and 
providing a tool for running shoe development and 
recommendation processes. 

Data augmentation involves artificially expanding 
the dataset by applying transformations such as 
jittering (JIT), pattern mixing (PM), and Synthetic 
Minority Oversampling Technique (SMOTE) to the 
existing data points, thus enhancing the robustness of 
the model without the need for additional data 
collection. Synthetic data generation, on the other 
hand, utilizes methods like Generative Adversarial 
Networks (GANs) and Variational Autoencoders 
(VAEs) to create entirely new, yet realistic, instances 
based on the patterns learned from the existing data 
(Shorten and Khoshgoftaar, 2019; Iwana and Uchida, 
2021; Jorge et al., 2018). Such techniques have shown 
potential in various fields, notably in scenarios with 
limited datasets, by enhancing model generalizability 
and preventing overfitting. In sports science, the 
application of data augmentation has been identified 
as a necessity to bridge the lab-to-field gap, however, 
only few approaches exist yet (Mundt, 2023).  

Our research aims to utilize these innovative 
methods to augment the existing dataset, thereby 
enriching the input for subsequent machine learning 
models and further improving the estimation of FSA. 
The objective of this paper is to investigate to what 
extent data augmentation methods can compensate 
for the impact of a reduced number of participants. A 
secondary objective is to employ multiple 
downstream models in order to enhance the quality of 
the FSA estimations and to establish a more robust 
evaluation metric for the augmentation methods. We 
aspire to elevate the precision and reliability of FSA 
estimation. Ultimately, our goal is to provide a 
method that could support the processes of running 
shoe development and athlete training to improve 
performance and reduce the risk of injury. 

2 MATERIALS AND METHODS 

Our study included 30 injury-free male recreational 
runners (Mean ± SD; 1.79 ± 0.07 m; 80.1 ± 9.6 kg; 
34.0 ± 6.9 yr). Participants were instructed to perform 
six foot strike conditions (extreme fore-foot, fore-
foot, mid-foot, rear-foot, extreme rear-foot, and 
natural) at a comfortable speed in a randomized 
counterbalanced order. The vertical force of the 
insoles of each participant were captured using the 
LoadsolTM wearable sensors (LoadsolTM; Novel 
GmbH; Munich, Germany) (Seiberl et al., 2018). In 
total, data were recorded for 3,489 steps. 

2.1 Data Collection and Preprocessing 

The LoadsolTM wearable sensors were utilized to 
measure insole forces during running at a sampling 
rate of 100 Hz. The captured time-series data were 
split into separate steps for analysis. The same insole 
outcome variables were used in the current study as 
in Moore et al. (2020); ten features were extracted for 
each step including four impulse ratios, two peak 
force ratios, and four ratios from the rate of force 
development. 

In conjunction with kinetic data, a three-
dimensional (3D) motion capture system (Qualysis 
system, 13-camera setup; 2019.3, Göteborg, Sweden) 
was used to optically measure the ground truth FSA, 
i.e., the angle of the foot at the initial contact on the 
ground. Six anatomical markers were applied to the 
left foot segment for kinematic data capture. For more 
information on the data collection and features, refer 
to Moore et al. (2020). 

2.2 Downstream Models and 
Validation 

Our study extended the original modeling approach 
by applying multiple machine learning models to 
estimate the FSA at ground contact. These models 
included RF (Breiman, 2001), Support Vector 
Machine (SVM) (Boser et al., 2001), XGBoost 
(XGB) (Chen and Guestrin, 2016), and a Multi-Layer 
Perceptron (MLP) (Hornik et al., 1989). A grouped 
cross-validation approach with k=10 folds was used 
(i.e., instances of the same participants were grouped 
into the same fold). For SVM and MLP, the features 
and target FSA were normalized. 

Each model's hyperparameters were optimized 
through 200 iterations on the original data using a 
Tree-structured Parzen Estimator (TPE) (Bergstra et 
al., 2022). The estimation result from our RF was 
consistent with the approach from Moore et al. (2020) 
using basic cross-validation. 

2.3 Data Augmentation and Synthetic 
Data Generation 

We used data augmentation techniques to extend our 
dataset. For features measured within defined 
intervals (e.g., ratio values on the interval [0,1]), a 
Fisher’s z-transformation was applied to prevent 
generating values outside the plausible range.  

Data augmentation methods employed include: 
• JIT (Iwana and Uchida, 2021): Gaussian 

noise was added, where noise intensity was 
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proportional to each feature’s standard 
deviation. 

• PM (Iwana and Uchida, 2021): New 
instances were generated as a linear 
combination of two instances. Here, an alpha 
(α) was sampled from a normal distribution, 
and new instances were generated by α*X1 
+ (1-α)*X2. 

• SMOTE (Chawla et al., 2002): A method 
used to balance class distribution in an 
unbalanced dataset by creating “synthetic” 
examples in the feature space, effectively 
combining aspects of jittering and pattern 
mixing techniques. 

• VAE (Kingma and Welling, 2019): An 
encoder-decoder network that applies the 
“reparameterization trick” to sample the 
latent variable from a normal distribution 
with encoded parameters. 

• GAN (Goodfellow et al., 2020): two 
separate networks are employed; One 
generates instances as realistic as possible, 
while the other distinguishes whether an 
instance is original or not. This results in a 
generative network able to create realistic 
instances. 

For each combination of the five data 
augmentation and four downstream model, an 
optimization of their hyperparameters with 200 
iterations was conducted. Each optimization included 
synthetic data for the training of the downstream 
model which was limited to five times the number of 
original samples.  

Each combination of augmentation method and 
downstream model was trained on any number of 
participants. For this purpose, in the experiment, a 
varying number of participants was randomly 
sampled from the training fold of the cross-validation. 
Data augmentation was then applied to this subset 
before training the downstream model. The number 
ranged from only one randomly sampled participant 
to all available in the training fold which was at least 
24 using a 10-fold cross-validation. 

The Root Mean Square Error (RMSE) values of 
the estimations are aggregated and compared for a 
high number of participants (n = 20-24; Table 1) and 
for a reduced size (n = 6-10; Table 2) to investigate 
the effects of data augmentation for a significantly 
smaller dataset. All validations were performed solely 
on the original data of disjunct participants. No test-
time augmentation, as described in Shorten and 
Khoshgoftaar (2019), was applied. 

3 RESULTS 

Figure 1 illustrates the influence of the number of 
participants on the RMSE for each augmentation 
method. The results are averaged across the four 
downstream models. For each augmentation model, 
the error decreases and converges at about 15 
participants in the training fold.  

 
Figure 1: Comparison of augmentation methods, averaged 
across all downstream models. A higher number of 
participants used for augmentation and training decreases 
the RMSE. 

JIT (orange) and PM (green) yield the lowest 
RMSE across all numbers of participants. VAE 
(violet) shows promising behavior for a higher 
number of participants.  

Table 1 aggregates the obtained results from the 
grouped cross-validation experiment with higher 
participant numbers. The results represent the average 
RMSE within the range of 20 to 24 participants 
prevalent in each training fold to get a more robust 
measure for comparison. We tested four machine 
learning models (MLP, RF, SVM, XGB) using 
different data augmentation techniques and a control 
case without any augmentations ('None'). The 'Mean' 
column represents the average RMSE across the four 
downstream models for each augmentation 
technique. Bold numbers indicate the augmentation 
method with the lowest RMSE for each downstream 
model. 

Table 1: Mean RMSE for 20-24 participants with 10 folds. 

Method MLP RF SVM XGB Mean a 

None 4.751 4.984 4.449 4.892 4.769
JIT 4.524 4.785 4.739 4.771 4.705 
PM 4.812 4.932 4.556 4.685 4.746
SMOTE 4.781 5.230 4.873 4.991 4.969
VAE 4.529 4.987 4.758 4.778 4.763
GAN 4.921 4.996 4.891 5.018 4.957

a Mean of all downstream models in the same row.  
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The SVM model achieved the best results without 
any data augmentation (RMSE = 4.449). Following 
data augmentation, we observed the lowest RMSE 
with the MLP downstream model and the JIT and 
VAE, with an RMSE of 4.524 and 4.529, 
respectively. The SVM was the only downstream 
model that did not perform better after data 
augmentation. 

The results summarized in Table 2 are obtained 
from our cross-validation experiment involving the 
average RMSE values across six to ten participants in 
each training fold to depict the effect of data 
augmentation on a low number of participants.  

The SVM achieved the best results using PM 
augmentation with an average RMSE of 4.684 for the 
reduced training subsample (n = 6-10). Following 
data augmentation, PM resulted in the lowest mean 
RMSE across all downstream models (4.864), 
improving the score by 2.8% compared to no 
augmentation method.  

Table 2: Mean RMSE for 6-10 participants with 10 folds.  

Method MLP RF SVM XGB Mean a 

None 4.884 5.099 4.924 5.081 4.997
JIT 4.877 4.937 4.819 4.929 4.891
PM 4.800 5.115 4.684 4.830 4.857 
SMOTE 5.202 5.352 5.135 5.086 5.194
VAE 4.875 5.092 4.882 4.961 4.953
GAN 5.137 5.108 5.060 5.072 5.090

a Mean of all downstream models in the same row.  

The more complex methods SMOTE and GAN 
failed to improve the average RMSE. VAE yielded 
only minor but consistent improvements. Despite the 
simplicity of JIT and PM, these results suggest that 
they performed best in improving the estimation 
accuracy of the FSA across all models tested in this 
study, especially for a lower number of participants. 

4 DISCUSSION 

Our study aims to enhance the accuracy of estimating 
FSA by using a suite of multiple machine learning 
models and data augmentation techniques. The best-
performing approach of Moore et al. (2020), i.e., RF 
without augmentation, was replicated for the same 
ungrouped cross-validation scheme. This baseline 
was then enhanced by both employing preceding data 
augmentation and by selecting other machine 
learning methods. 

Across varying numbers of participants, both JIT 
and PM augmentation methods consistently led to the 
lowest RMSE, indicating the highest accuracy in FSA 

estimation. On the other hand, SMOTE appears to be 
less effective for this particular task, presumably as it 
was originally designed to tackle imbalanced 
classification problems. 

VAE yielded only minor but consistent 
improvements, offering improvements comparable to 
those of JIT for MLP and XGB downstream models, 
as illustrated in Table 1. VAE might profit from an 
increased number of training instances to learn the 
inherent data distribution. A combination of VAE 
with a preceding JIT or PM might further improve the 
results by providing VAE with more data (Shorten 
and Khoshgoftaar, 2019). GAN was not successful in 
improving the RMSE of the FSA estimation. Similar 
to VAE (but more pronounced), GAN might require 
more data for training (Iwana and Uchida, 2021). The 
ineffectiveness of GAN could be due to too little data. 
Furthermore, GANs are designed to produce data that 
appear realistic such as images, and not to improve 
the quality of a subsequent downstream model 
applied on mixed data. Nevertheless, further 
investigations would be necessary to fully clarify the 
cause. 

The improvements by employing data 
augmentation are small but consistent, therefore 
improving results without additional expensive data 
acquisition. Future work could explore augmenting 
time-series data for enhanced performance in 
synthetic data generation. Incorporating 
biomechanical constraints and more domain 
knowledge into augmentation methods has the 
potential to further improve the quality of the 
estimations. Additionally, the implementation of test-
time augmentation methods (Shorten and 
Khoshgoftaar, 2019) could contribute to enhancing 
estimation accuracy, which is a research avenue that 
warrants further exploration. 

Interestingly, SVM performed best without any 
data augmentation. This is possibly due to the fact 
that SVM minimizes in addition to the main 
objective, i.e., the MSE, also a regularization term. 
This regularization term penalizes the function 
implemented by an SVM to be as flat as possible to 
avoid overfitting for unseen instances. We, therefore, 
hypothesize that this regularization term helps the 
SVM to better represent the inherent data distribution 
than preceding augmentation methods.  

We chose SVM for FSA estimation due to its 
strong performance on small to medium-sized 
datasets. Moreover, SVM can handle sparse high-
dimensional feature spaces and is effective in dealing 
with non-linearly separable data using kernel features 
(Guido et al. 2024; Cyran et al. 2013). Furthermore, 
SVM has already been extensively validated in 
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biomechanical applications (see e.g. Begg et al. 2005; 
Halilaj et al. 2018), making it a reliable choice where 
sensor data often have complex relationships. 

Mixed data augmentation strategies, unexplored in 
our comparisons, may yield improvements, particu-
larly for complex methods like VAEs and GANs, that 
require larger datasets. An initial experiment has 
shown that the RMSE of GAN with SVM could be 
improved from 5.06 to 4.78 (for 6-10 participants) by 
applying JIT and PM prior to the training of the GAN, 
yielding better results than JIT alone.  

One limitation of the experiments might be the 
setup for the hyperparameter optimization. The 
decision to use 200 iterations may be too restrictive, 
particularly given the complexity of models with up 
to 20 hyperparameters, such as GAN-XGB. 
Conversely, models with fewer hyperparameters, like 
the SVM downstream model, as well as the JIT, PM, 
and SMOTE data augmentation methods, might have 
been favored. A more comprehensive optimization 
could potentially enhance the performance of the 
other methods, in particular VAE and GAN. 

The work established a preliminary step into 
synthetic data generation in the context of FSA 
estimation from mobile sensorics, focusing primarily 
on the comparison of methods. Future research 
should build upon these findings to explore new 
dimensions in augmentation and synthetic data 
generation, aiming to maximize the accuracy and 
utility of FSA prediction in real-world running 
scenarios. Ultimately, our goal is to provide a data 
generation method that supports the development of 
running shoes and athlete training for improved 
performance and injury prevention. 

5 CONCLUSION 

In conclusion, our work represents a step forward in 
the quest to incorporate data augmentation and 
synthetic data generation into the domain of wearable 
sensor development. We evaluated different 
combinations of methods for varying numbers of 
participants to estimate the FSA, with SVM 
improving the RMSE by more than 10 % compared 
to RF. The success of the simple JIT and PM method 
underscores the value of revisiting and adapting 
methods for more specific biomechanical constraints. 
Data augmentation methods adapted for specialized 
problems may have the potential to generate realistic 
synthetic data and therefore facilitate the 
development of more cost-effective algorithms for 
wearable sensors, thus enabling researchers to move 

to field-based data collections with less intensive lab-
based back-end development. 
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