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Abstract: Achieving proper post-amputation mobility in an individual is extremely important to ensure the health of the 
residual limb and the quality of life of an individual. Traditionally, prosthetic limbs were designed to primarily 
support the weight of the individual and replicate the look and feel of the natural limb. Powered prosthetic 
devices are typically based on classical control and cannot adapt to changing user requirements. A critical 
challenge in controller design is that, unlike tracking controllers, the desired trajectory for the prosthetic joint 
is unknown. Improper control can lead to asymmetry in the gait of intact and amputated sides, which in turn 
can have adverse health consequences. In this paper, an intelligent controller for above-knee prosthesis is 
proposed that can generate pseudo-trajectories for the joints, learn the dynamics of the prosthetic limb in real-
time, and track these pseudo-trajectories to reduce the asymmetry in gait between the intact and amputated 
side. Mathematical analysis shows that the method is stable and can adapt to changing user gaits. Numerical 
simulations and Monte Carlo analysis show that the performance of the controller is robust to variations in 
dynamics and user requirements, and results in near-natural gait for the individual. 

1 INTRODUCTION  

Amputation of the lower limb is performed as a 
consequence of traumatic injuries or diseases such as 
diabetes and vascular disorders (Gorden et al., 2022). 
After amputation, the residual limb is fitted with a 
socket, and a prosthetic limb is attached to the socket. 
Traditionally, such prosthetic limbs are designed to 
provide weight bearing and limited mobility. Modern 
powered devices can help in locomotion by providing 
regenerative energy as well as providing custom fit 
for the individual. However, an individual seldom 
regains natural locomotion as these devices cannot 
recognize and adapt to changing user gait or 
environmental conditions.  

Effective control mechanisms are essential for 
improving prosthetic gait. Passive devices, acting as 
springs or dampers, provide weight support but limit 
mobility and increase energy expenditure during 
locomotion (Feng & Wang, 2017; Sharma et al., 
2022). Semi-active and active prostheses offer some 
improvement, but they cannot adjust to different gait 
patterns (Saini et al., 2020) and rely on traditional 
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control methods which cannot compensate for system 
nonlinearities (Elery et al., 2020; Lenzi et al., 2019). 
Researchers also explored several adaptive control 
methods (Embry & Gregg, 2021; Gao et al., 2021). 
Model reference adaptive control performs best 
among them but is based on a linearized model with 
limited range of performance and does not provide a 
symmetric gait (Pagel et al., 2017) .  

In this paper, a neural network-based control 
strategy is pursued to reduce the asymmetry in gait 
between the intact and amputated side of an amputee. 
Gait is primarily divided into two phases: stance and 
swing. The stance phase is further subdivided into 
phases including Heel Strike, Loading Response, Mid 
Stance, Terminal Stance, and Pre-Swing, while the 
swing phase comprises Toe Off, Mid Swing, and 
Terminal Swing. During gait, the body weight is 
supported by a single leg from ‘Loading Response’ to 
‘Terminal Stance’ phases, and the time difference 
between these phases is defined as ‘single support 
time’. When the difference in single support time 
between the intact and prosthetic side is minimized, it 
promotes smoother weight transfer between the legs, 
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reduces gait asymmetry, aids amputees in achieving a 
more natural and balanced gait.   

The following approach is adopted to implement 
a learning controller that can adapt to user 
requirements and guarantee near natural gait in an 
individual: 

• Develop the dynamical model of the prosthetic 
leg system to determine the nature of unknown 
nonlinear functions that influence the dynamics.  

• Desired trajectories for the knee and ankle joints 
are first selected based on the natural 
displacement profile of these joints in an intact 
individual and then parameterize in terms of the 
gait speed. 

• Use a visco-elastic model to estimate ground 
reaction force and reaction torques at the joints, 
and then compensate for them in the system 
dynamics. 

• A radial basis function based neural network 
(RBFNN) is selected to learn the unknown 
nonlinear parameters in the dynamics due to its 
efficiency and lower computational cost 
(Schilling et al., 2001). 

• Cost function reflecting the asymmetry between 
the gait of the intact and prosthetic side is used to 
perform Lyapunov analysis. Weight update laws 
for the neural network are determined so that the 
unknown/changing dynamics are estimated 
while ensuring stability of the controlled system 
and minimizing the cost, i.e., the asymmetry in 
the gait.  

Numerical simulations are used to demonstrate 
the ability of the control strategy to accommodate 
variations in height, weight, gait speed, and ground 
reaction force. Analysis shows that the time duration 
of the single support portion of the gait is improved 
with the proposed control strategy, thereby 
minimizing the asymmetry in the gait.  

The rest of the paper is organized as follows – in 
section 2, gait requirements for transfemoral 
prosthesis, detailed formulation for control 
mechanism, and stability of the closed loop system 
are presented. Numerical simulations and Monte 
Carlo analysis to evaluate the ability of the proposed 
control scheme are demonstrated in section 3. The 
conclusions of the paper and future work are 
presented in section 4. 

2 CONTROL OF THE 
PROSTHESIS JOINT 

2.1 Gait Requirement for 
Transfemoral Prosthesis 

The nominal displacement profiles for the knee and 
ankle joints in a healthy individual during normal gait 
is shown in Figure 1(a). It is desirable for the 
prosthetic limb to track similar displacement profile 
in order to achieve near normal gait. Similar to the 
technique followed in (Winter, 2009), we can 
calculate the joint angles of lower limb as shown in 
Figure 1(b). Assuming that the user is walking with 
upright posture (q_tr = 90◦) and the joints follow the 
nominal displacement profiles mentioned in Figure 
1(a), we can calculate the ideal foot position relative 
to the ground during gait (Figure 1(c)). Postural 
balance relies on smooth weight transfer between the 
legs. If a prosthetic device effectively tracks the 
movements of the knee, ankle, and foot to closely 
replicate those on the intact side, it would lead to 
improved weight transfer and reduce gait asymmetry. 
(It is to be noted that the analysis is limited to motion 
in the sagittal plane.) 

2.2 System Model 

The dynamics of knee-ankle prosthetic system 
(Figure 1(d)) can be expressed as: M୩ୟ(q)qሷ + V୩ୟ(q, qሶ )qሶ + G୩ୟ(q) + F୩ୟ(qሶ ) + τୢ= τ + τୋ (1)

In “(1)”, M୩ୟ(q) stands for the inertia matrix of the 
knee-ankle coupled dynamics. V୩ୟ(q, qሶ ) denotes the 
coriolis/ centripetal matrix of the system, G୩ୟ(q) is a 
vector that represents the effect of gravity, frictional 
terms are represented by the matrix F୩ୟ(qሶ ), and the 
disturbance torque is labeled by τୢ. Torque generated 
by each joint is represented by τ and τୋ is the ground 
reaction torque which is generated as a result of the 
interaction of the foot with the ground. The control 
input to the system is τ + τୋ = ሾτ୩ + τୋ(୩) τୟ + τୋ(ୟ)ሿ ∈ ℝଶ. Here, subscript ‘k’ 
stands for knee joint and subscript ‘a’ stands for ankle 
joint. Detailed description of the terms in “(1)” are 
given in (Kibria & Commuri, 2024). A block diagram 
of the proposed neural network control system is 
shown in Figure 1(e). 
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2.3 Parameterization of the Gait 
Profiles and Ground Reaction 
Torque 

Nominal displacement profiles for knee and ankle 
joints during gait are generated according to “(2)”, 
where the subscript ‘i’ refers to either knee or ankle 
joint: 

𝑞௥(௜)௚ (𝑡)  =  𝑎(௜)௚଴ + ෍ {𝑎(௜)௚ cos(𝑘௚𝜔(௜)௚ 𝑡)ହ
௞೒ୀଵ+ 𝑏(௜)௚ sin(𝑘௚𝜔(௜)௚ 𝑡)}; (2)

Here, displacement profile time instance is 
represented by ‘t’. We can obtain the parameters 𝑎(௜)௚଴, 𝑎(௜)௚ , 𝑏(௜)௚ , 𝜔(௜)௚  through the synthesis of the Fourier 
series. As the hip is under biological control, gait based 
desired trajectory for ‘knee’ and ‘ankle’ can be 
generated from hip joint movement and used as 
kinematic reference as following: 𝑞௥(௜)௚ =ൣ𝑞௥(௜)௚ 𝑞ሶ௥(௜)௚ 𝑞ሷ௥(௜)௚ ൧;  𝑞௥(௜)௚ = ൣ𝑞௞௥௚ 𝑞௔௥௚ ൧்;𝑞ሶ௥(௜)௚ = ൣ𝑞ሶ௞௥௚ 𝑞ሶ௔௥௚ ൧்; 𝑞ሷ௥(௜)௚ = ൣ𝑞ሷ௞௥௚ 𝑞ሷ௔௥௚ ൧்;     

(3)

The gait-based profiles are labeled with superscript (·)௚and are generated by determining the user’s intent 
during the gait cycle. To compute the control input τ +τୋ, the ideal kinematic profiles of knee-ankle joints 𝑞௥(௜) =  ൣ𝑞௥(௜)் 𝑞ሶ௥(௜)் 𝑞ሷ௥(௜)் ൧்are not available.  

The differences between the ideal kinematic 
references and the gait-based references are defined as: 𝑞෤௥(௜)௚ = ൣ𝑞෤௥(௜)் 𝑞෤ሶ௥(௜)் 𝑞෤ሷ௥(௜)் ൧்

;  𝑞෤௥(௜)=𝑞௥(௜)– 𝑞௥(௜)௚ ;  𝑞෤ሶ௥(௜)=𝑞ሶ௥(௜)– 𝑞ሶ௥(௜)௚ ;     𝑞෤ሷ௥(௜)=𝑞ሷ௥(௜)– 𝑞ሷ௥(௜)௚ ;           
(4)

In practice, accurate evaluation of ground reaction 
torque τୋ is not feasible. Therefore, gait-based ground 
reaction torques τ௚ீ acting on knee and ankle joints are 
estimated from known empirical models. 

The estimation errors between estimated GRT τୋ௚ 
and actual τୋ(୧) at the knee or ankle joints are defined 
as:  τ෤ୋ(୧) = τୋ(୧)– τீ(௜)௚  ;                      (5)

The actual ground reaction torque τୋ(୧) at knee or 
ankle joint can be approximated by following equation 
(Mai & Commuri, 2016): τୋ(୧)୥ (t) = d୸(୧)F୶(୧)(t) + d୶(୧)F୸(୧)(t) ; (6)

in which ‘t’ is the gait time, F୸(୧) indicates the 
vertical ground reaction force and F୶(୧) is the horizontal 
ground reaction forces acting on the knee or ankle 
joints. d୶(୧) means the distances between knee joint or 
ankle joint to the center of pressure (ground contact 
point) during gait. The ground reaction forces can be 
computed from a nonlinear spring-damper system 
equations mentioned in (Peasgood et al., 2006): 𝐹௭(௜) = 𝜅̅(𝑧௉)௘ + 𝑐௠𝑧ሶ௣ 𝐹௫(௜) = µ 𝐹௭ 𝑠𝑔𝑛(𝑥ሶ௛) ; (7)

in which, z୔ and zሶ୮ mean foot penetration and 
penetration rate at the ground contact point. 𝜅̅, e, c୫, µ, sgn(·), xሶ ୦ denote respectively- spring coefficient, 
spring exponent, damping coefficient, friction 
coefficient, signum function, and the horizontal 
velocity. 

Remark 1. In “(2)”, the sine and cosine functions are 
bounded; it is it is assumed that the reference 
kinematic pattern and the gait based kinematic pattern q୰(୧)୥ are also bounded as the residual limb is under 
active control of the user to follow specific periodic 
gait profile to reduce the energy consumption during 
a walk (Ackermann & Bogert, 2010). Hence, we can 
assume that q෤ ୰(୧)term is also bounded as it is the 
difference between two bounded terms.  

Remark 2. In “(7)”, the ground is assumed to be firm 
and therefore present finite penetration of the foot.  
Therefore, the terms F୸(୧) and F୶(୧) terms in equation 
(7) are bounded and gait based τୋ(୧)୥  in (5) is also 
bounded. Since weight of the individual is known, the 
actual ground reaction torque τୋ(୧) is also bounded. 
Therefore, τ෤ୋ(୧) = τୋ(୧)– τୋ(୧)୥   is also bounded. 

2.4 Cost Function for Single Support 
Time 

To evaluate the performance of the controller in terms 
of single support time, a cost function is defined as: 𝐽௦௣(t) = ଵଶ ൣ𝑒௙௧(𝑡௅ோ)൧ଶ + ଵଶ ൣ𝑒௙௧(𝑡்ௌ)൧ଶ

 (8)

Here, 𝑒௙௧(𝑡௅ோ) and 𝑒௙௧(𝑡்ௌ) are the foot angle 
error of the prosthetic leg from desired foot angle at 
‘Loading Response’ and ‘Terminal Stance’ phases. 
Time lapse between these phases of the gait is 
considered as the single support time 𝑡ௌௌ. 𝑡ௌௌ = 𝑡்ௌ– 𝑡௅ோ (9)
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Figure 1: (a) Reference gait profiles of knee and ankle joints; HS = Heel Strike, LR = Loading Response, MS = Mid Stance, 
TS = Terminal Stance, PSw = Pre-Swing, TO = Toe Off, MSW = Mid Swing, TSw = Terminal Swing. DS = Double Support, 
SS = Single Support.  
 (b) Angle calculation for leg joints during a gait. 𝑞௧௥ = trunk angle, 𝑞௛ = hip angle, 𝑞௧௛ = thigh angle, 𝑞௟௚ = shank angle, 𝑞௞ 
= knee angle, 𝑞௔ = ankle angle, 𝑞௙௧ = foot angle. 𝑞௛ and 𝑞௞ are +ve for Flexion and -ve for Extension, 𝑞௔ is +ve for 
Dorsiflexion and -ve for Planter Flexion.  
(c) Foot angle relative to the ground. DS = Dual Support, SS = Single Support.  
(d) Link-segment representation of the prosthetic leg connected to the residual limb.  
(e)  Block diagram of NN controlled knee-ankle Prosthetic. 

in which 𝑡்ௌ and 𝑡௅ோ are the time instances of the 
prosthetic leg at ‘Loading Response’ and ‘Terminal 
Stance’ phases. If we can minimize 𝑒௙௧ at these time 
instances then it will in turn reduce the single support 
time error of the prosthetic leg, thereby reducing gait 
asymmetry. Since the cost function 𝐽௦௣ is a function 
of 𝑒௙௧, so minimizing the cost function will result in 
reducing gait asymmetry.  

Using Figure 1(b) the augmented cost function 
can be written as:  

J௦௣(t)=ଵଶ ሾ𝑒௔(𝑡௅ோ)– 𝑒௞(𝑡௅ோ)ሿଶ +ଵଶ ሾ𝑒௔(𝑡்ௌ)– 𝑒௞(𝑡்ௌ)ሿଶ 
(10)

 

2.5 Control Equations 

In order for the prosthetic system to ensure near 
natural gait cost function J௦௣ needs to be small. From 
(14), we see that J௦௣   =  𝑓𝑐𝑛(𝑒௞, 𝑒௔). So, if the 
controller can reduce the knee and ankle angle error 
then in tern it will reduce J௦௣ . To make the prosthetic 
system follow a reference trajectory 𝑞௥(௜)௚ , at first the 
tracking error ‘e(t)’ and the filtered tracking error 
‘r(t)’ is defined by (Lewis et al., 1997): 𝑒 = 𝑞௥(௜)௚ – q; 𝑟 = 𝑒ሶ + 𝜆𝑒 (11)

in which, 𝜆 is a positive constant, 𝑞௥(௜)௚ = ൣ𝑞௞௥௚ 𝑞௔௥௚ ൧்; and 𝑞 = ሾ𝑞௞ 𝑞௔ሿ்; The dynamics of 
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the prosthesis in “(1)” can be expressed with 
reference to the filtered tracking error as: M୩ୟ𝑟ሶ = M୩ୟ(𝑞ሷ௥(௜)௚ – qሷ + 𝜆𝑒ሶ) =– V୩ୟ𝑟 + 𝑓 + τୢ– τ– τୋ 

(12)

Where, 𝑓 = M୩ୟ(𝑞ሷ௥(௜)௚ + 𝜆𝑒ሶ) + V୩ୟ(𝑞ሶ௥(௜)௚ + 𝜆𝑒) +G୩ୟ(𝑞) + F୩ୟ(𝑞).  

The term f comprises of the unknown nonlinear terms 
in the dynamics of the system. In the next sections, 
we will demonstrate the use of RBF neural network 
to approximate f and implement a stable controller.  

2.6 Neural Network (NN) Based 
Approximation 

The function 𝑓 in equation (16) is a smooth function 
of the joint angles and joint velocities and can be 
bounded on a compact region in ℝଶ. Hence 𝑓 can be 
approximated using a RBF network (Schilling et al., 
2001).  

The output of the RBF network can be expressed 
as: ℎ௝ = 𝑒𝑥𝑝–‖௫ିఓ೔‖௕ೕ ; 𝑗 = 1,2,3, . . 𝑘 𝑓(𝑥) = 𝑊்ℎ + ε 

(13)

in which, x is the input of the network, i is input number of the network, j is the number of hidden layer nodes in the network, 𝜇௜ value 
represents the center point of the Gaussian function 
of the neural net 𝑘 for the 𝑖௧௛ input, 𝑏௝ is the width of 
the Gaussian function for neural network k. Here, 𝑊 
represents optimum weight for the NN and ε is a very 
small value. For an estimated value of 𝑊 , i.e. 𝑊෡ , the 
output of the NN is expressed as 𝑊෡ ்h(x). Learning 
algorithms are designed such that 𝑊෡  is updated 
iteratively to minimize the error between f(x) and its 
estimation 𝑓መ(x). 𝑓መ(𝑥) = 𝑊෡ ்ℎ(𝑥) (14)

Here, 𝑊෩ = 𝑊– 𝑊෡ ; ฮ𝑊ฮி ≤ 𝑊௕; so, 𝑊෩ሶ =– 𝑊෡ሶ  ; 
      𝑓– 𝑓መ = 𝑓ሚ = 𝑊்ℎ + ε − 𝑊෡ ்ℎ = 𝑊෩ ்ℎ + ε   (15)

From the f(x) expression in equation (16) the 
input of the RBF has been selected as: 

 𝑥 = ൣ𝑒௞  𝑒ሶ௞  𝑒௔  𝑒ሶ௔  𝑞௞௥௚   𝑞ሶ௞௥௚   𝑞ሷ௞௥௚   𝑞௔௥௚   𝑞ሶ௔௥௚   𝑞ሷ௔௥௚  ൧; 
here, subscript k= knee, a=ankle, r = reference; 
superscripts g = gait based.  

2.7 Analysis of Controlled Prosthetic 
Gait 

The control law for the system described in “(1)” is:  τ = 𝑓መ(𝑥) + 𝐾௩𝑟– υ − τ௚ீ (16)

In which, 𝑓መ is the estimation of f, υ = −(𝜀ே +𝑏ௗ)𝑠𝑔𝑛(𝑟) is the robust term, and τ௚ீ is the gait-based 
ground reaction torque. The corresponding neural 
network adaptive law is designed as:  𝑊෡ሶ = 𝐹ℎ𝑟் − 𝜅𝐹‖𝑟‖𝑊෡  (17)

Where, 𝜅, 𝐹 = 𝐹் ≥ 0 are design parameters. In 
“(21)” the third term is the filtering term which gives 
a better tracking response for non-zero initial 
condition.  

Theorem II.1. The prosthetic system given in “(12)” 
with the control law in “(16)” and the weight update 
law for the NN in “(17)” ensure that J௦௣ is bounded 
and the error between the desired and actual support 
time can be made arbitrarily small. Further, the 
tracking error e(t) is bounded and can be made 
arbitrarily small.   

Proof.  
Substituting “(16)” to “(12)” we can find: M୩ୟ𝑟ሶ = −(𝐾௩ + V୩ୟ)𝑟 + 𝑊෩ ்ℎ + ε + τୢ −τ෤ீ + υ  (18)

Where, τ෤ீ is the difference between actual and gait-
based ground reaction torque.  
First, the Lyapunov function is defined as: 

𝐿 = ଵଶ 𝑟்𝑀௞௔𝑟 + ଵଶ 𝑡𝑟(𝑊෩ ்𝐹ିଵ𝑊෩ ) (19)

Taking derivative of “(19)” we can find:  

𝐿ሶ = 𝑟்𝑀௞௔𝑟ሶ + ଵଶ 𝑟்𝑀ሶ ௞௔𝑟 + 𝑡𝑟(𝑊෩ ்𝐹ିଵ𝑊෩ሶ ),  (20)

Inserting “(14)”, “(18)” into “(20)”, and with the help 
of “(15)”, and “(17)”we can write: 

𝐿ሶ = −r୘𝐾௩𝑟 + 𝜅‖𝑟‖𝑡𝑟{W෩ ୘(𝑊 − 𝑊෩ )} +r୘(τୢ − τ෤ீ + υ + ε)  ≤ −𝐾௩‖𝑟‖ଶ +𝜅‖𝑟‖ฮ𝑊෩ ฮி(𝑊஻ − ฮ𝑊෩ ฮி) +(εே + 𝑏ௗ)‖r‖ 
=−‖r‖{𝐾௩௠௜௡‖r‖ + 𝜅ฮ𝑊෩ ฮி(ฮ𝑊෩ ฮி − 𝑊஻) −(εே + 𝑏ௗ)}  

(21)
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By setting up boundary for ‖r‖ and ฮ𝑊෩ ฮி as:  

         ‖𝑟‖ > ഉరௐ್మା(𝜀𝑁+𝑏𝑑)௄ೡ೘೔೙ = ஻భ௄ೡ೘೔೙ = 𝐵௥         
     ฮ𝑊෩ ฮி >  ௐଶ್ + ටଵସ 𝑊௕ଶ + (𝜀𝑁+𝑏𝑑)఑ = 𝐵௪   (22)

We can observe that in “(21)”, 𝐿ሶ  is negative because 
the term inside the braces can be written as:  

{𝐾௩௠௜௡‖r‖ + 𝜅ฮ𝑊෩ ฮி(ฮ𝑊෩ ฮி − 𝑊஻) − (εே + 𝑏ௗ)} = 𝜅(ฮ𝑊෩ ฮி − 12 𝑊஻)ଶ − κ4 Wୠଶ + K୴୫୧୬‖r‖ − (εே+ 𝑏ௗ)} (23)

The first and fourth terms on the right side of “(23)” 
are positive and other terms are negative. The 
boundary conditions of “(22)” ensure that the 
derivative of the Lyapunov equation “(21)” is negative 
on the region described in “(22)” and implies system 
stability. The boundary conditions of “(22)” ensure the 
filtered tracking error and the error in estimated NN 
weights converge exponentially to the bounds 
expressed in “(22)”. Now, from “(15)” and “(22)”, we 
can set the bounds for error terms as: 

τ = 𝑓መ(𝑥) + 𝐾௩𝑟– υ − τ௚ீ (24)

‖e‖ < ‖r‖λ୫୧୬ < Bଵλ୫୧୬K୴୫୧୬ (25)

Where, λ୫୧୬ is the minimum design value for λ.  

From “(14)” we see that the cost function J௦௣ 
depends on the difference between eୟ and e୩. From 
“(14)” and “(25)” we can write:  12 (eୟ − e୩)ଶ < 12 (‖eୟ‖ + ‖e୩‖)ଶ< 12 ( 2Bଵλ୫୧୬K୴୫୧୬)ଶ 

(26)

Which gives a bound on the cost function J௦௣ in 
“(14)”:  J௦௣<( ଶ୆భ஛ౣ౟౤୏౬ౣ౟౤)ଶ; Therefore, it can be concluded that 
the cost function J௦௣  is bounded by design terms λ୫୧୬ 
and K୴୫୧୬, and can be minimized by the choice of 
design values.   

3 SIMULATION RESULTS 

In this section, two simulation examples are 
considered to compare the performance of the 
proposed controller with a standard PD controller 
(τPD=K୴୔ୈ (λPD e+𝑒ሶ)- τୋ୥ ) which is widely used for this 
type of systems. Gain parameters for both PD and NN 
controllers were chosen to provide stable and 
acceptable tracking performance. Lower gain values 
made the system unstable and deteriorated tracking 
performance. System parameters were chosen from 
(Kibria & Commuri, 2024; Zhou et al., 2016). 

3.1 Monte-Carlo Simulation to Study 
Support Time 

In this example, Monte Carlo simulation is performed 
to study the ‘support time’ achieved by the proposed 
controller. Support time is defined by the time 
difference between the ‘Loading Response (LR)’ and 
‘Terminal Stance (TS)’ phases of the gait. In this 
example, 1000 different simulations are conducted 
with the walking speed, ground reaction force, 
measurement noise, disturbance torque being 
randomly selected. The error between the desired 
support time and the actual support time (TS and LR 
time error) is shown in Figure 2. It is seen that the 
proposed controller can achieve near-normal gait 
despite unknown changes in user gait, terrain 
conditions, or measurement noise (error in LR and TS 
time is 6.74 and 5.03 milliseconds (standard deviation 
of 0.13 and 0.29 milliseconds)). On the other hand, 
the performance of PD controller deteriorates in the 
presence of variations in desired gait, terrain 
conditions, and measurement noise (error in LR and 
TS time is 148.76 and 153.94 milliseconds (standard 
deviation of 0.97 and 0.58 milliseconds)). 

(a) (b) 

Figure 2: Monte Carlo error for NN (a) and PD (B) at 
Loading Response (LR), and Terminal Stance (TS) phases.  

ICINCO 2024 - 21st International Conference on Informatics in Control, Automation and Robotics

206



3.2 Tracking Performance 

The tracking performance for nominal gait (walking 
at normal self-selected pace, known ground reaction 
force, and no disturbance torque) is considered in this 
example. From Figure 3, it is seen that the NN 
controller can track the desired knee and ankle 
displacement profiles with greater accuracy than the 
PD controller.  

The simulation examples discussed in this section 
demonstrate that the proposed NN controller can 
adapt in real time to track desired joint profiles for the 
prosthetic leg. More importantly, the proposed 
controller ensures that the prosthetic foot reaches the 
‘Loading Response’ position and maintains stipulated 
‘single support time’ to provide near natural gait for 
the individual. 

 
Figure 3: Gait profile tracking of knee and ankle joints.  

4 CONCLUSIONS AND FUTURE 
WORKS  

In this paper, a novel control strategy was proposed 
to reduce the asymmetry in gait between the intact 
and amputated side of an amputee. Unlike traditional 
controlling approach, the proposed controlling 
approach effectively addresses real time challenges 
like variations in ground reaction force, measurement 
noise, changes in walking speed etc., that can degrade 
the performance of the system. It holds great promise 
for prosthetics, potentially enhancing amputee 

mobility, comfort, and overall quality of life. The 
development of a prosthetic test-bed and the 
validation of the control strategy discussed in this 
paper are being pursued by the authors. 
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