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Abstract: Leaf disease in tomatoes is the most important factor influencing crop output quantity and quality, hence 
proper diagnosis and classification are essential. Different diseases affect tomato production. This study 
focuses on employing deep learning techniques for the disease’s detection in tomato plants. Despite tomatoes 
being a versatile ingredient highly sought after year-round, the significant annual loss in crop yields due to 
diseases poses a substantial challenge in cultivation. The objective is to create a system capable of precisely 
identifying various tomato diseases by analysing images. The dataset utilized in this study encompasses 
different types and stages of tomato diseases, including Bacterial Spot, Early or Late Bright, Leaf Mold, 
Spider Mites, Target Spot, Septoria Leaf Spot, Mosaic and Yellow Leaf Curl Viruses. Upon disease 
identification, the study presents information on methods to control its spread. The models employed in this 
study include Convolutional Neural Network (CNN), DenseNet169, and an ensemble model combining pre-
trained CNN and DenseNet169. The classification results of the study demonstrated an accuracy of 95% for 
the ensemble model, surpassing the accuracy of individual models. This success in recognizing diseases in 
tomato plants holds promise for enhancing agricultural practices. 

1 INTRODUCTION 

The intersection of deep learning and agriculture has 
ushered in a transformative era for the detection and 
identification of plant diseases. As the global 
population burgeons, the imperative to ensure food 
security has never been more critical, underscoring 
the need to safeguard the health of crops, the bedrock 
of our sustenance. Deep learning, a sophisticated 
facet of artificial intelligence, emerges as a 
formidable solution, employing intricate neural 
networks to scrutinize images and plant data with 
unprecedented precision. This technological 
innovation facilitates the early identification of 
diseases, empowering farmers to implement timely 
preventive measures and thwart potential threats.  

This project is aimed to harness the capabilities of 
deep learning algorithms, offering a nuanced and 
accurate discernment of specific plant issues. By 
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mitigating the need for extensive chemical 
interventions, the initiative embraces sustainable 
farming practices, fostering an agricultural landscape 
that is both productive and environmentally 
responsible. This pioneering approach not only 
augments agricultural efficiency but also champions 
sustainability, contributing to a robust and resilient 
global food supply chain. The profound implications 
of these advancements resonate far beyond fields and 
farms, promising a future where crops are shielded, 
and environmental impacts are curtailed, heralding a 
new chapter in agriculture that harmonizes 
productivity with ecological well-being.  

2 RELATED WORK 

Muammer Türkoğlu et. al. (2022) developed a CNN 
Ensemble to detect plant diseases and pests. The 
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findings for deep feature extraction outperformed the 
traditional classifiers. The work based on deep feature 
extraction and classification with fine-tuned CNN 
including fc6 layer of the AlexNet, Loss3 layer for 
GoogleNet and fc1000 layer for ResNet50, 
ResNet101 and DenseNet20. The majority voting 
ensemble model attained the highest level of accuracy 
(97.56%), next to the early fusion ensemble model 
(96.83%). 

Norhalina Senan et. al., (2020) proposed a model 
that can reliably recognize the affected and healthy 
paddy leaves, which is useful in automated paddy 
categorization applications. The findings show that 
the proposed CNN model outperformed (83% 
accuracy) traditional classification techniques in 
paddy leaf disease detection and classification. 

Yong et. al. (2020) created the Inception-ResNet-
v2 model for early identification of pests. 
Experiments demonstrated the recognition accuracy 
of 86.1% and the results reveal that this hybrid 
network model has a greater recognition accuracy 
than the classic model and may be used to 
successfully detect and classify the plant diseases and 
insect pests. 

Morteza Khanramaki et. al. (2021) developed an 
ensemble technique for identifying citrus pests that 
outperformed competing methods. Data 
augmentation increases the quantity of pictures in the 
dataset, which enhances classifier generalizability. 
For the experimental analysis, a 10-fold cross 
validation was performed to determine accuracy, and 
it obtained 99.04%. 

Lucas et al. (2021) implemented an integrated 
CNN architecture that combines instance 
segmentation with a Mask R-CNN and semantic 
segmentation with UNet and PSPNet to detect 
diseases and pests in coffee leaves. The MIoU for the 
UNet and PSPNet networks was 94.25% and 93.54%, 
respectively. The two networks produced very similar 
results, with the UNet slightly outperforming the 
PSPNet. However, PSPNet can be selected since its 
lesion marker extends somewhat beyond its edge, 
which can assist in lesion categorization, as the 
intersection of the lesion and the healthy portion of 
the leaf is not always immediately identifiable. 

Several studies used neural networks to identify 
and classify diseases. Earlier research employs shape, 
color, and texture feature extraction approaches, as 
well as typical machine learning classifiers. In more 
recent investigations, CNN-based models have 
shown significant success in the automated detection 
of plant diseases and pests in leaves (Lu 2017, Liu 
2017, Wallelign 2018, Picon 2019, Zhang 2019, 
Rahman 2020, Wang 2020). 

3 PROPOSED WORK 

The existing manual methods for predicting disease 
in plants are often crucial, labour-intensive, time-
consuming, lack of accuracy, not scale effectively to 
meet the demands of large-scale agriculture. So the 
objective of this research is to overcome these 
challenges by utilizing the potential benefits of deep 
learning techniques. The primary objective is to 
design and develop an advanced deep learning-based 
system capable of automatically detecting and 
identifying plant diseases from images of plants. 

This system will utilize CNNs and other deep 
learning architectures to analyze visual data, 
providing farmers with rapid, precise, and scalable 
solutions for monitoring crop health. Ultimately, this 
research will contribute to reducing yield losses, 
promoting sustainable agriculture, and enhancing 
global food production. 

3.1 Research Challenges 

Finding effective data augmentation and 
preprocessing strategies to enhance image quality, 
remove noise, and improve model robustness. 
Designing models and algorithms that can scale to 
handle large volumes of agricultural images 
efficiently for timely detection of plant diseases. 

Deep learning models often struggle with 
generalizing their knowledge to new and unseen 
conditions. For plant disease and pest detection, 
models need to perform well across different seasons, 
regions, and plant species. Achieving this level of 
generalization while maintaining high accuracy is a 
significant research challenge. 

Enhance the interpretability of deep learning 
models for plant disease detection. Understanding 
how models make decisions is crucial for gaining 
trust in their recommendations, especially in 
agricultural decision-making. 

3.2 Scope of the Project 

In this research, we develop a comprehensive system 
for the detection and identification of diseases in 
plants through deep learning techniques. The scope 
encompasses the collection of diverse plant data, the 
implementation of advanced models, emphasizing 
scalability and ethical considerations. It also involves 
exploring novel methods. 
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3.3 Data Preprocessing 

Rescale: Rescaling involves adjusting the pixel 
values of the images to fit within a specific range, 
typically [0, 1] to ensure that all pixel values are 
proportionate to each other. This process ensures 
uniformity in pixel values across different images and 
helps in standardizing the data for better processing 
by deep learning models.  

Shear Range: Shearing is a geometric 
transformation that distorts an image by shifting one 
part of it in a fixed direction. In this context, a shear 
range of 0.2 means that the image can be distorted by 
shifting parts of it by a maximum of 20% in a specific 
direction. Shearing is useful for introducing 
variations in images, which can be beneficial for tasks 
such as data augmentation in image classification. 

Brightness Range: Adjusting the brightness of 
images randomly within a specified range is a 
technique used to augment image data. Randomly 
adjusting brightness helps in making the model more 
robust and versatile to variations in diverse lighting 
conditions during inference.  

4 METHODOLOGY 

Initially, preprocessing and augmentation were 
performed, and the dataset was divided into training, 
testing, and validation subsets. The evaluation 
metrics for each model were gathered through 
training, testing, and validation methods, allowing for 
a full assessment of model performance. In this study, 
CNN, Densenet169, and Ensemble techniques were 
used to detect diseases in plants (Figure 1). 

4.1 Convolutional Neural Network 

The adeptness of CNNs in capturing intricate spatial 
relationships within images makes them 
indispensable tools for tasks requiring nuanced visual 
understanding. CNNs unparalleled effectiveness is 
underscored by their remarkable performance in a 
spectrum of computer vision tasks, ranging from 
accurate image classification to precise object 
detection and nuanced image segmentation. Through 
the seamless integration of convolutional, pooling, 
and fully connected layers, CNNs stand as a 
cornerstone in the realm of deep learning, offering 
robust solutions to complex challenges in image 
analysis and interpretation.  
 

 
Figure 1: Proposed System Architecture 

CNNs play a vital role in leveraging deep learning 
for disease detection in plants. The use of CNNs in 
this context involves the analysis of images of plants 
to identify signs and symptoms of diseases. Filters 
(also called kernels) are small learnable matrices that 
slide over the input data to perform element-wise 
multiplications, producing feature maps. The 
architecture diagram of CNN model is given in Figure 
2. 

 
Figure 2: Architecture of CNN. 

Pooling Layers: Pooling layers are used to 
minimize the spatial dimensions of the input volume, 
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with typical pooling procedures including max 
pooling and average pooling. 

Convolutional layers apply convolution 
operations to input data using learnable filters or 
kernels. These filters slide over the input, capturing 
local patterns and produces feature maps that 
represent the presence of specific features or patterns 
in the input data. in capturing spatial hierarchies and 
are crucial for tasks like image recognition, where 
local patterns are essential.  

Flattening: Before feeding the output of 
convolutional and pooling layers into fully connected 
layers, the data is usually flattened into a vector. 

Fully Connected Layers: After several 
convolutional and pooling layers (Figure 3), CNNs 
often include one or more fully connected layers for 
making predictions based on the learned features. 
Dense layers are fully connected layers, perform 
weighted sum operations, applying activation 
functions to produce non-linear mappings between 
inputs and outputs. 

 
Figure 3: Layers of CNN. 

Dropout: Dropout is a regularization technique 
commonly used in CNNs to prevent overfitting. It 
randomly drops a certain percentage of neurons 
during training to promote more robust learning. 

Batch normalization is another regularization 
technique that normalizes the inputs of a layer, 
helping to stabilize and accelerate the training 
process. 

Loss Function: The choice of a loss function 
depends on the specific task; for classification tasks, 
cross entropy loss is used 

4.2 DenseNet169 Model 

Densenet169 is a variation of DenseNet with 169 
layers intended to create a deeper network than the 
original DenseNet. DenseNet169, being a deeper 
model within the DenseNet family, may be suitable 
for tasks that require capturing more intricate patterns 
in the data. 

4.2.1 Key Features and Characteristics of 
DenseNet169 

Dense Blocks: The network is organized into dense 
blocks, each containing multiple densely connected 
layers. Within each dense block, the output of each 
layer is concatenated with the feature maps of all 
previous layers, facilitating feature reuse and compact 
model representation. Dense Connectivity for Feature 
Extraction: Leverage the dense connectivity within 
DenseNet169 for effective feature extraction. The 
dense blocks allow for the reuse of features from 
previous layers, enabling the model to capture 
hierarchical representations of disease-related 
patterns in plants.  

Bottleneck Layers: DenseNet169 includes 
bottleneck layers within dense blocks to reduce 
computational complexity. These bottleneck layers 
consist of a 1x1 convolution layer followed by a 3x3 
convolution layer, which helps in efficient feature 
extraction. These layers help reduce the number of 
parameters and computational load while maintaining 
the capacity to capture complex patterns. 

Freezing Base Layers: Freezing base layers, uses 
a loop to set all layers in the pre-trained DenseNet169 
base model to non-trainable. This prevents these 
layers from being updated during the subsequent 
training process, ensuring that the previously learned 
features remain fixed and only the additional layers 
on top are fine-tuned for the specific task. This helps 
retain valuable pre-trained knowledge while adapting 
the model to a new classification objective. 

Transition Layers: Transition layers are inserted 
between dense blocks to control the spatial 
dimensions of feature maps and manage the spatial 
resolution, contributing to the overall efficiency of 
the model. These transition layers typically consist of 
a 1x1 convolution layer followed by average pooling.  

Global Average Pooling: DenseNet169, like other 
DenseNet models, employs global average pooling at 
the end of the network instead of traditional fully 
connected layers. This contributes to a fixed-size 
feature vector for each image, which is then used for 
disease classification. 
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Figure 4: Architecture of Densenet169 model. 

 

Figure 5: layers of Densenet169  

Parameter Efficiency: DenseNet169 is designed to 
be parameter-efficient. The dense connectivity 
structure allows the model to achieve competitive 
performance with fewer parameters compared to 
traditional architectures. 

Transfer Learning: Pre-trained versions of 
DenseNet169 on large datasets, such as ImageNet, are 
available, making it suitable for transfer learning on 
tasks with limited labeled data. It allows the model to 
leverage knowledge gained from a broader set of 
visual features before fine-tuning on the specific plant 
disease dataset. 

DenseNet169 is a specific variant (Figure 4), 
known for its increased depth with 169 layers. It 
incorporates several key layers, similar to other 
DenseNet models. These layers collectively 
contribute to the unique architecture of DenseNet169. 
The dense connectivity, bottleneck layers, and 
transition layers (Figure 5) are key features that allow 
DenseNet to capture complex patterns in the data 
effectively.  

4.3 Ensemble Model of CNN and 
DenseNet169 

Ensemble models in deep learning involve combining 
predictions from multiple individual models to 
improve overall performance and generalization. 
Ensemble models are particularly useful when 
dealing with diverse data, reducing overfitting, and 
improving model robustness. They are often 
employed in situations where individual models may 
have different strengths and weaknesses. While 
creating ensemble models requires more 
computational resources, they can yield better 
generalization performance compared to individual 
models. The key features of ensemble model are as 
follows:  

Bagging (Bootstrap Aggregating): Train multiple 
deep learning models on different subsets. Bootstrap 
aggregating the predictions through voting or 
averaging.  
Boosting: In deep learning, boosting can be applied 
by training shallow networks sequentially, where 
each subsequent network focuses on the 
misclassifications of the previous ones. Examples 
include AdaBoost and Gradient Boosting.  
Stacking: In deep learning, the base models can be 
different architectures or variations of the same 
architecture. The meta-model, often a simpler model, 
learns to weight or combine the outputs of the base 
models for predictions. 
Weighted Average Ensembles: Assign different 
weights to the predictions of each model based on 
their individual performance. Weights can be 
determined through cross-validation or performance 
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on a validation set. The final prediction is a weighted 
sum of the individual predictions. 
Model Distillation: The student model learns not only 
from the ground truth labels but also from the soft 
labels (probabilities) provided by the teacher model. 
Train a larger, more complex model (teacher model) 
and then use its predictions to train a smaller model 
(student model). 

4.3.1 Workings of Ensemble Model of CNN 
and DenseNet169  

Creating an ensemble model with a combination of 
CNN architecture (e.g., ResNet, VGG, Inception) and 
DenseNet169 (Figure 6) for plant disease detection 
involves leveraging the strengths of each architecture 
to enhance overall performance of image 
classification. 

 
Figure 6; Architecture diagram of Ensemble model 

Individual Model Training: Train the CNN and 
DenseNet169 models independently on the training 
dataset. Use transfer learning by initializing the 
models with pre-trained weights on large-scale 
datasets like ImageNet. 
Model Outputs: For each input image, both the CNN 
and DenseNet169 models produce predictions, 
indicating the likelihood of the presence of a disease. 
If it's a binary classification task, the models output 
probabilities or binary predictions. 
Ensemble Aggregation: Combine the predictions 
from both models using an ensemble strategy. 
Common strategies include: 
Voting (Hard or Soft): For binary classification, use a 
majority vote for hard voting or average the 
probabilities for soft voting. 
Weighted Averaging: Assign different weights to the 
predictions of each model based on their individual 
performance. The final prediction is a weighted sum 
of the individual predictions. 

Ensemble Model Output: The final output of the 
ensemble model is the aggregated prediction from 
both the CNN and DenseNet169 models 

5 RESULTS AND DISCUSSION 

Figure 7 shows the model configuration of a CNN for 
plant disease detection and classification. Figures 8 
and 10 show the accuracy and test loss of a CNN 
model, respectively. 

 
Figure 7: Model layout of CNN model 

 
Figure 8: CNN model Accuracy  

The following images (Figure 9 a,b,c) show the 
prediction of tomato leaf diseases with true and 
predicted labels using CNN, Densenet169, and 
Ensemble models. 
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(a) 

(b) 

(c) 

Figure 9: Prediction of tomato leaf disease with true labels and predicted labels. a) Prediction using CNN b) Prediction using 
Densenet169 c) Ensemble model 
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Figure 10: CNN model test loss  

The below image (Figure 11) depicts the architecture 
of the Densenet169 model, the total params has 
increased compared to the previous model.  

 
Figure 11: Model layout of Densenet169 model  

A confusion matrix is a table that defines a 
classification model's output based on test data with 
known true values. Figures 12, 13 and 14 shows the 
confusion matrix of CNN, Densenet169, and 
ensemble model respectively.  

 
Figure 12: Confusion matrix of CNN model 

 

 

Figure 13: Confusion matrix of Densenet169 model 
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Figure 14: Confusion matrix of ensemble model 

Table 1 represents the accuracy and test loss of the 
models. Among the three models, the ensemble 
model demonstrated superior accuracy in identifying 
plant diseases, achieving an impressive 95.3% 
accuracy rate. This demonstrates the usefulness of 
combining the strengths of CNN and DenseNet169 in 
a collaborative framework to improve performance. 

Table 1: Accuracy and Test loss of models 

Models Accuracy Test loss 

CNN 94% 17.2% 

Densenet169 91% 28.1% 

Ensemble  95.3% 9.1% 

6 CONCLUSION AND 
RECOMMENDATION 

This study focused on the crucial task of detection and 
identification of disease in tomato plant, addressing a 
pressing need in agriculture for early and accurate 
diagnosis. Through the utilization of advanced 
technology such as deep learning, the project 
successfully developed a robust system capable of 

recognizing and categorizing plant diseases 
efficiently. The implemented solution demonstrated 
its effectiveness in automating the detection process, 
allowing for timely interventions to prevent the 
spread of diseases and mitigate potential crop losses. 
By leveraging the power of deep learning, the project 
not only enhanced the speed and accuracy of disease 
identification but also provided a scalable and 
adaptable framework that can be extended to various 
crops and regions. Furthermore, the project 
contributes to sustainable agriculture practices by 
promoting precision farming, reducing the reliance on 
misuse of chemical treatments, and ultimately 
fostering a more resilient and productive food supply 
chain. 

This study focused solely on investigating few 
diseases affecting only one crop species, excluding 
others such as brinjal, ladies finger, chili, and their 
respective diseases. Hence, the next phase involves 
acquiring additional images of crop species and 
diseases for research purposes. Despite achieving 
commendable recognition accuracy, the models 
warrant further exploration and optimization. 
Simultaneously, there's a need to develop a network 
model capable of classifying crop images with greater 
precision.  
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