
Vector Based Modelling of Business Processes

Virginia Niculescu a and Maria-Camelia Chisăliţă-Creţu b, Cristina-Claudia Osman c

and Adrian Sterca d

Babeş-Bolyai University, Cluj-Napoca, Romania

Keywords: Business Process Formalization, Robotic Process Automation, Execution Optimization.

Abstract: Robotic Process Automation (RPA) platforms target the automation of repetitive tasks belonging to business
processes, performed by human users. We are trying to increase the level of abstraction in representing com-
plex processes (made from several conceptual operations) for RPA, by using vectors that allow not only a
simple and condensed modelling, but also an efficient way towards obtaining an optimal execution order for
them. Vector-based representation of the processes can serve to optimize the user-specified execution order of
the conceptual operations that constitute a process. For this, we propose an optimization strategy based on a
heuristic that helps us to rearrange the conceptual operations efficiently, thus reducing the total execution time
of the process.

1 INTRODUCTION

Robotic Process Automation (RPA) is generally de-
fined as the application of specific methodologies
and technologies that aim to automate repetitive
tasks achieved usually by human users (Institute for
Robotic Process Automation, 2015), (Hofmann et al.,
2020). Current RPA platforms allow an increase in
work efficiency and accuracy by automatizing busi-
ness processes and executing them in a more ro-
bust way by avoiding possible human errors. RPA
refers to those tools that operate on the user inter-
face (UI) aiming to perform automation tasks using
an ”outside-in” approach. The information systems
are kept unchanged, compared to the traditional work-
flow technology, which allows the improvement us-
ing an ”inside-out” approach (Van-der Aalst et al.,
2018). RPA frameworks (e.g., UiPath, Automation
Anywhere, Blue Prism, Microsoft Power Automate,
etc.) operate (i.e. create automated business pro-
cesses) in the following way: RPA developers identify
UI components of a software application like buttons,
text input controls, drop-down lists, and tables, and
then customize activities by writing code snippets in
a programming language to act on these UI controls

a https://orcid.org/0000-0002-9981-0139
b https://orcid.org/0000-0002-1414-0202
c https://orcid.org/0000-0002-9706-2915
d https://orcid.org/0000-0002-5911-0269

(e.g. click the selected button, writing data in the text
input, select all data from a table or a drop-down list,
etc.); this code that references the selected UI con-
trols forms the automated business process which can
be executed many times later with different input pa-
rameters.

The original contributions presented in the paper
can be summarized as follows: (i) a new vector-based
representation of processes using building blocks; (ii)
an optimization heuristic for executing business pro-
cesses represented in vector spaces.

The rest of the paper is structured as follows: Sec-
tion 2 provides related work about vector-based rep-
resentation approaches for business processes. Vec-
tor representation of the processes is introduced in
Section 3, while Section 4 describes the process ex-
ecution optimization practical aspects together with
the optimization heuristic designed to enhance exe-
cution efficiency. The paper concludes with the final
remarks.

2 RELATED WORK

There are various definitions of business processes,
most of them focusing on the flow of data and use of
information and resources (OMG, 2013), (Harmon,
2016). Processes can be modeled using graphical
representations like standardized or non-standardized
modelling languages. The most common modelling

Niculescu, V., Chisǎliţǎ-Creţu, M., Osman, C. and Sterca, A.
Vector Based Modelling of Business Processes.
DOI: 10.5220/0012739100003687
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 19th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2024), pages 735-742
ISBN: 978-989-758-696-5; ISSN: 2184-4895
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

735

languages used in process representations are Event-
driven Process Chains (EPCs) (Keller et al., 1992) and
BPMN (Business Process Model Notation) (OMG,
2013) diagrams. On the other hand, a mathemati-
cal modelling language suitable for representing pro-
cesses is Petri Nets (Petri, 1962).

The utilization of vectors for representing and an-
alyzing business processes has been extensively dis-
cussed in the literature, particularly to calculate sim-
ilarity. (Jung et al., 2009) convert business process
models into vector representations, considering both
activities and transitions. Their objective is to assess
the similarity of process models represented as vec-
tors by using the Cosine metric. Vector spaces can
also be employed to aggregate activities using the K-
means clustering algorithm (Smirnov et al., 2011). In
(Smirnov et al., 2011) there are two vector spaces,
the first one consists of the properties associated with
the activities (heterogeneous vector space). The sec-
ond vector space refers to the dimensions that corre-
spond to the property values of a particular type of
activity (homogeneous vector space). (Dijkman et al.,
2011) define three metrics for determining the simi-
larity between business process models: node similar-
ity, structural similarity, intended behavior similarity.
The vector space document is defined in (Salton et al.,
1975) as a collection of process models (documents),
together with a set of index terms for indexing the
documents and an index vector for each document.
These metrics have been implemented in the ProM
Framework (Van Dongen et al., 2005).

The data perspective of a process model is also
important. Therefore, data-aware methods for mea-
suring business process similarity are also analyzed
(Yu et al., 2013), and(Amiri and Koupaee, 2017). An
extension of Petri Nets in the context of e-commerce
- EBPN (E-commerce Business Process Net) is pro-
posed by (Yu et al., 2013). The similarity of activities
is measured by considering their access to data (Amiri
and Koupaee, 2017).

Business process variants refer to different ver-
sions or iterations of a business process that can vary
based on various criteria (Taymouri et al., 2021).

3 VECTOR REPRESENTATION

In this paper, the term concept refers to the data stored
in a database table, while entity refers to a row/record
of a database table. A concept always describes a set
of entities. In a previous work (Sterca et al., 2023)
we proposed a web automation tool that automati-
cally translates human user operations on the UI of
a target web application onto conceptual operations

in the underlying database (e.g. adding a new account
to the database, updating a contact entity). This web
automation tool takes the form of a browser plugin.
More specifically, the human user guides the automa-
tion tool (by navigating in the target business web ap-
plication) so that the plugin discovers what we call
primary blocks for process automation - which is an-
other name for a conceptual operation. After the plu-
gin discovers primary blocks, it can also execute au-
tomatically such primary blocks on the target web ap-
plication or it can form complex processes with the
discovered primary blocks and it can execute those
too.

We propose in this paper an approach for mod-
elling complex processes based on defining an opera-
tion vector for each concept and considering all these
vectors together to characterize a process made from
several conceptual operations (i.e. primary blocks)
across different concepts. In the remaining of the pa-
per, but mostly in the present section, we will use the
terms building block and conceptual operation inter-
changeably.

3.1 Base Vectors for Building Blocks

The building blocks discovered by the plugin tool rep-
resent all possible conceptual operations executed by
the software robot. They are, as their name implies,
all the ingredients the robot can use when executing
automatic processes. To inform the robot regarding
the operations that should be executed, we need to
have a model of representation for the set of all these
building blocks in a way simple enough to be inter-
preted by the robot and, at the same time, flexible to
possible optimizations.

For example, let’s assume that for a concept Ac-
count, the following five building blocks have been
discovered: SellectAll, Insert, Update, Delete and De-
activate.

We consider a predefined order between these: Se-
lectAll, Insert, Update, Delete, and Deactivate.

Consequently, for the representation of the build-
ing blocks working with the concept Account, we pro-
pose using the following base vectors:

• e1 = (1,0,0,0,0) – SelectAll
• e2 = (0,1,0,0,0) – Insert
• e3 = (0,0,1,0,0) – Update
• e4 = (0,0,0,1,0) – Delete
• e5 = (0,0,0,0,1) – Deactivate

Similar to the building blocks representation for
the Account concept, we can define base vectors for
all the concepts managed by an application. Still, the
number of building blocks – b– may vary from one
concept to another or from one application to another.

ENASE 2024 - 19th International Conference on Evaluation of Novel Approaches to Software Engineering

736

3.2 Abstract Process Representation

Considering a real application that works with the
concepts C1,C2, . . .Ck, the modelling of a correspond-
ing process could be done with one vector having the
size equal to b∗ k, where b is the number of all possi-
ble building blocks for each concept and k is the num-
ber of concepts handled in the application.

A series of conceptual operations (i.e. building
blocks) upon a concept C can be represented as a vec-
tor :

PC = (nC
1 · eC

1 nC
2 · eC

2 nC
3 · eC

3 nC
4 · eC

4 nC
5 · eC

5)

where nC
1 are the number of SellectAll operations upon

C, nC
2 are the number of Insert operations upon C, etc.
If we consider a predefined order between the con-

cepts, the operations on all the concepts could be rep-
resented as:

P = ()C1 ++()C2 ++()C3....

where the operator ++ is the concatenation operator.
This modelling is possible if there is a predefined

order established between all the concepts, and we
consider that for all concepts we have the same num-
ber b of possible operations applied to them. The pre-
defined order does not specify implicit constraints be-
tween the concepts - it is defined just to have a struc-
tured way of modelling.

A general process could be represented as one
vector of size b ∗ k, (e.g., b = 5, k = 5), obtained
through the concatenation of the vectors correspond-
ing to the operations identified for each concept.

P =
⊕k

i=1(n1
Ci · eCi

1 ++nCi
2 · eCi

2 ++

nCi
3 · eCi

3 ++nCi
4 · eCi

4 ++nCi
5 · eCi

5)

where
⊕

is the concatenation operator.
The type of operations that are specified in a pro-

cess could be represented using a vector O that ex-
presses only the fact that one type of operation is or is
not included. This could be defined as:

O =
⊕k

i=1(x1
Ci · eCi

1 ++ xCi
2 · eCi

2 ++

xCi
3 · eCi

3 ++ xCi
4 · eCi

4 ++ xCi
5 · eCi

5)

where xi could be either 0 or 1.
In addition, the number of operations n1,n2, ...

may be aggregated in a vector M, as follows:

M =
⊕k

i=1(n
Ci
1 ++nCi

2 ++nCi
3 ++nCi

4 ++nCi
5)

Therefore, the process representation is a pair of
vectors (O,M) and the process is

P = O⊙M,

where ⊙ is the element-wise product (Hadamard
product (Horn, 1990)) of the operations vector O and
the multiplicity vector M.
Remarks:

• If the number of possible operations differs from
one concept to another the following two options
could be applied:
– to consider b as being the maximum num-

ber of operations possible to be applied on
any concept; based on the concepts’ order the
start index for each concept could be identified
(modulo b operation).

– to define a configuration that specifies the num-
ber of operations on each concept together with
their significance; this configuration will al-
low computing the start index corresponding to
each concept.

• The concrete parameters of each operation are
considered to be part of the data plan and will
be specified separately by the abstract vector rep-
resentation of the process in order not to over-
load the abstract representation. For example,
for the operations Insert of the concept Account
(e2Account), the data plan should contain parame-
ters in the following form:

e2Account :
AccountName : ”CompanyA”,Email : ” john@..”, ...,
AccountName : ”CompanyB”,Email : ” jane@..”, ...,
...

• The relations between the concepts emphasized
by the relations between the corresponding tables
of the database may emphasize an order between
the operations on different concepts. These re-
lations are static – they are not supposed to be
changed during the application usage. Still, since
these dependencies could be cyclic, we cannot
consider that the operations may be executed in
the order they appear in the vector representation.
The execution order should be primarily based on
the order given by the user.

• A complete representation of a process should in-
clude besides the vector P, the associated data plan
that contains all the corresponding data parame-
ters, and an execution order.

3.3 Example of a Process
Representation

To illustrate this modelling we will consider an ex-
ample with the following concepts Account, Contact,
Lead, Appointment, Opportunity, which are the 5 con-
cepts identified in Microsoft Dynamics 2016 CRM 1.

1https://www.microsoft.com/en-us/dynamics-365

Vector Based Modelling of Business Processes

737

The order between the concepts is that given by the
previous enumeration.

Since in this case, we will have 5 possible building
blocks for each concept, as a result, the vectors that
represent the processes will have a size equal to (5
concepts x 5 operations/concept).

A particular process that we consider may consist
of the following conceptual operations:
Listing 1:
1. (Insert Contact C1)
2. (Update Lead L1)
3. (Insert Account A1)
4. (Update Account A1) - using Lead L1
5. (Insert Contact C2)
6. (Update Account A2) - using Contact C2
7. (Delete Appointment X1)
8. (Insert Account A3)
9. (Delete Opportunity O1)

10. (Deactivate Opportunity O2)
11. (Delete Appointment X2)
12. (Insert Opportunity O3)
13. (Update Account A1) - using O3
14. (Update Lead L2)
15. (Delete Account A4)

We assume that the order of the operations provided
by the user is valid, i.e., update, delete, and deactivate
operations that are used for the entities available in the
database may be successfully executed. The vector-
based representation of the above process, where the
concepts are ordered as Account, Contact, Lead, Ap-
pointment, and Opportunity, is the following:

P = (0,2,3,1,0; 0,2,0,0,0; 0,0,2,0,0; 0,0,0,2,0; 0,1,0,1,1)

The corresponding O and M vectors are:
O = (0,1,1,1,0; 0,1,0,0,0; 0,0,1,0,0; 0,0,0,1,0; 0,1,0,1,1)

M = (0,2,3,1,0; 0,2,0,0,0; 0,0,2,0,0; 0,0,0,2,0; 0,1,0,1,1)

The execution order as specified by the user is
E = ([],[3,8],[4,6,13],[15],[];

[],[1,5],[],[],[];

[],[],[2,14],[],[];

[],[],[],[7,11],[];

[],[12],[],[9],[10])

where for each type of operation is provided a list of
indices that states the order of each concrete operation
in the process specified by the user. An empty list []
suggests that the corresponding operation is not part
of the process.

3.4 Usefulness of the Vector
Representation

Representing complex automated processes as vec-
tors has several benefits. The first one would be
that we can easily compare different processes. In

our previous work that describes the browser plugin
used for web automation, we represented complex
processes as JSON (Javascript Object Notation) ex-
pressions which included both the conceptual oper-
ations and their arguments (i.e the data plan). Using
such representation it is difficult to decide if two com-
plex processes (made from tens of building blocks)
are equal (i.e. they have the same building blocks, but
maybe in a different order) or one of them is a pre-
fix/suffix of another or they both have a common sub-
part. By using the representation of a process as a P
vector and dissociating the data plan, these decisions
are more readily made. Such comparisons between
processes are useful in process mining.

Representing a complex process as a vector can
also be helpful when trying to optimize the execu-
tions of the conceptual operations that make a com-
plex process. The next section discusses the possible
execution optimizations and introduces an optimiza-
tion heuristic for improving the process execution ef-
ficiency based on the vector representation previously
discussed.

4 PROCESS EXECUTION
OPTIMISATION

Complex business processes emphasize the existence
of multiple similar operations that, most of the time,
are spread over the entire process. Optimizing the ex-
ecution of operations within a process can be achieved
based on the paths chosen by the user at the UI level.

4.1 Concrete Example

We consider the following complex process that per-
forms operations on Account and Contact concepts
available in the Microsoft Dynamics 2016 CRM ap-
plication. The access paths to operations, starting
from the root node, are:

• (BurgerMenu→Sales→Contacts→New C1→Save),
• (BurgerMenu→Sales→Accounts →New A1→Save),
• (BurgerMenu→Sales→Accounts→UpdateA1→Save),
• (BurgerMenu→Sales→Contacts→New C2→Save),
• (BurgerMenu→Sales→Accounts→New A2→Save),
• (BurgerMenu→Sales→Accounts→Update A2→Save)

BurgerMenu refers to a global menu of the appli-
cation, Sales is a submenu of the BurgerMenu and
Contacts is a submenu item of submenu Sales. In-
sert C1 is the UI form that allows a new Contact C1
to be added to the underlying database (this UI form
is triggered by the user when clicking on a New-like
button). Save is just the Save button of the application
that triggers the saving of the currently added Contact

ENASE 2024 - 19th International Conference on Evaluation of Novel Approaches to Software Engineering

738

entity. Similarly, there are other examples of navi-
gation paths in the above example: a navigation path
for adding a new Account, A1 and respectively A2,
and a navigation path for updating an existing Ac-
count. For automatic execution, each line represents
one building block. For example, when executing the
first building block, the automation tool must click on
the BurgerMenu, then it must click on the Sales sub-
menu, then it must click on the Contacts submenu,
then it must trigger a click on the button that allows
the user to add a new Contact and after filling all the
required fields, it will finally click on the Save button.

A more efficient way to execute the specified pro-
cess is to group the operations of the same type:

• (BurgerMenu→Sales→Contacts→
– New C1→Save
– New C2→Save)

• (BurgerMenu→Sales→Accounts→
– New A1→Save
– New A2→Save

– Update A1→Save
– Update A2→Save)

The optimization of the process execution reflects
the possibility of avoiding several BurgerMenu-based
actions that occur in a full path operation execution.
This results in a reduced number of interactions with
the UI elements that increase efficiency and decrease
the execution time.

4.2 Optimisation Heuristic

Based on the vector process representation specified
in section 3 we propose a strategy for obtaining an
optimized execution.

The optimization strategy is based on a heuristic
elaborated on the following observations: (i) clus-
tering the operations of identical types on the same
concept improves the efficiency of the execution (by
eliminating the need for full path menu navigation);
(ii) Insert operations should be executed first (they
should not be postponed); (iii) Update, Delete and
Deactivate operations could be postponed - they are
constrained only by the previous specific Insert oper-
ations.

Following the vector modelling of the process we
will use similar vectors to compute the clusters (group
of operations that should be executed at the same
stage). In this case, we will store into the vector, not
the number of operations but their order in the execu-
tion.

Starting from the order given by the user, the fol-
lowing mathematical rules should be applied when
clusters are created:

• if two or more Insert operations on the same con-
cept appear in the user list, then the minimum po-
sition should be considered for them;

• if two or more Update, Delete or Deactivate oper-
ations on the same concept appear in the user list,
then the maximum position should be considered
for them.

For the business process provided in Subsection
3.3 we define a vector that helps us to rearrange these
primary block operations to optimize the execution on
the interface. The execution vector is similar to that
used for modelling a process (see Subsection 3.1), but
it contains the execution order of the operations, in-
stead of the number of operations of the same type
included in the process.

The application of the proposed heuristic points
out three stages. The first stage corresponds to creat-
ing clusters of similar operations on the same concept
that use different entities.

The first cluster consists of operations (Insert
Contact C1) and (Insert Contact C2) that had the ini-
tial execution orders 1 and 5. They are placed in
the same group, with the intent to execute based on
the min rule, defined for the Insert operation, i.e.,
min(1,5) = 1.

For operations (Update Account A1) - using Lead
L1 and (Update Account A2) - using Contact C2, a
cluster is created considering the max rule for the Up-
date operation, i.e., max(4,6) = 6, where 4 and 6 were
in the initial order of these Update operations.

The second stage is represented by the application
of the rule that allows to group clusters for Update,
Delete, and Deactivate operations that work on the
same concept and postpone it. Therefore, the concept
Contact emphasizes clusters 13 and 15 for the Up-
date and Delete operations. The max rule is applied
to them, i.e., max(13,15) = 15 meaning that Update
operations from cluster 13 will be postponed and ex-
ecuted together with cluster 15.

The last stage allows to normalize the cluster
identifiers in the execution vector, by providing new
cluster identifiers in ascending order with no gaps be-
tween subsequent clusters. The stage is required as
the previous phases created clusters or grouped mul-
tiple clusters to the larger identifier, causing gaps in
cluster numbering.

Since the operations Update, Delete and Deacti-
vate are all commutative, we may try to cluster these
operations on each concept. To do this, for each con-
cept, we change the values corresponding to these op-
erations with the maximum value of them. The 0 val-
ues are not modified since they emphasize that there
is no such operation.

From this vector, we can obtain a better order of

Vector Based Modelling of Business Processes

739

Listing 3: Step 1 – (Insert Contact C1)
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Step 2 – (Update Lead L1)
0 0 0 0 0 0 1 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0

Step 3 – (Insert Account A1)
0 3 0 0 0 0 1 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0

Step 4 – (Update Account A1) - using Lead L1
0 3 4 0 0 0 1 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0

Step 5 – (Insert Contact C2) => min(1,5)=1
0 3 4 0 0 0 1 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0

Step 6 – (Update Account A2) - using Contact C2 => max(4,6)=6
0 3 6 0 0 0 1 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0

Step 7 – (Delete Appointment X1)
0 3 6 0 0 0 1 0 0 0 0 0 2 0 0 0 0 0 7 0 0 0 0 0 0

Step 8 – (Insert Account A3) => min(3,8)=3
0 3 6 0 0 0 1 0 0 0 0 0 2 0 0 0 0 0 7 0 0 0 0 0 0

Step 9 – (Delete Opportunity O1)
0 3 6 0 0 0 1 0 0 0 0 0 2 0 0 0 0 0 7 0 0 0 0 9 0

Step 10 – (Deactivate Opportunity O2)
0 3 6 0 0 0 1 0 0 0 0 0 2 0 0 0 0 0 7 0 0 0 0 9 10

Step 11 – (Delete Appointment X2) => max(7,11)=11
0 3 6 0 0 0 1 0 0 0 0 0 2 0 0 0 0 0 11 0 0 0 0 9 10

Step 12 – (Insert Opportunity O3)
0 3 6 0 0 0 1 0 0 0 0 0 2 0 0 0 0 0 11 0 0 12 0 9 10

Step 13 – (Update Account A1) - using O3 => max(6,13)=13
0 3 13 0 0 0 1 0 0 0 0 0 2 0 0 0 0 0 11 0 0 12 0 9 10

Step 14 – (Update Lead L2) => max(2,14)=14
0 3 13 0 0 0 1 0 0 0 0 0 14 0 0 0 0 0 11 0 0 12 0 9 10

Step 15 – (Delete Account A4)
0 3 13 15 0 0 1 0 0 0 0 0 14 0 0 0 0 0 11 0 0 12 0 9 10

Step 16 – Grouping Update, Delete, and Deactivate
0 3 15 15 0 0 1 0 0 0 0 0 14 0 0 0 0 0 11 0 0 12 0 10 10

Step 17 – Normalization
0 2 7 7 0 0 1 0 0 0 0 0 6 0 0 0 0 0 4 0 0 5 0 3 3

execution. For each operation of a certain type, we
obtain the number of the cluster by taking the corre-
sponding value from the vector. Since it is based on
applying a heuristic, this order is not optimal from
an efficiency point of view, but it increases the effi-
ciency by grouping certain operations applied to the
same concept.

Therefore, the execution order of the operations
from the initial process is the following:
Listing 2:

1. (Insert Contact C1)
1. (Insert Contact C2)
2. (Insert Account A1)
2. (Insert Account A3)
3. (Delete Opportunity O1)
3. (Deactivate Opportunity O2)
4. (Delete Appointment X1)
4. (Delete Appointment X2)

5. (Insert Opportunity O3)
6. (Update Lead L1)
6. (Update Lead L2)
7. (Update Account A1) - using Lead L1
7. (Update Account A2) - using Contact C2
7. (Update Account A1) - using O3
7. (Delete Account A4)

The execution order vector specifies the cluster
for each operation specified by the process vector de-
scribed in Section 3, i.e. the corresponding index in
the execution vector represents the cluster number of
the operations specified by the process vector.

P = (0,2,3,1,0; 0,2,0,0,0; 0,0,2,0,0; 0,0,0,2,0; 0,1,0,1,1)
Eh = (0,2,7,7,0; 0,1,0,0,0; 0,0,6,0,0; 0,0,0,4,0; 0,5,0,3,3)

For example, the value on the second index in the
vector P specifies two Insert operations on concept
Account which, based on the second value in vector E

ENASE 2024 - 19th International Conference on Evaluation of Novel Approaches to Software Engineering

740

will be executed in cluster 2. The order between the
operations in one cluster is given by the initial user
order.

Compared to the initial execution vector E, the op-
timized execution vector Eh obtained after the heuris-
tic application will not have associated a list of indices
for every concept operation, but a single value, i.e., a
cluster identifier. This indicates a simplified and im-
proved variant of the initial execution vector.

For instance, in the execution vector E for the Ac-
count concept there are the lists of operations [4,6,13]
and [15] that are associated with the Update and
Delete conceptual operations. This involves the ex-
ecution of operation 4 - (Update Account A1) - using
Lead L1, followed by operation 5 - (Insert Contact
C2), meaning that the user needs to switch from con-
cept Account to concept Contact.

The optimisation heuristic applied step-by-step on
the previous process example is available in Listing 3.
By grouping similar operations on the same concept
that use different entities in the same cluster, e.g., (In-
sert Contact C1) and (Insert Contact C2) in cluster
1, they are executed together, reducing the number of
interactions with the user interface components, e,g,
buttons, and the lowering the execution time.

The validation rule that ensures the fact that each
operation is included in an execution cluster and there
are no empty clusters is:
For every non-zero index of the process representation
vector, there is a non-zero index that corresponds to
an identified cluster in the process execution vector.

4.3 Numerical Evaluation

We can evaluate the time reduction obtained when
executing a complex process like the one depicted
in Listing 1 from section 3.3 using the optimization
heuristic execution described in sections 4.2, by con-
sidering what happens when our automation browser
plugin executes a single building block. Even if, the
evaluation in this section is applied to a concrete ex-
ample from Microsoft Dynamics 2016 CRM, the re-
sults should be similar to other business web applica-
tions although the actual time reduction value can be
different.

When executing the first building block of the pro-
cess depicted in Listing 1, our automation browser
plugin must click on the BurgerMenu, then it must
click on the Sales submenu, then it must click on the
Contacts submenu, then it must trigger a click on the
button that allows the user to add a new Contact and
after filling all the required fields, it must finally click
on the Save button. After triggering each click event,
the plugin must wait a time interval so that this click

event is handled by the web application. The han-
dling of a click event can consist of a complete doc-
ument reload or one or several XHR requests accom-
panied by DOM (Document Model Object) updates
in the current document. But our automation browser
plugin has no way of knowing how much time to wait
for the completion of the handling of the click event.
So it always waits for a specific time interval, tdelay,
after it triggers a UI event (e.g. a click). For Microsoft
Dynamics 2016 CRM application tdelay = 5 seconds.

If we ignore the time duration of triggering click
events and filling text inputs and assume that it is 0,
then the time duration of executing the (Insert Contact
C1) building block is equal to 5 · tdelay seconds. This
is because clicking on the BurgerMenu takes tdelay
seconds, then clicking on the Sales submenu takes
another tdelay seconds, then clicking on the Contacts
submenu takes another tdelay seconds, then clicking
the New button takes another tdelay seconds, and fi-
nally, clicking on the Save button takes tdelay seconds.

But if the next building block executed af-
ter (Insert Contact C1) is (Insert Contact C2) as
in Listing 1 from section 5.2, then the prefix
(BurgerMenu→Sales→Contacts) of the second build-
ing block’s path is no longer required because we are
operating on the same concept (so we don’t have to
go through all menus starting from the top-level one).
In order to execute block (Insert Contact C2), we just
need to click on the New button which takes tdelay sec-
onds and then click on the Save button which takes
tdelay seconds. So in total, the second building block
took only 2 · tdelay seconds when using the heuristic.

We can compute in this way the time duration of
executing the same process in the initial order (given
by the user) depicted in Listing 1 and compare it with
the time duration of executing the process in the order
given by our heuristic - which is depicted in Listing
2. This comparison is presented in Table 1, where
each line represents the time duration of executing
the corresponding building block in both execution
orders. For example, line 2 represents the time dura-
tion when executing (Update Lead L1) from Listing
1 and, respectively, the time duration when executing
(Insert Contact C2) from Listing 2. Table 1 shows
that when using our heuristic we obtain a time reduc-
tion of 18 · tdelay = 18 · 5 = 90 seconds (for Microsoft
Dynamics 2016 CRM tdelay = 5 seconds).

5 CONCLUSIONS

The paper introduces a formal representation of busi-
ness processes that uses base vectors for the opera-
tions on the concepts managed by an application. A

Vector Based Modelling of Business Processes

741

Table 1: Time comparison between the user given execution
order and the heuristic given execution order.

Operation no. Listing 1 order Listing 2 order
1 5 · tdelay 5 · tdelay
2 5 · tdelay 2 · tdelay
3 5 · tdelay 5 · tdelay
4 2 · tdelay 2 · tdelay
5 5 · tdelay 5 · tdelay
6 5 · tdelay 2 · tdelay
7 5 · tdelay 5 · tdelay
8 5 · tdelay 2 · tdelay
9 5 · tdelay 5 · tdelay

10 2 · tdelay 5 · tdelay
11 5 · tdelay 2 · tdelay
12 5 · tdelay 5 · tdelay
13 5 · tdelay 2 · tdelay
14 5 · tdelay 2 · tdelay
15 5 · tdelay 2 · tdelay

Total 69 · tdelay 51 · tdelay

process is abstractly represented by a vector formed
by concatenating the vectors representing operations
on each concept. Such a process vector emphasizes
the types of operations included in the process and
their number. This is useful when comparing two pro-
cesses and when doing process mining.

The approach offers several benefits and opens
new research perspectives. It provides a consistent
representation of concepts, processes, dependencies,
and operation multiplicity due to the vector-based
representation.

Application maintenance and upgrades may be
easily accommodated with our vector-based approach
when new concepts, attributes, or operations are
added to the application.

Additionally, we propose a heuristic for process
execution optimization. The heuristic is based on
grouping operational blocks that form a process into
clusters that specify an optimized execution order.
The clusters are specified using again a vector repre-
sentation that specifies for each type of operation the
cluster to which it belongs. This organization of the
operations into clusters leads to a more efficient exe-
cution by shortening the navigation paths through the
UI interface and thus, reducing execution time. More-
over, the identification of clusters of non-conflicting
operations eases the identification of operations eligi-
ble for parallel execution.

REFERENCES

Amiri, M. J. and Koupaee, M. (2017). Data-driven business
process similarity. IET Software, 11(6):309–318.

Dijkman, R., Dumas, M., Van Dongen, B., Käärik, R., and
Mendling, J. (2011). Similarity of business process
models: Metrics and evaluation. Information Systems,
36(2):498–516.

Harmon, P., editor (2016). Business Process Change A
Business Process Management Guide for Managers
and Process Professionals, Third Edition. Morgan
Kaufmann.

Hofmann, P., Samp, C., and Urbach, N. (2020). Robotic
process automation. Electronic Markets, 30(1):99–
106.

Horn, R. A. (1990). The hadamard product. In Proc. Symp.
Appl. Math, volume 40, pages 87–169.

Institute for Robotic Process Automation (2015). Introduc-
tion to robotic process automation. A primer.

Jung, J.-Y., Bae, J., and Liu, L. (2009). Hierarchical clus-
tering of business process models. International Jour-
nal of Innovative Computing, Information and Con-
trol, 5(12):1349–4198.

Keller, G., Scheer, A.-W., and Nüttgens, M. (1992). Se-
mantische Prozeßmodellierung auf der Grundlage”
Ereignisgesteuerter Prozeßketten (EPK)”. Inst. für
Wirtschaftsinformatik.

OMG (2013). Business Process Model and Notation
(BPMN) Specification, Version 2.0.2.

Petri, C. A. (1962). Kommunikation mit Auto-
maten. Dissertation, Schriften des IIM 2, Rheinisch-
Westfälisches Institut für Instrumentelle Mathematik
an der Universität Bonn, Bonn.

Salton, G., Wong, A., and Yang, C. S. (1975). A vector
space model for automatic indexing. Communications
of the ACM, 18(11):613–620.

Smirnov, S., Reijers, H. A., and Weske, M. (2011). A se-
mantic approach for business process model abstrac-
tion. In Advanced Information Systems Engineering:
23rd Int. Conf., CAiSE 2011, London, UK, June 20-
24, 2011. Proceedings 23, pages 497–511. Springer.

Sterca, A., Niculescu, V., Chisăliţă-Creţu, M.-C., and Os-
man, C.-C. (2023). Primary building blocks for web
automation. In Zhang, F., Wang, H., Barhamgi, M.,
Chen, L., and Zhou, R., editors, Web Information Sys-
tems Engineering – WISE 2023, pages 376–386, Sin-
gapore. Springer Nature Singapore.

Taymouri, F., La Rosa, M., Dumas, M., and Maggi, F. M.
(2021). Business process variant analysis: Sur-
vey and classification. Knowledge-Based Systems,
211:106557.

Van-der Aalst, W. M. P., Bichler, M., and Heinzl, A. (2018).
Robotic process automation. Business and Informa-
tion Systems Engineering, 60:269–272.

Van Dongen, B. F., de Medeiros, A. K. A., Verbeek, H.,
Weijters, A., and van Der Aalst, W. M. (2005). The
prom framework: A new era in process mining tool
support. In Applications and Theory of Petri Nets
2005: 26th Int. Conf., ICATPN 2005, Miami, USA,
June 20-25, 2005. Proceedings 26, pages 444–454.
Springer.

Yu, W., Yan, C., Ding, Z., Jiang, C., and Zhou, M. (2013).
Modeling and validating e-commerce business pro-
cess based on petri nets. IEEE Transactions on Sys-
tems, Man, and Cybernetics: Systems, 44(3):327–341.

ENASE 2024 - 19th International Conference on Evaluation of Novel Approaches to Software Engineering

742

