
Programming Contests as Complementary Activities in University
Programming Courses

Julián Alarte, Carlos Galindo a and Josep Silva b

VRAIN, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain

Keywords: Programming Contest, Out-of-Class Activity, Computer Science Subjects.

Abstract: Programming contests are events whose history goes back 50 years, soon after the appearance of computers in
universities, and are traditionally associated with undergraduate computer science students. However, contests
tend to be independent events, non-academic, extraneous to computer science subjects such as Data Structures
or Algorithmics. For this reason, these subjects rarely use programming contests or the kind of problems
posed in them, either in or outside the classroom. This work documents the implementation of a programming
contest in a pilot program in the lab sessions of Data Structures & Algorithms, including the full process,
proposed improvements, and a small statistical analysis of the contest’s results.

1 INTRODUCTION

Programming contests (or programming competi-
tions) are events in which a set of problems are pre-
sented to participants, to be solved efficiently with
knowledge from algorithmics, data structure, math-
ematics, and statistics. Historically, these contests
started in the 1970s, with the first editions of the
ICPC1 (International Collegiate Programming Com-
petition), organized by ACM, an association of com-
puter scientists. Since then, there are multiple orga-
nizations and a great number of websites dedicated to
hosting and supporting these contests (Wasik et al.,
2018).

These competitions are often oriented towards
computer science students (at the undergraduate and
masters levels), as they use many of the theoreti-
cal concepts of algorithmics and data structures that
are studied at such levels (Combéfis and Wautelet,
2014; Combéfis et al., 2016; Moreno Cadavid and
Pineda Corcho, 2018). There are also contests for
high school students, such as the IOI2 (International
Olympiad in Informatics), organized by UNESCO
since 1989.

a https://orcid.org/0000-0002-3569-6218
b https://orcid.org/0000-0001-5096-0008
1https://icpc.global/
2https://ioinformatics.org/

1.1 Types of Programming Contests

We can classify programming contests in two cate-
gories, depending on how they assign points to user
submissions:

Binary. A program can be accepted if it passes all
tests established by the contests’ judges or re-
jected if it does not. On top of that, time and mem-
ory limits can be imposed, to avoid brute force so-
lutions when a more efficient solution exists. Par-
ticipants are rewarded by being the first to solve
any given problem, and penalized by each rejected
submission and by the time they take to solve a
problem. This system is the one used by ICPC
and associated competitions, such as SWERC3

and other local contests, such as Ada Byron4, a
country-wide contest in Spain.

Optimization. The program is accepted if the output
can be parsed, but then the judge system scores the
solution based on parameters like the quality of
the solution, how close it is to the optimum strat-
egy, the runtime, etc. Participants are rewarded
based on the score, but the time taken to solve
the problem and the number of previous attempts
are not taken into account. HashCode, an annual
competition organized by Google between 2014
and 2022, used this scoring system.

3https://swerc.eu/
4https://ada-byron.es/

Alarte, J., Galindo, C. and Silva, J.
Programming Contests as Complementary Activities in University Programming Courses.
DOI: 10.5220/0012734400003693
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 16th International Conference on Computer Supported Education (CSEDU 2024) - Volume 2, pages 613-617
ISBN: 978-989-758-697-2; ISSN: 2184-5026
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

613



Both kinds of contest can be useful; but, in gen-
eral, in binary contests the goal is to solve each prob-
lem as soon as possible (as long as it passes the time
and memory constraints), whereas optimization con-
tests reward solving each problem as best as possible.

Given these two different approaches to problem-
setting and scoring, for the programming contest of
this study, we chose an optimization format, as the
contest will take place outside the classroom and a
binary format would give advantage to students that
have more free time to submit solutions at the start of
the competition.

2 PILOT STUDY: LAB
PROGRAMMING CONTEST

The Bachelor’s Degree in Informatics Engineering
from the Universitat Politècnica de València contains
in its second year a subject titled Data Structures and
Algorithms, in which students learn about various
data structures and some basic algorithms.

In the lab sessions of this subject we have run a
pilot program, with a separate programming contest
in each lab group. Because it is a pilot program, it
lacks (a) specialized sessions in the lab schedule and
(b) scoring the subject’s final mark. Thus, the contest
was explained during a lab session, but participants
worked on it on their own time, and participation was
not mandatory. To motivate students to participate,
we offered the following incentives: (1) an automated
test for the code they were developing as part of their
lab activities (because some lab activities were part of
the competition’s exercises), and (2) an award for the
winners, both as public recognition (a certificate) and
additional material to extend their knowledge of the
programming language under study5.

3 IMPLEMENTING THE
CONTEST

In this section, we describe the steps taken to prepare
and execute the competition, making suggestions for
future editions.

3.1 Preparing the Contest

Because the contest is not included officially in the
subject’s curriculum, the contest’s set of problems

5Available at https://mist.dsic.upv.es/teaching/
csedu2024/finalists.pdf.

was prepared around extending the lab activities,
without any effect to the theory sessions. The lab ses-
sions of this subject consist of writing programs us-
ing data structures and algorithms efficiently, to solve
common problems such as efficiently indexing a li-
brary or handling a queue of documents to be printed
to minimize wait time.

The problem set for the contest consists of exer-
cises already present in the lab sessions, with an addi-
tional requirement to optimize their implementation.
In this way, students that followed the activities day-
to-day could participate in the contest with no fur-
ther effort. However, students that wanted to invest
more time in the contest could consider the efficiency
of their solutions, to try to obtain better results. Al-
though one of the goals of the subject is for students
to produce efficient solutions to problems, this is not
graded in exams, so students tend to gloss over it.
In this case, the programming contest makes students
pay attention to something that is not evaluated as part
of the subject, and pushes them to consider the cost of
the solutions they write.

Last but not least, the resources to start the com-
petition were the course management software used
for the subject (Sakai6, in our case), so that students
can submit solutions as if it were a homework assign-
ment, and an announcement establishing the rules of
the competition.

3.2 Running the Contest

Even though this event uses computers and every step
of the way can be automatized (as we will see later),
this contest was evaluated through a more manual
process. Every day, we downloaded the last submis-
sion from each participant and we ran a judge pro-
gram that checks for common errors and times the ex-
ecutions of the solutions provided. This judge gener-
ates tables ranking the participants according to how
many test cases they were able to solve, and, when
tied, by relative efficiency. All this information is
shown to all participants through public web pages7

that were updated daily. This update was mostly au-
tomatic (except for downloading the files, starting the
judge and then publishing the web page file produced
by the judge).

The most time-consuming part of the process was
preparing personalized feedback for each student.
The goal of this was to motivate each student to im-

6https://www.sakailms.org/
7An example of these web pages can be

found at https://mist.dsic.upv.es/teaching/csedu2024/
example-leaderboard.html and https://mist.dsic.upv.es/
teaching/csedu2024/example-table.html.

CSEDU 2024 - 16th International Conference on Computer Supported Education

614



Table 1: Example runtime for student-submitted solutions.

Student Test 0 Test 1 Test 2
A 1.2 s 5.3 s 10 s
B 1.5 s 4.8 s 11 s
C 4.8 s 4.9 s 10 s
Minima (ui) 1.2 s 4.8 s 10 s

prove their solution, explaining the more complex er-
rors that students encountered, which given the sub-
ject’s level, they were not expected to be able to inter-
pret correctly.

As is common in programming contests, each
round of results was publicly available immediately,
so that participants could see prompt feedback on
their efforts and compare their current position and
that of their competitors, but the last round of results
was kept hidden, and only shown at the end of the
contest.

3.2.1 Problem Evaluation Formula

The formula used to compute the aforementioned rel-
ative efficiency is the following:

tr =
N

∑
i=0

ti −ui

ui

where N is the number of test cases, ti is the abso-
lute time that the student’s program took to the i-th
test case, and ui is the time that the fastest student-
submitted solution took to solve i.

Table 1 shows an example competition with three
test cases (0, 1, 2) and three students (A, B, and C).
Applying the formula would obtain the following tr
for each student:

tA
r =

1.2−1.2
1.2

+
5.3−4.8

4.8
+

10−10
10

= 10.4%

tB
r =

1.5−1.2
1.2

+
4.8−4.8

4.8
+

11−10
10

= 35.0%

tC
r =

4.8−1.2
1.2

+
4.9−4.8

4.8
+

10−10
10

= 302.1%

We can see that the obvious winner is A, who
achieved the best result on Tests 0 and 2, and obtained
a relative slowdown of 10% on Test 1. On the other
side, C is strongly penalized due to their solution to
Test 0 taking 4 times as much as A’s. This formula
was designed to award students that get close to the
best solution found, while penalizing those that stray
too far from the best solution in each test case. Addi-
tionally, because it is a relative measurement, we can
compare test cases with disparate runtimes (e.g., Test
2 takes 10 times as long as Test 0).

Table 2: Average marks in theory and lab exams grouped
by contest participation.

Part.? Theory Lab Count
Yes 7.67±0.66 8.75±0.67 18
No 6.51±0.75 6.72±1.27 24
All 7.03±0.53 7.80±0.76 42

3.3 Results and Awards

In every competition and contest, one of the most
important events is the presentation of results and
awards. In programming contests, this event is even
more important, as organizers typically explain the
problems that the participants have faced, and show
what the optimal solution would look like.

We took advantage of this moment to analyse
common mistakes made by students and show what
the optimized programs looked like. We also gave
students general tips to write efficient code with the
data structures we were using.

Before presenting these results, we had to analyse
the winner’s submissions, to check that they complied
with the rules of the contest (as there were some con-
ditions that could not be checked automatically by the
judge), and a general reading of all the solutions sent,
to give group feedback.

4 STATISTICAL RESULTS

This pilot program was implemented in two lab
groups of the subject, during the last three weeks of
the first half of the semester (March 2023). It encom-
passed 42 students, of which 18 made at least one
submission (43%). Given the low effort required to
participate (upload three files with exercises that were
completed on previous lab sessions), we expected a
higher participation rate.

With respect to results, 50% of participants man-
aged to solve all 18 test cases, and from the other half,
two thirds solved more than 80% of the test cases. If
we compare the average marks obtained in the exams
for the lab sessions, we obtain Table 2, which also
shows error margins with 95% confidence. The aver-
age lab mark for students who participated is above 2
points higher8 than those who did not take part. This
result suggests a link between better results and par-
ticipation in the contest. However, we cannot imply
causation one way or the other, as doing well on the
contest requires doing well on the lab sessions, and
vice-versa.

8In a system where 0 is the worst qualification and 10
the best.

Programming Contests as Complementary Activities in University Programming Courses

615



On the other hand, if we pay attention to the marks
obtained in the theoretical part of the exam, marks are
overall lower than the lab exam’s, but we can still see
a difference of 1.2 points. This margin is almost half
compared to the one in the lab exam, which suggests
a small causal effect, given that the gap is widened in
the area the contest was supposed to push students to
do better.

We also analysed the marks obtained against the
number of test cases solved, but we did not find a sta-
tistically significant correlation.

Other studies have found a small change in ab-
solute grade and grade distribution, but, most im-
portantly, an improvement in self-reported metrics
such as perceived difficulty of the subject, familiar-
ity, proactivity in class and effort dedicated (Ban-
deira et al., 2019). Furthermore, participation in pro-
gramming contests is seen as productive and career-
building (Raman et al., 2018).

5 RECOMMENDATIONS FOR
FUTURE EDITIONS

Preparing and managing a programming contest can
be a daunting task, but it does not have to be.

The first obstacle is designing and selecting the
problem set, and the test cases to determine whether
a solution is valid or not. Problems can be sourced
from exercise sets from the subject itself, more com-
plicated versions of those exercises, or new problems
altogether; according to the level of complexity de-
sired and how much time we want the students to ded-
icate to it.

Then, the type of contest and scoring system
must be established. This includes automating as
much of the submission and scoring process as possi-
ble. When organizing a binary contest, software like
DOMjudge9 can be very useful, as it is freely avail-
able and allows the organizers to setup a full com-
petition (Kinkhorst, 2014), including judging submis-
sions automatically as they are received and generat-
ing a live ranking. For binary contests with partial
scores (DOMjudge only gives pass/fail results), Con-
test Management System (CMS)10 is a viable alter-
native. There are many other judge software suites
(Wasik et al., 2018), as any large enough competi-
tion adapts or creates a software judge to fit their
needs. Both DOMjudge and CMS may not be flexi-
ble enough, as they judge based on outputs for a given
input, and cannot evaluate behaviour like reading and

9https://www.domjudge.org/
10https://cms-dev.github.io/

writing files, so we recommend, if possible, adapting
the judge to the contest’s pedagogical requirements
(Bowring, 2008). Regardless, a fully automated judge
is most desirable, because it gives feedback to partici-
pants instantly, letting them make submissions when-
ever suits them best, and allowing them to issue fixes
to incorrect submissions.

Lastly, there must be some incentive for students
to participate, such as including its result in the grad-
ing of the subject or by giving out prizes for the win-
ner(s).

It is not necessary to generate personalized feed-
back for each participant, but giving feedback and
hints regarding problems that are specially difficult
can be motivating for participants who have not yet
comprehended it. In the end, problems that are un-
reachable to all generate a lack of interest in the event.

The contest must also be monitored for the en-
tire duration, as unexpected failures can appear in
test cases, for which updated test cases should be
promptly loaded to the judge system and a notifica-
tion be given to participants.

6 CONCLUSIONS

This work describes the implementation of a pro-
gramming contest in a second-year subject of the
Bachelor’s Degree in Informatics Engineering. It
details the implementation of a pilot study con-
test and gives recommendations for organizing fu-
ture events. The pilot study included 18 participants
across two lab groups. The results show that partici-
pants achieved much better results in later exams than
students who did not take part, which points to a pos-
sible use of contests and competitions as reinforce-
ment or additional activities outside the classroom.
However, the results are not conclusive enough due
to the small sample size. It is our intention to repeat
this experiment in larger groups.

REFERENCES

Bandeira, I. N., Machado, T. V., Dullens, V. F., and Canedo,
E. D. (2019). Competitive programming: A teaching
methodology analysis applied to first-year program-
ming classes. In 2019 IEEE Frontiers in Education
Conference (FIE), pages 1–8.

Bowring, J. F. (2008). A new paradigm for programming
competitions. SIGCSE Bull., 40(1):87–91.

Combéfis, S., Beresnevičius, G., and Dagienė, V. (2016).
Learning programming through games and contests:
Overview, characterisation and discussion. Olympiads
in Informatics, 10:39–60.

CSEDU 2024 - 16th International Conference on Computer Supported Education

616



Combéfis, S. and Wautelet, J. (2014). Programming train-
ings and informatics teaching through online contests.
Olympiads in Informatics, 8:21–34.

Kinkhorst, T. (2014). Domjudge at amrita.
Moreno Cadavid, J. and Pineda Corcho, A. F. (2018). Com-

petitive programming and gamification as strategy to
engage students in computer science courses. Revista
Espacios, 39:11–23.

Raman, R., Vachharajani, H., and Achuthan, K. (2018). Stu-
dents motivation for adopting programming contests:
Innovation-diffusion perspective. Educ Inf Technol,
23:1919—-1932.

Wasik, S., Antczak, M., Badura, J., Laskowski, A., and
Sternal, T. (2018). A survey on online judge sys-
tems and their applications. ACM Computing Surveys,
51:1–34.

Programming Contests as Complementary Activities in University Programming Courses

617


