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Abstract: This paper discusses the design and development of Internet-of-Things (IoT) applications based on the novel
concept of Thing Artifact (TA). A TA is multi-faceted having a functionality, life cycle, and interaction flows.
Prior to integrating TAs into an IoT application, they need to be discovered and then, composed. While
existing discovery and composition techniques are functionality-driven, only, this paper demonstrates that
policies regulating the functioning of TAs in terms of what they are permitted to do, are prohibited from
doing, and must do, have an impact on their discovery and composition. These policies are specified in Open
Digital Rights Language (ODRL). A system implementing and evaluating ODRL-based provisioning of TAs
for IoT applications design and development is presented in the paper, as well.

1 INTRODUCTION

To address the complexity of Internet-of-Things (IoT)
applications design and development, we presented
in (Maamar et al., 2023) the concept of Thing Ar-
tifact (TA). Contrarily to things that are the building
blocks of these applications, a TA leverages the con-
cept of Data Artifact (DA) that is commonly used to
manage data-driven business applications (Nigam and
Caswell, 2003). Because of this leveraging, we pro-
vide a rich description of a TA using 3 cross-cutting
aspects: functionality in term of what a TA does; life-
cycle in term of how a TA behaves; and interaction
flow in term of with whom a TA exchanges mes-
sages. For illustration, we abstracted a smart home
in (Maamar et al., 2023) with multiple collaborative
TAs like smartTV:TA, remoteControl:TA, and motion-
Detector:TA provisioning different functionalities, ex-
posing different lifecycles, and participating in differ-
ent interaction flows.

For a successful buy-in of TAs by the information
and communication technology community, in gen-
eral, and IoT community, in particular, techniques to
define, discover, and compose TAs are necessary. A
first step is to adopt and, most probably, adapt ex-
isting thing techniques like the IoT composer by Kr-
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ishna et al. (Krishna et al., 2019) and ComPOS by
Åkesson et al. (Åkesson et al., 2019) (Section 2.3).
However, these techniques overlook the compliance
of TAs with organizations’ business rules. A TA that
responds to invocation requests between 10am and
11am, only, cannot be integrated into an IoT appli-
cation that submits such requests at any time of the
day. The invocation time-period that the IoT appli-
cation imposes on the TA is a decisive factor in its
selection. TAs discovery should go beyond their func-
tionalities by having extra factors like time, location,
and budget.

In this paper, our TAs discovery and composi-
tion techniques resort to Open Digital Rights Lan-
guage (ODRL, (Cano-Benito et al., 2023; W3C,
2018)) to guarantee that TAs’ future uses do not jeop-
ardize IoT applications. This happens by examining
TAs’ ODRL policies during discovery and composi-
tion. A TA that is permitted of sensing during an
ODRL-set time period cannot sense outside this time
period if requested by an IoT application. And, a TA
that is prohibited from communicating some users’
location information can still communicate other in-
formation to an IoT application. In either case, the
rationale of why, when, where, and how TAs will be
used impact their discovery and composition; sensing
is permitted in association with a specific time period
and communicating is prohibited in association with
some sensitive information. How to enforce these as-
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sociations is a question to address.
Being a rights expression language, ODRL poli-

cies consist of permission, prohibition, and duty rules
that control the use of assets like data, service, and
media. ODRL expresses that “something is permitted,
forbidden, or obliged, possibly limited by some con-
straints” (W3C, 2018). Contrarily to assets that are
static in ODRL, our TAs are dynamic as per their life-
cycles requiring a dynamic enactment of rules. For in-
stance, a permission rule for a smartTV:TA is enacted
when this TA takes on the activated state authorizing
the display of programs. And, the same smartTV:TA
taking on the configured state enacts a prohibition rule
preventing the display of programs. How to consider
the adaptability of rule enactment is another question
to address.

Our contributions are as follows: (i) abstraction of
TAs into assets offering insights into how, why, when,
and where TAs are used, (ii) association of TAs with
ODRL policies allowing a fine-grained definition and
control, (iii) integration of ODRL policies into TAs
discovery and composition, which means both bet-
ter satisfaction of IoT applications’ requirements and
better awareness of TAs’ capabilities and limitations,
(iv) analysis of ODRL policies to confirm the partici-
pation of TAs in compositions, and (v) demonstration
of the technical doability of ODRL-based discovery
and composition of TAs. The rest of this paper is or-
ganized as follows. Section 2 defines concepts and
presents related works. Section 3 details how ODRL
impacts TAs discovery and composition. This impact
is technically demonstrated in Section 4. Section 5
includes the conclusion and future work.

2 BACKGROUND

This section presents ODRL, TAs, and some works.

2.1 ODRL

ODRL is an example of rights expression language
that provides a flexible and interoperable information
model, vocabulary, and encoding mechanisms to rep-
resent statements about the usage of assets. An as-
set is an identifiable resource or a collection of re-
sources such as data/information, content/media, ap-
plications, and services. ODRL relies on policies to
represent permitted and prohibited actions over a cer-
tain asset as well as required obligations that stake-
holders must meet over this asset as well (De Vos
et al., 2019; W3C, 2018). ODRL information model’s
key constructs are:

• Policy could include one to many permission, pro-
hibition, or duty rules. First, permission allows an
action over an asset if all constraints are satisfied
and if all duties are fulfilled. Second, prohibition
disallows an action over an asset if all constraints
are satisfied. Finally, duty forcibly exercises an
action over an asset or not. It is fulfilled when all
constraints are satisfied and have been exercised.

• Party is an entity or a collection of entities that
could correspond to a person, group of persons,
organization, or agent. A party can fulfill differ-
ent roles including assigner, assignee, informed
party, consented party, consenting party, compen-
sated party, and tracked party.

• Constraint is used either to refine components like
action, party, or collection of assets or to declare
conditions applicable to a rule. Constraints could
be combined using logical operators.

In JSON-LD Listing 1, the assigner (line 7) in
charge of an asset, movie1 (line 6), refers to an agree-
ment policy (line 4) consisting of 2 rules. The per-
mission rule (line 5) is concerned with the display
action (line 9) that an assignee, smart TV (line 8),
executes subject to satisfying the constraint that
is not enabling the permission rule for more than
4 hours (lines 11-15). And, the prohibition
rule (line 17) is concerned with the digitize ac-
tion (line 21) and is associated with the same as-
signee (line 20). Should the assignee execute the
digitize action, then the remedy (line 22) would be
to apply the anonymize action (line 23) to the asset
movie1 (line 24).

Listing 1: ODRL specification of movie.
1 {
2 "@context": "http://www.w3.org/ns/odrl.jsonld",
3 "uid": "http://example.com/policy:01",
4 "@type": "Agreement",
5 "permission": [{
6 "target": "http://example.com/asset:movie1/",
7 "assigner":"http://example.com/MovieParty:org:abc",
8 "assignee":"http://example.com/smart -TV/",
9 "action": "display",

10 "constraint": [{
11 "leftOperand": "meteredTime",
12 "operator": "iteq",
13 "rightOperand":{"@value":"P4H", "@type":"xsd:

duration"},
14 "unit": "https://www.wikidata.org/wiki/Q25235"

}]
15 }],
16 "prohibition": [{
17 "target": "http://example.com/asset:movie1/",
18 "assigner":"http://example.com/MovieParty:org:abc",
19 "assignee":"http://example.com/smart -TV/",
20 "action": "digitize",
21 "remedy": [{
22 "action":"anonymize",
23 "target": "http://example.com/asset:movie1/"}]
24 }]
25 }
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2.2 Thing Artifact

We briefly define the concepts of functionality, life
cycle and interaction flow (Maamar et al., 2023).

Definition 1. A TA is defined by the tuple <
f ,a,D, lc, IF > where f is either a primitive function-
ality fp or a composite functionality fc that the TA
provisions; a is an action that a third party exercises
on a TA’s functionality f ; D is a set of input data {din

i }
and output data {dout

j } related to the TA; lc is the
TA’s lifecycle represented as a state diagram (Defini-
tion 2); and IF is a set of interaction flows {i fi} that
are put together on-the-fly based on messages that the
TA sends to peers and receives from peers (Defini-
tion 3).

Definition 2. A TA’s lifecycle lc is defined
by the couple < S,T >, i.e., lc = si

transi−→
si+1

transi+1−→ si+2 . . .s j−1
trans j−1−→ s j; S is a set of

couples {(si,{Pi j})} where si is a particular state
and {Pi j} is a set of ODRL policies associated with
this state; and, T is a set of transitions {transi}.

Definition 3. A TA’s interaction flow i fi is a set
of messages {mi j} that the TA uses to interact with
peers. A message m is defined by the tuple <
id, type, f rom/state, to/state,cnt > where id is a
message’s identifier; type is a pre-defined message;
f rom/state is the sending state in the TA’s lifecycle;
to/state is the receiving state in the lifecycle of a peer
to the TA; and cnt is a content of data conveyed from
the TA to a peer where cnt ⊆ D.

For more details about TAs integration into IoT ap-
plications, readers are invited to consult (Maamar
et al., 2023).

2.3 Related Work

Our current work is at the crossroads of 3 topics,
ODRL (Section 2.1), DA, and IoT discovery and com-
position techniques. To the best of our knowledge,
such techniques for TAs do not exist.

Data Artifacts in Brief. In (Kumaran et al., 2008),
Kumaran et al. propose guidelines that would
assist IT practitioners identify the necessary DAs
for their applications. In (Narendra et al., 2009),
Narendra et al. model BPs using context-based
artifacts and Web services. The authors ab-
stract processes into models that are expressive
(i.e., easy to grasp) for non-IT practitioners and
could be based on DAs. In (Maamar et al., 2010),
Maamar et al. discover and model DAs from busi-
ness requirements. They use a bottom-up anal-
ysis to determine fine-grained data, which are

afterwards aggregated into clusters where each
cluster becomes a potential DA. Next, they de-
rive the operations that act upon the discovered
data clusters. DAs are obtained after grouping
the data and operation clusters together. Finally,
in (Popova et al., 2015), Popova et al. acknowl-
edge the role of DAs in modeling BPs and propose
a set of methods to discover DAs’ lifecycles. The
methods are implemented as software plug-ins for
ProM www.promtools.org, a generic open-source
framework for supporting process mining. Fig. 1
represents a purchase order based on DAs.

Thing Discovery Techniques in Brief. In (Sunthon-
lap et al., 2018), Sunthonlap et al. present Social-
Aware aNd Distributed (SAND) scheme for de-
vice discovery in an IoT ecosystem. Among the
criteria for ranking potential devices, the authors
cite social relationship diversity with reference to
a glucose-level monitor that sends requests to find
a glucose analyzer with whom it could collabo-
rate to evaluate a given patient’s glucose level.
The work of Sunthonlap et al. is in line with
the trend of social IoT that blends social comput-
ing with IoT (Atzori et al., 2012; Maamar et al.,
2020b). In (Barnaghi and Sheth, 2016), Barnaghi
and Sheth mention that IoT applications cannot
use existing data and service search, discovery,
and access methods and solutions because of the
number of resources and heterogeneity and com-
plexity of data. This no use is also backed by
Khalil et al. (Khalil et al., 2020). To this end,
Barnaghi and Sheth put forward some require-
ments and challenges for developing a robust and
comprehensive IoT search solution. Requirements
include quality, latency, trust, availability, relia-
bility, and continuity that should impact efficient
access and use of IoT data and services. And,
challenges result from today’s IoT ecosystems that
host billions of dynamic things that make existing
search, discovery, and access techniques inappro-
priate for IoT data and services. In (Pablo Cal-
cina et al., 2016), Pablo Calcina et al. acknowl-
edge that finding useful devices to perform tasks
is a major challenge for IoT. They examine the
impact of network topologies, centralized, de-
centralized, and hierarchical, on device discov-
ery in terms of discovery time, server-side infras-
tructure, reliability, and network traffic. To ad-
dress security, privacy, and semantic issues when
discovering things, W3C recently recommends
Web of Things (WoT) Discovery standard (W3C,
2023) to allow customers to get a thing’s Thing
Description (TD) that could be registered in a
server, for example. The discovery process in-
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Figure 1: Representation of a DA-based purchase-order BP (Narendra et al., 2009).

cludes 2 phases. The introduction phase relies
on existing mechanisms (e.g., URI and DNS-
based) to request a thing’s TD address (URL).
And, the exploration phase uses this address to
provide the TD after authenticating the requesting
customer. Finally, an extensive analysis of dis-
covery techniques in IoT is presented in (Khalil
et al., 2020). These techniques are classified into
content-, context-, location-, user-, semantic-, and
resource-based. Despite their multiplicity and va-
riety, constraints on things are overlooked dur-
ing discovery. For instance, a content-based tech-
nique targets readings taken by a sensor. How-
ever, these readings only happen between 2am and
4am, while a future IoT application requires con-
tinuous readings making this sensor unfit for the
application. Also, a location-based technique tar-
gets particular locations of users and not things
to discover. Invoking a thing must happen from
a specific location but this is overlooked in this
technique.

Thing Composition Techniques in Brief.
In (Khaled and Helal, 2018), Khaled and
Helal propose a programming framework to
capture inter-thing relations into IoT applications.
The framework ensures that, on top of things’
services, logical and functional ties between
services are not overlooked by introducing
3 primitives that are thing service, thing relation
(e.g., control/controlled by, drive/driven by, and
extend/extended by), and recipe. In (Krishna
et al., 2019), Krishna et al. acknowledge the
difficult job of composing things due to their het-

erogeneity and suggest a Web-based tool called
IoT Composer. The tool assists users select,
configure, and bind things together. In (Åkesson
et al., 2019), Åkesson et al. compose services
hosted on IoT devices using ComPOS (Compo-
sition language for Palcom Oblivious Services).
Native services contain computation and interac-
tion with the physical world, while composition
services combine native services into applica-
tions, mediating and adapting messages between
them. In (Ronny et al., 2021), Seiger et al.
suggest HoloFlows to address the complexity of
developing IoT applications for users and domain
experts with limited technical background. Using
HoloFlows, physical sensors and actuators are
mapped onto virtual components to connect
together through virtual wires. In (Maamar et al.,
2020a), Maamar et al. examine thing composition
in the context of thingsourcing. They argue
that by analogy with people who participate in
crowdsourcing, things could “act in the same
way” leading to the formation and management
of a crowd of things from which a group of
selected things would be composed and assigned
users’ demands to complete. Finally, Noura and
Gaedke present the Web of Things Description
Language (WoTDL) ontology to describe key
concepts associated with AI planning for auto-
matic WoT composition (Noura and Gaedke,
2019). For Noura and Gaedke, WoT is the result
of integrating IoT into the Web.
It is clear that the focus of the techniques above is
on functionality, only, while other factors that en-

ODRL-Based Provisioning of Thing Artifacts for IoT Applications

171



able/disable a functionality are overlooked. Per-
mitting a functionality subject to payment and
prohibiting a functionality subject to location
mean better component discovery and composi-
tion. This is discussed in the next section where
ODRL policies define the factors impacting TAs
discovery and composition.

3 THING ARTIFACTS
PROVISIONING

After presenting a case study, we dedicate the remain-
ing sections to TAs discovery and composition.

3.1 Case Study

Our case study is about a healthcare facility for el-
derly persons. Several studies confirm the bene-
fits of IoT for these people for instance IoT for
seniors: Solutions and Use Cases by Cogniteq1

and How can IoT help with elderly care? by
Telefònica Tech2. A first situation in the facility’s
smart living-room exposes 3 TAs, remoteControl:TA,
smartTV:TA, and lightSwitch:TA, providing together a
free-of-interruption watching experience to a group
of persons. The remoteControl:TA is also used to
control the living room’s blinds upon the request of
the smartTV:TA. Another situation exposes 2 extra
TAs, smartWatch:TA and medicalDispenser:TA, syn-
chronizing the automatic release of medicine pills to
a person.

Besides the TAs’ functionalities above like con-
trolling lights, displaying movies, and dispensing
medicines, invoking them to satisfy elderly persons’
demands could be either permitted, prohibited, or
even forced depending on for instance, time of the
day, nature of medicine, and duration of a treatment.
For instance, a medicalDispenser:TA is discovered be-
cause its daily power charging does not conflict with
the periods of dispensing medicines. This charging is
integrated into the medicalDispenser:TA’s ODRL per-
missions. And, a smartTV:TA is composed because
it responds to the unique demands of a particular
remoteControl:TA integrated into this smartTV:TA’s
ODRL duties. We discuss how similar situations and
their respective permissions, prohibitions, and duties
impact TAs discovery and composition.

1https://tinyurl.com/yae5dmv9.
2https://tinyurl.com/yc7neuj7.

3.2 Approach

Fig. 2 illustrates the approach to discover and com-
pose TAs. It runs over 2 stages (preparatory and
development), uses 5 modules (creator, specifier,
discoverer, checker, and composer) and 2 reposito-
ries (TAs and policies), and, finally enables inter-
actions across all modules and across modules and
repositories. 2 stakeholders (engineer and user) par-
ticipate in the approach as well.

In the preparatory stage, the engineer invokes (1)
the creator to specify (2) TAs that reside in the ecosys-
tem like smart living-room. The engineer could resort
to some W3C standards like the WoT Thing Descrip-
tion (WoT-TD (W3C, 2023)) to specify TAs. However,
this does not fall into the scope of the current work.
Next, details about TAs’ functionalities and lifecycles
are stored in the repository of TAs (3). The content of
this repository is made available for the specifier that
with the assistance of the engineer (4) defines (4) and
stores the necessary TAs’ ODRL policies in the repos-
itory of policies (5) concluding the preparatory stage.
Because TAs’ interaction flows are generated at run-
time, they are discussed in the development stage.

In the development stage, functionalities to se-
lect, lifecycles to specify, and interactions to ini-
tiate are IoT-application dependent aiming at satis-
fying particular users’ demands such as controlling
TV programs (6). First, based on an IoT applica-
tion’s requirements, the discoverer pulls details from
both the repository of TAs and the repository of poli-
cies to discover and select the necessary TAs as per
Section 3.2.1. This selection considers, on top of
TAs’ functionalities, the permissions, prohibitions,
and obligations of how, when, where, and why to in-
voke these functionalities. Before the checker con-
firms the participation of the necessary TAs (7) in the
IoT application as per Section 3.2.2, the checker ana-
lyzes how the interaction flows between the selected
TAs’ lifecycles would progress at run-time with re-
spect to their respective ODRL policies. It could hap-
pen that a TA is not among those eligible to invoke a
peer’s functionality or that a peer’s functionality has
some invocation conditions that a TA cannot satisfy.
As a result, either the TA or the peer is discarded
from the under-development IoT application initiating
the discovery of another TA. After the participation
confirmation, i.e., all ODRL policies are satisfied, the
checker notifies (8) the composer of the readiness of
the necessary TAs to deploy on run-time platforms (9).

3.2.1 Discovery

Existing discovery techniques of software compo-
nents like Web services (Cheng et al., 2017) and hard-
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Figure 2: General representation of TAs discovery and composition approach.

ware components like IoT devices (Kamel et al., 2021)
extensively depend on these components’ functional-
ities3 that, in fact, correspond to the capabilities to
respond to users’ demands. For instance, a Web ser-
vice is discovered because it reports zip code-based
weather forecasts and an IoT device is discovered be-
cause it measures humidity levels in a warehouse. To
improve the outcome of discovery, some techniques
reconcile semantic heterogeneities and/or tap into so-
cial relations between components. While discovery
techniques safely assume a full access to the compo-
nents’ functionalities, they do not pay much attention
to the conditions on both the functionalities and the
actions invoking these functionalities. Although a dis-
covered weather Web service is a “strong” candidate
for integration into a road-traffic monitoring applica-
tion, it will be discarded. The store action that in-
vokes this Web service is conditioned by a specific
format and duration. However, these two conditions
do not meet the monitoring application’s storage re-
quirements that refer to a different format and dura-
tion. As a result, another Web service whose store ac-
tion’s conditions match the storage requirements will
be selected after discovery. In our work, conditions on

3Criteria like quality-of-service and/or quality-of-thing
could narrow down the discovery. However, this is not dis-
cussed further in this paper.

functionalities and actions are part of the permission,
prohibition, and obligation rules in ODRL policies.

Back to Fig. 2 where the discoverer analyzes
the ODRL policies stored in the repository of poli-
cies according to the under-development IoT appli-
cation’s requirements. These policies refer to TAs
that the discoverer will recommend to the composer,
through the checker, for inclusion in the IoT applica-
tion. To illustrate this analysis, let us consider List-
ing 2 related to a smartTV:TA’s functionality that is
smartTV:volume:TA (line 7) with focus on how to am-
plify the volume using the increase action (line 10).
In this Listing, a prohibition rule restricts to amplify
the volume above a certain limit (lines 12-14) dur-
ing night time (lines 15-20). Should an IoT applica-
tion be flexible with any volume at any time of the
day, then this smartTV:TA would be dropped from the
list of candidate TAs for inclusion in this application.
Night-time period restricts the volume level, which is
not in line with the IoT application’s requirements. As
a result, the search for another TA continues.

Listing 2: ODRL specification of smartTV:volume:TA.
1 {
2 "@context": "http://www.w3.org/ns/odrl.jsonld",
3 "@type": "Set",
4 "uid":"http://example.com/Policy:123.5dab2b8bae0A",
5 "profile":
6 "http://example.com/odrl:profile:055",
7 "prohibition": [{
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8 "target":"http://example.com/asset:smartTV:volume:TA"
,

9 "assigner":"http://example.com/org:321",
10 "action": [{
11 "rdf:value": { "@id": "odrl:"increase"},
12 "refinement": [
13 {"leftOperand": "count",
14 "operator": "gteq",
15 "rightOperand": "10"},
16 {"leftOperand": "dateTime",
17 "operator": "gteq",
18 "rightOperand": {"@value":"T19:00Z", "@type"

:"xsd:time"}},
19 {"leftOperand": "dateTime",
20 "operator": "iteq",
21 "rightOperand":{"@value":"T08:00Z", "@type"

:"xsd:time"}}
22 {"leftOperand": "context",
23 "operator":"eq",
24 "rightOperand": {"activated"}}]
25 }]
26 }]
27 }

3.2.2 Composition

Contrarily to what is discussed in Section 2.3 where
the emphasis is on thing composition techniques like
orchestration versus choreography applied to TAs, we
discuss hereafter how the participation of a discovered
TA in an IoT application is either approved or rejected.
This would be based on 2 ODRL constructs: (i) poli-
cies where some are free of assignees and (ii) poten-
tial conditions on rules and/or actions invoking TAs’
functionalities.

Assuming that an IoT application’s composition
schema is already set, e.g., which TAs perform first
and what data TAs exchange, we exemplify the com-
position schema with 2 TAs and then, analyze their
approval/rejection’s impacts on completing this com-
position schema. Fig. 3 is a partial representation
of the respective lifecycles of remoteControl:OnOff:TA
and smartTV:OnOff:TA where inter-state messages
(dashed lines) form an interaction flow between these
lifecycles at run-time. We recall that TAs’ lifecy-
cles consist of 5 similar states, prepared, activated,
suspended, failed, and done. However, the sub-
states in the activated state capture the particular-
ities of each TA where used and unused are sub-
states for remoteControl:OnOff:TA for example, and
turned-off, turned-on, and configured are sub-states
for smartTV:OnOff:TA for example. Having these
2 TAs included in an IoT application for watching
movies would be driven by the exchange of messages
between their respective activated states. Specific
messages are used as per Table 1.

To begin with, we suggest an ODRL policy for
smartTV:OnOff:TA in Listing 3. Major highlights of
this policy are as follows: agreement type (line 3),
prohibition rule (line 6), list of assignees (lines 9-11),
turn-on action to invoke the functionality (line 13),
state-based conditions on the rule (lines 19-22), and
location-based conditions on the action (lines 14-
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Figure 3: Representation of TAs engaged in interactions.

17). Let us assume a message from remoteCon-
trol:OnOff:TA’s activated:used to smartTV:OnOff:TA’s
activated:turned-off requesting to execute the turn-
on action. Upon message receipt, smartTV:OnOff:TA
loads the ODRL policies linked to activated:turned-off
state and proceeds as follows:

• If remoteControl:OnOff:TA is not in the list of
assignees, then this TA will be rejected from
the IoT application initiating the search for
remoteControl:OnOff:TA

′
as per Section 3.2.1.

Otherwise, checking rules and actions is initiated.

• Assuming that the state-based condition on the
rule is satisfied, i.e., the current state is activated,
checking the location-based condition on the ac-
tion is next to ensure that invoking this action
happens from a specific location. If the check
turns out unsatisfied, i.e., remoteControl:OnOff:TA
is in another location, then this TA will be rejected
from the IoT application initiating the search
for remoteControl:OnOff:TA

′
as per Section 3.2.1.

Otherwise, remoteControl:OnOff:TA is approved
for the composition.

Listing 3: ODRL specification of smartTV:OnOff:TA.
1 {
2 "@context": "http://www.w3.org/ns/odrl.jsonld",
3 "@type":"Agreement",
4 "uid":"http://example.com/policy:004",
5 "profile": "http://example.com/odrl:profile:05",
6 "prohibition": [{
7 "target": "http://example.com/smart -TV/smartTV:OnOff

:TA",
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8 "assigner": "http://example.com/smart -TVProvider:001
",

9 "assignee": {
10 "@type": "PartyCollection",
11 "source": "http://example.com/RemoteControlList/

List1"},
12 "action": [{
13 "rdf:value": {"@id": "odrl:turn -on"},
14 refinement": [{
15 "leftOperand": "spatial",
16 "operator": "eq",
17 "rightOperand": {"X"}}]
18 "constraint": [{
19 "leftOperand": "context",
20 "operator": "eq",
21 "rightOperand": {"activated"}}],
22 "remedy": [{
23 "action": "encrypted/scrambled transmission",
24 "target": "http://example.com/smart -TV/smartTV:

display:TA"}]}]}]
25 }
26 {
27 "@type": "dc:Document",
28 "@id": "http://example.com/RemoteControl/

remoteControl:OnOff:TA,
29 "dc:title": "remoteControlsTA",
30 "odrl:partOf":"http://example.com/RemoteControlList/

List1"
31 }

4 IMPLEMENTATION AND
EVALUATION

To demonstrate ODRL-based discovery and compo-
sition of TAs using the center for elderly persons, a
system was developed, deployed, and evaluated on a
Windows 11 desktop, 16GB RAM, 4 Cores processor,
and 4 Cores Graphics card with 8GB VRAM (Fig. 4).
We used Visual Studio Code (code.visualstudio.
com, a free open-source lightweight code editor for
JavaScript and TypeScript languages), the progres-
sive JavaScript framework vue (vuejs.org, an open-
source model–view–viewmodel front-end JavaScript
framework for building user interfaces and single-
page applications), Node.js (nodejs.org/en, an asyn-
chronous event-driven JavaScript runtime for cre-
ating networks based on asynchronous operations),
Thingweb Node-WoT (projects.eclipse.org/projects/
iot.thingweb) package (an official reference imple-
mentation of the WoT), Eclipse Mosquitto (mosquitto.
org, an open source message broker), and ODRL val-
idator and evaluator sandbox (odrlapi.appspot.com)
(an online Web application for verifying the status of
ODRL policies).

In Fig. 4’s left panel, the system offers Thing ar-
tifacts, Policies, and Discovery and composition flow
options. First, through the Thing artifacts option that
implements the creator, the engineer defines TAs us-
ing WoT-TD and stores their definitions in the repos-
itory of TAs. Regarding TAs’ lifecycles and inter-
action flows, they are included in WoT-TD’s prop-
erties attribute and WoT-TD’s actions and events at-
tributes, respectively. Second, through the Policies
option that implements the specifier, the engineer de-

fines the TAs’ policies to store in the repository of
policies. For illustration, Listing 4 corresponds to the
WoT-TD of smartTV:volume:TA while referencing the
necessary constructs of policies in line 15. Details
about each policy, e.g., line 18,. are defined separately
like in Listing 2. Finally, the Discovery and compo-
sition flow option implements the discoverer, checker,
and composer according to the user’s case study.

Listing 4: Example of a TA in WoT-TD including policies.
1 {
2 "@context": "https://www.w3.org/2019/wot/td/v1",
3 "@type": "Thing",
4 "title": "smartTV:volume:TA",
5 "id":"http://example.com/smartTV:volume:TA:8a0fdd027a62

",
6 "securityDefinitions":{"basic_sc": {...}},
7 "security": ["basic_sc"],
8 "properties": {
9 "functionality": {

10 "@type": "Odrl:prop",
11 "type": "string",
12 "value": "volume",...
13 "forms": [...]
14 },
15 "policies": {
16 "@type": "odrl:policies",
17 "type": "array",
18 "uid":["http://example.com/Policy:123.5dab2b8bae0A

"],
19 "forms": [...],
20 ...}},...
21 }

To discover potential TAs, users are prompted to
submit the functionalities they need like toggle, vol-
ume, and control. After a syntactical screening of
the repository of TAs by the discoverer, some TAs
are identified like smartTV:volume:TA, remoteCon-
trol:TA, and lightSwitch:TA (Fig. 5). Next, the user
selects those TAs that she needs prior to setting cer-
tain requirements on some of these TAs like restrict-
ing smartTV:volume:TA to a maximum value (Fig. 5’s
right panel). The checker verifies the compliance of
these requirements with TAs’ policies like discussed
in Section 3.2.1. No compliance would mean exclud-
ing the concerned TAs and selecting others.

After a successful check of all the TAs, the user
with the assistance of the composer plugs the TAs
together creating a composition flow (Fig. 6). Next,
the checker verifies if the users’ requirements satisfy
the selected TAs’ policies. Finally, the user assigns a
name to the composition flow such as elderly person
whose specification is shown in Fig. 6.

After completing the deployment, we evaluated
the system in terms of flood attacks and response
time. In the first evaluation, we considered HTTP-
GET flood attacks aka distributed-denial-of-service.
Some results are shown in Table 2. The response
time remained stable even during the flooding, which
meant that the server used the desktop’s resources ef-
ficiently. We can also note that the server did not
crash during the flooding, which also confirmed the
efficient use of resources.
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Table 1: Messages exchanged between TAs’ lifecycles.

Type Sender Receiver Description
open TAi.ssi TA j.ss j Establishes a communication channel between the sender and receiver
send TAi.ssi TA j.ss j Allows the sender to ask the receiver to invoke an action
success TA j.ss j TAi.ssi Coupled with send; confirms the acceptance of the action to invoke
fail TA j.ss j TAi.ssi Coupled with send; confirms the rejection of the action to invoke
ping TAi.ssi TA j.ss j Checks periodically the liveness of the receiver
ack TA j.ss j TAi.ssi Coupled with ping; confirms the liveness of the receiver according to a

specific delay
close TAi.ssi TA j.ss j Coupled with open; shut downs a communication channel

Figure 4: Main interface of the system.

Figure 5: Screenshot of TAs discovery, selection, and requirement definition and check.
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Figure 6: Screenshot of the specification of elderly person composition-flow.

Table 2: HTTP-GET flood test results.

Number of
flood requests

Number of
client requests

Average client
response time (ms)

Server
status

100 3 2.134
√

1000 10 2.176
√

10000 10 2.141
√

100000 10 2.351
√

√
refers to server remaining functional

In the second evaluation, we considered the re-
sponse time of each module of the system deployed
on the desktop. The test consisted of a set of
HTTP GET, POST, and DELETE requests that a
client sends to a module via route endpoints. The
results showed that the response time depends com-
pletely on the complexity of the operation that the
route is executing. For instance, simple GET routes
like policy and thing artifact home-routes had short
response times (e.g., ≈ 0.5ms) unlike the routes that
perform complex operations like discovery (e.g., ≈
0.9ms) that uses Node-WoT to expose things and re-
turn their access links, which is a complex operation.

5 CONCLUSION

This paper presented a TA-based approach to design
and develop IoT applications. Building upon the con-
cept of data artifact, a TA is a chunk of unstructured
information capturing 3 cross-cutting aspects referred
to as functionality, lifecycle, and interaction flow.
Along with defining these aspects, the approach in-
tegrated techniques to discover and compose TAs. A

major feature of these techniques is their compliance
with organizations’ operation rules specified as ODRL
policies. Different illustrations about this compliance
were included such as a monitoring TA that accepts in-
vocations during a specific time-period while an op-
eration rule approves invocations at any time of the
day. This discrepancy would lead to dropping this TA
from the list of candidate TAs to integrate in an IoT ap-
plication. The technical doability of TAs discovery
and composition was verified using an in-house sys-
tem simulating some scenarios in a center for elderly
persons. In term of future work, we would like to
look into the impact of conflicting TAs’s ODRL poli-
cies on the correctness of future IoT applications.
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