
Creating a Trajectory for Code Writing: Algorithmic Reasoning Tasks

Shruthi Ravikumar, Margaret Hamilton a, Charles Thevathayan b, Maria Spichkova c,
Kashif Ali and Gayan Wijesinghe

School of Computing Technologies, RMIT University, Melbourne Victoria, Australia

gayan.wijesinghe}@rmit.edu.au

Keywords: Learning Trajectory, Programming Fundamentals, Abstract Reasoning Skills, Learning Analytics.

Abstract: Many students in introductory programming courses fare poorly in the code writing tasks of the final sum-
mative assessment. Such tasks are designed to assess whether novices have developed the analytical skills
to translate from the given problem domain to coding. In the past researchers have used instruments such as
code-explain and found that the extent of cognitive depth reached in these tasks correlated well with code writ-
ing ability. However, the need for manual marking and personalized interviews used for identifying cognitive
difficulties limited the study to a small group of stragglers. To extend this work to larger groups, we have de-
vised several question types with varying cognitive demands collectively called Algorithmic Reasoning Tasks
(ARTs), which do not require manual marking. These tasks require levels of reasoning which can define a
learning trajectory.
This paper describes these instruments and the machine learning models used for validating them. We have
used the data collected in an introductory programming course in the penultimate week of the semester which
required attempting ART type instruments and code writing. Our preliminary research suggests ART type
instruments can be combined with specific machine learning models to act as an effective learning trajectory
and early prediction of code-writing skills.

1 INTRODUCTION

Code writing requires students to develop solutions
for the given programming problems. Students are
expected to combine the various constructs, while rea-
soning about the overall behaviour of the resulting
code. A literature review on topics relating to novice
teaching and learning has been introduced in (Robins
et al., 2003). Many case studies demonstrated that
novices who lack reasoning skills struggle to write
code, see for example (Denny et al., 2008), (Lister
et al., 2009), (Lister et al., 2006), and (Malik et al.,
2019). Thus, to help students succeed in learning pro-
gramming skills, we have to, first of all, support them
in developing reasoning skills.

To determine predecessor skills required for code
writing, so-called “explain in plain English” (EiPE)
questions have been introduced in (Lopez et al.,
2008). These questions are classified at the relational
level of the Structure of the Observed Learning Tax-

a https://orcid.org/0000-0002-3488-4524
b https://orcid.org/0000-0003-2605-1722
c https://orcid.org/0000-0001-6882-1444

onomy (SOLO) taxonomy, which can be used to mea-
sure and quantify reasoning skills. The SOLO tax-
onomy classifies learning and assessment tasks based
on hierarchical cognitive levels, see (Biggs and Collis,
1982). The work of Lopez et al. was an experiment
designed to challenge the results presented in (Mc-
Cracken et al., 2001). McCracken et al. conducted
a study to assess the programming ability of 216 stu-
dents from four different universities. They claimed
that the students’ performances were poor because of
their weak capacity in problem solving. The results
of their study also demonstrate that when teaching
novice programmers (who may be weak in problem
solving skills), an educator should consider assess-
ing the students’ precursor skills, which are their code
reading skills. Lopez et al. used the students’ perfor-
mances on the EiPE question to assess the students’
reasoning skills. The study found a significant re-
lationship (a Pearson correlation of 0.5586) between
code reading and code writing.

The Neo-Piagetian theory (Teague et al., 2013)
also suggested that the novice programmers progress
through various stages of learning and they can un-

Ravikumar, S., Hamilton, M., Thevathayan, C., Spichkova, M., Ali, K. and Wijesinghe, G.
Creating a Trajectory for Code Writing: Algorithmic Reasoning Tasks.
DOI: 10.5220/0012706900003687
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 19th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2024), pages 649-656
ISBN: 978-989-758-696-5; ISSN: 2184-4895
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

649



derstand the overall purpose of the code once they de-
velop abstract reasoning skills. Students might find
problem solving difficult, because it requires combin-
ing high level thinking, problem abstraction and al-
gorithm development, with language syntax and code
tracing.

There has been extensive exploration of ap-
proaches to teach programming, comparing lan-
guages, intelligent tutoring systems, pedagogical
strategies, and conceptual methodologies, software
engineering concepts, etc., see (Echeverrı́a et al.,
2017), (Silva-Maceda et al., 2016), (Spichkova,
2019), (Xie et al., 2019), (Thevathayan et al., 2017),
and (Spichkova, 2022). Despite these advancements,
a recent survey across 161 institutions worldwide
revealed the failure rate in the introductory pro-
gramming courses to be 28%, see (Bennedsen and
Caspersen, 2019).

Thus, to have an approach to improve students’
performance (without grade inflation) would be really
helpful. For example, a scientific approach of learn-
ing trajectories in the field of mathematics has been
shown to improve students performance, see (Izu
et al., 2019). Similarly, it is essential to create a
trajectory between code tracing and code writing to
improve students code writing abilities. Izy et al.
defined tentative theoretical learning trajectories that
can guide teachers as they select and sequence learn-
ing activities in their introductory courses. In our pa-
per, we aim to create a learning trajectory for code
writing based on algorithmic reasoning.

Contributions. In this study we have developed a
combined approach to predict students’ performance
based on abstract reasoning, with the goal being to
improve the students programming skills. The main
contribution of our work is the Algorithmic Reason-
ing Tasks (ART) framework to assess the students rea-
soning skills. The ART framework includes three dif-
ferent types of questions:

• ART Detection Type questions, which require the
in-depth study of an algorithm to determine its
overall effect;

• ART Comparison Type questions, which require
identifying different algorithms producing the
same effect;

• ART Algorithm analysis type questions, which re-
quire reasoning about behaviour for specified cri-
teria such as performance.

The framework allows automatic prediction of stu-
dent performance on code writing, based on their per-
formance on ART type questions.

2 BACKGROUND AND RELATED
WORKS

In this section, we discuss related work from two
research areas, which both provide background for
our study. We start with an analysis of existing ap-
proaches to assess the programming skills of novice
programmers in their early stages of learning. Then
we introduce recent work on the application of ma-
chine learning for prediction of student performance.

2.1 Approaches to Assess Programming
Skills in Early Stages of Learning

Lack of progress in the early stages of the learning
process can create negative momentum, eventually
leading to high failure rates. Alternatively, steady
progress can lead to positive momentum as each
new concept can help reinforce the earlier founda-
tions. Some multi-institutional studies, e.g. (Fincher
et al., 2006), have used map drawing styles to pre-
dict the success of programming among novice pro-
grammers, also suggesting that problem solving, and
logical thinking are important skills necessary to suc-
ceed in the course. Results of many studies have high-
lighted the need to assess reasoning skills forming
the basis for code writing early, through appropriate
tasks. Some exhaustive descriptive studies, e.g., (Si-
mon et al., 2012). have been conducted to understand
the types of questions used in the examinations in pro-
gramming course. The study of Lopez et al. indi-
cates that there exists a loose hierarchy of skills which
the students progress through while learning introduc-
tory programming concepts, see (Lopez et al., 2008).
Activity Diagrams and Parson’s Puzzles have been
proposed as instruments that to assess the program-
ming ability because they might correlate better with
problem solving than code tracing, see (Harms et al.,
2016) and (Parsons et al., 2015). Parson’s puzzle
tasks were designed to ease novices into code writ-
ing by allowing students to piece together code frag-
ments interactively, see (Denny et al., 2008). The
Spearman ranking coefficient for code writing also
showed closer correlation with Parson’s puzzle ques-
tions when compared to tracing. Parson’s puzzle
questions however, limit students’ freedom in arriv-
ing at a solution. Multiple-choice questions (MCQs),
when appropriately designed, can be really effective
for testing intermediate levels of programming skills.
MCQs can be easily automated, which is a critical ad-
vantage of this assessment type. However, to design
MCQs really well, is not a trivial task. MCQs were
found to be the most preferred assessment types in
many different domains, see (Furnham et al., 2011)

ENASE 2024 - 19th International Conference on Evaluation of Novel Approaches to Software Engineering

650



and (Kuechler and Simkin, 2003). Students in general
felt such tests can improve their exam performance, as
they felt more relaxed, see (Abreu et al., 2018).

An approach using Activity diagrams (ADs) was
introduced to assess the programming ability of stu-
dents, see (Parsons et al., 2015). ADs are used to
present visually the logical flow of a computer pro-
gram, and have a notation for sequence, conditional
statements, and loops. The Pearson-product moment
correlation between the exam questions and class
project mark was used to measure the student abil-
ity to write the code. However, this measure may not
be accurate as students may collude in outside class
activities. The importance of developing tasks to help
students in their self-assessment was also highlighted
in (Cutts et al., 2019).

2.2 Application of Machine Learning
for Prediction of Students’
Performance

Students’ performance prediction is one of the earliest
and most valuable applications of Educational Data
Mining (EDM). A systematic literature review (SLR)
on the solutions to predict student performance us-
ing data mining and learning analytics techniques has
been presented in (Namoun and Alshanqiti, 2020).
Random Forest (RF) and Linear Regression (LR) al-
gorithms have particularly been used in predicting
students’ academic performance, where the RF algo-
rithm is in the top 5 algorithms with an accuracy of
98%. According to (Sandoval et al., 2018), in an at-
tempt to find a low-case predictive model using the
Learning management system data, RF was found to
have higher precision in predicting students who are
at risk of failing the course i.e., poor performing stu-
dents. A similar result was presented in (Chettaoui
et al., 2021), where the results of the study demon-
strated that, of the five classification algorithms, RF
outperformed with 84% accuracy.

The prediction of student performance was ap-
plied in the context of e-learning (Abubakar and Ah-
mad, 2017). The study focused on comparing the
state-of-the-art classifier algorithms to identify the
most suitable for creating a learning support tool.
Two comparative studies were conducted using dif-
ferent data sets comprising 354 and 28 records. Find-
ings of that study revealed that the Naive Bayes al-
gorithm achieved 72.48% accuracy, followed by LR
with 72.32%. To predict student’s success in elec-
tronics engineering licensure exam, 500 student’s data
over different cohorts from 2014 - 2019 was used, see
(Maaliw, 2021). The study used RF algorithm to pre-
dict the student exam outcome by using 33 different

features and had a prediction accuracy of 92.70%.
An extensive evaluation of machine learning algo-

rithms such as Decision Tree, Naive Bayes, Random
Forest, PART and Bayes Network was conducted on
412 postgraduate students’ data to predict their aca-
demic performance in the current semester. The study
(Kumar and Singh, 2017) demonstrated that Random
Forest (RF) gave the best performance with precision
(1) which is essential in identifying students that are
likely to fail at the early stages of the course.

In a study presented in (Meylani et al., 2014),
Neural Network (NN) and LR algorithms were eval-
uated with respect to prediction of students’ perfor-
mance in mathematics examination. The LR mod-
els (Linear, Multi-nominal and Ordinal) outperformed
the NN models. The study used the student’s perfor-
mance to in-class mathematics tests to predict if the
students would pass, fail or excel in the final exam.

3 METHODOLOGY

For the study reported in this paper, data was collected
through an in-class test facilitated through Google
forms. The test consisted of two parts where the first
part included objective questions, and the second part
included code writing questions. The first part had 12
objective questions which included tracing questions
and three different types of ART questions, explained
below. Students were advised to spend about 30 min-
utes on the objective questions (Tracing and Algorith-
mic Reasoning Tasks) and the remaining 80 minutes
on three code-writing questions.

3.1 Design of an Abstract Reasoning
Task (ART) Type Question

The ART type questions were designed to get rela-
tional level responses from students by making trac-
ing difficult or impossible within allocated time. The
ART-Detection question shown in Figure 1 was used
in the study, where students had to extract the purpose
of the algorithm and express it by writing the correct
output for different inputs. Given 6 different input ar-
rays with 7 or more values in each, students who have
not extracted the overall effect of the algorithm and
apply it to different inputs are unlikely to get all the
outputs correct. The students are only awarded the
mark if they get all the outputs correct.

In the past getting relational responses from stu-
dents primarily relied on the code-explain instrument.
The main drawback of code-explain is the need for
manual marking. The ART-detection instrument we
have designed requires a similar relational response

Creating a Trajectory for Code Writing: Algorithmic Reasoning Tasks

651



Figure 1: ART Detection Type question used in the study.

Figure 2: ART Comparison Type question used in the study.

Figure 3: ART Analysis Type question used in the study.

from students who firstly need to understand the over-
all effect of the algorithm before applying it repeat-
edly under the time constraint. Similarly, the ART-
comparison instrument requires the students to iden-
tify the algorithms that have similar behaviour while
the ART-analysis instrument requires students to anal-
yse the algorithm and identify the best- and worst-
case scenarios. The SOLO classification of the objec-
tive questions used in this study and their purpose are
given in the below Table 1. The main advantage with
all three ART instruments is that it can be automated
and that the marking will not be subjective. The
ART-Comparison question and ART-Analysis ques-

tion used in the study are shown in Figures 2 and 3.

3.2 Code Writing

This test involved three code writing tasks. We con-
sider that the process of writing or creating a block
of code to answer the given code writing question in-
volves:

• Problem Analysis, which requires analysing and
understanding the problem domain;

• Solution Planning, which requires creating the
steps in coming up with a viable solution (algo-
rithm) to solve the problem;

• Coding, which involves converting the problem
domain into program domain by combining the
different constructs (for-loop or while-loop, etc.)
and syntax, to write programming code which
computes the required answer(s).

3.3 Marking

A positive grading scheme was used for the objective
questions:

• 1 mark was awarded for a correct answer,

• 0 marks were awarded for an incorrect answer
(an answer which is only partially correct was la-
belled as incorrect), and

• no negative marks were awarded for incorrect an-
swers.

For the code writing tasks, partial marking was ap-
plied depending on whether the given code was par-
tially correct or fully correct.

Each Code Writing question carried 3 marks.
Grading was done by an experienced lecturer.

3.4 Choice of Machine Learning Model

Because we are predicting the student performance
based on their score for an in-class assessment, it
is important to ensure the algorithm is outlier resis-
tant and scalable. We analysed several automated
approaches to predict the students’ performance, see
Section 2.2. Their results highlighted that application
of the Random Forest algorithm is the most promising
direction for prediction of students’ performance. We
trained the model using both Random Forest (RF) and
Ordinal Logistic Regression (LR) algorithms because
of the inherent nature of the variables. Therefore, in
this this study we report the performance of both these
models in predicting the student performance in code
writing.

ENASE 2024 - 19th International Conference on Evaluation of Novel Approaches to Software Engineering

652



Table 1: Classification of Objective Questions using SOLO Taxonomy.

Question Type SOLO Level Purpose

Tracing Multi-Level Requires the students to understand each statement and trace
each line in the in the given piece code and determine the output

Detection Relational
level

Requires abstraction skills to detect what the role of the algorithm.
Students are expected to apply cognitive skills at relational level
to analyze how the behavior will change for different inputs.

Comparison Relational
level

Students are expected to identify algorithms which will display the same
collective or composite behavior considering different input values.

Analysis Relational
level

Students are expected to analyze an algorithm including working out
worst case scenarios considering all possible paths.

3.5 Data Exploration and Training

In this study we have used the students’ performance
on the objective questions (tracing and ART ques-
tions) to predict students’ success in code writing.
Data used in this study consists of 243 students’ per-
formances on 15 programming questions including
both objective and code writing questions. The stu-
dents’ data was loaded into Google drive and mounted
on to Google Colab Notebook.

We performed the data profiling using the python
panda library to visualise the data. Data pre-
processing was performed to identify any duplicates,
missing values and data types. The data was en-
crypted to hide any student’s identifying information
to ensure privacy and confidentiality. The data en-
coding of the independent variables was performed
to ensure all the data in the dataset are of the same
datatype. The unique code writing marks in the
dataset 0,0.5,1,1.5,2,2.5 and 3 were encoded to
0,1,2,3,4,5 and 6 respectively.

The next step in the data preparation was to sepa-
rate the dependent and independent variables:

• The dependent variables are the features which
we train the model on. In our study, the features
are the students’ scores to the objective questions.

• The independent variables are also called the la-
bels. In our study, these are the students score to
code writing programming questions.

From our data exploration using the data profiling in
Python we found that the data set had a class imbal-
ance. To overcome the issue of class imbalance in the
dataset the following steps were performed:

• Step 1. Firstly, we identified the class labels
(0,1,2,3,4,5,6) whose frequency in the dataset is
less than 10 and these class labels were removed
from the dataset.

• Step 2. The dataset is then split into training and
testing dataset using the train test split function
from Scikit-learn (sklearn) model selection.

• Step 3. The class labels whose frequencies were
less than 10 (identified in Step 1) were added to

the training split of the dataset to ensure that the
machine learning algorithm had enough data on
these labels to train on. The dataset is now ready
to be trained by the chosen machine learning al-
gorithms.

The training split of the dataset was then trained
using the Scikit-learn (sklearn) ensemble Random-
Forestregresso and LIBLINEAR Python library. The
10-fold (k-fold) cross validation technique was then
applied to both the models using the GridSearchCV
function from sklearn. 10-fold cross validation in-
volves randomly dividing the training data into 10
folds. The first fold was considered as the testing set
and the model was fitted on the remaining 9 folds of
the data.

We have compared the effectiveness of both the
trained data models using the following metrics
shown in below Table 2. In addition to the above met-
rics, different stratified training and test splits were
used to evaluate the performance of the models.

4 RESULTS

Table 3 presents a performance comparison of the
Random Forest (RF) and Logistic Regression (LR)
models for different training and test splits in predict-
ing students’ performance to code writing questions.
RF attained the highest cross-validated (10-fold) ac-
curacy score of 85.45%. In comparison to the LR
model, the RF model has a high precision of predict-
ing students who are at the risk of failure (getting 0 or
0.5 marks in code writing).

Figures 4 and 5 demonstrate the precision, recall
and F1-score of both models in predicting students
that are at risk of failure. According to our analy-
sis, RF algorithm performs better compared to LR in
precision, recall and F1-measure: RF has a high pre-
cision of 0.90 and 1 in predicting students that are to
score 0 and 0.5 marks in code writing tasks. This pre-
cision is vital in identifying students that are at risk to
fail in the programming course. Based on our analy-

Creating a Trajectory for Code Writing: Algorithmic Reasoning Tasks

653



Table 2: Performance metrics to evaluate the modelPerformance metrics to evaluate the model.

Metric Definition Formula

Accuracy
It is the proportion of correction predictions, i.e.,
both true positives (TP) and true negatives (TN),
among total number of cases examined

= (TP+TN)/(TP+TN+FP+FN)

Recall The ability of a model to find all the relevant
cases within a data set = (TP/(TP+FN))

Precision
Precision, also known as positive predictive value,
is the fraction of relevant instances among the
retrieved instances

= (TN/(TN+FP))

F −Measure It is the harmonic mean of precision and recall = (2∗Precision∗Recall)/(Precision+Recall)

sis it was clear that RF was more suitable models for
predicting the student performance, which also corre-
lated with the results presented in the related works,
see Section 2.2.

To further evaluate the RF model for applying the
ART type questions to predict the students code writ-
ing performance, we have analysed the feature impor-
tance: The RF model computes which feature con-
tributes the most to decrease the weighted impurity.
The feature with highest value contributes the most
in predicting the variable i.e, code writing. We have
used the Scikit-learn to obtain the feature importance.

Figure 6 shows the feature importance computed
by the Random Forest model. Based on our analy-
sis, we found that the student’s performance on ART
Comparison type questions (0.11) had a significant in-
fluence on the student code writing results, followed
by ART Detection type questions (0.079) and ART
Analysis questions (0.074). The least contribution
was from the tracing question grades (0.072). This
confirms that the RF model uses the ART type ques-
tions to predict the students code writing abilities.

Figure 4: Performance metrics of RF and LF models in pre-
dicting the students scoring 0 marks.

Table 3: Comparison of accuracy of RF and LF models.

Train-Test split Accuracy
RF LR

75−25 85.45% 46.45%
70−30 81.82% 41.81%

Figure 5: Performance metrics of RF and LF models in pre-
dicting the students scoring 0.5 marks.

Table 4: Spearman Rank Correlation with Code Writing for
tracing, comparison (C), detection (D), analysis (A) and av-
erage correlation for all ART instruments.

Non-ARTs ARTs
Tracing C D A average

0.63 0.69 0.68 0.74 0.70

Table 5: Comparison of Pearson correlations of ART, Ac-
tivity Diagrams, and Parson’s Puzzle with code writing (the
data on both Activity Diagrams and Parson’s Puzzle have
been provided in (Parsons et al., 2015)).

ART Activity Diagrams Parson’s Puzzle
0.37 0.26 0.12

Figure 6: Feature Importance of Random Forest.

The Spearman correlation coefficients, presented in
Table 4, affirm a very strong positive relationship
between ART Analysis type questions and the code
writing question at 0.74. In addition, ART Compari-
son (0.69) and ART Detection (0.68) have a positive

ENASE 2024 - 19th International Conference on Evaluation of Novel Approaches to Software Engineering

654



correlation with code writing. The ART type instru-
ments as a whole have higher positive correlations of
0.70 compared to what we can get for tracing (non-
ART instrument), which was only 0.63.

Based on our findings summarized in Tables 3 and
4 as well as Figure 6, it is clear that the ART instru-
ment types have strong connection to students’ code
writing performance. Thereby confirming ART in-
struments type can assess the needed relational skills
required to excel in coding. This confirms that ART
instruments can be used to assess the programming
abilities of the students and to identify the students
who are at the risk of failure in the early stages of
the course. Moreover, comparing our results with
the results on Activity Diagrams and Parson’s Puz-
zles from (Parsons et al., 2015), we found that the
ART instruments have a slightly higher Pearson cor-
relation (0.37) compared to Activity Diagrams (0.26)
and Parson’s Puzzles (0.12), see Table 5.

Based on the above findings, our study affirms that
ART type instruments can be used to assess the stu-
dents’ programming abilities at the early stages of the
course to reduce failure rates and the RF model is
more suitable compared to LR to automatically iden-
tify students who might require additional support for
learning code writing skills.

5 CONCLUSION AND FUTURE
WORK

In many cases, students struggle with programming
mainly through the lack of problem-solving ability.
Problem solving ability is also central for students
having to apply scientific and mathematical princi-
ples to solve real world problems. In recent years,
learning trajectories resulting from a research-based
curriculum development approach have benefited stu-
dent learning mathematics, by modelling their think-
ing process, see (Izu et al., 2019). However, there
has been little research done on how such an approach
can foster problem solving and code writing skills in
novice programmers.

Our research has therefore focused on supple-
menting traditional and well-researched instruments
such as program tracing with tasks demanding more
relational thinking gradually. We have developed
ART-type questions such as comparison, detection,
and analysis which require students to map from
problem domain to the solution domain (coding). We
are following a scientific approach by using machine
learning models that identify tasks which are pro-
gressively more complex but lead gradually to skills
needed for problem solving and code writing. The

main novelty of our approach is the ability to auto-
mate the process of assessment feedback by creating
a trajectory of tasks which require no manual inter-
vention and by predicting the students programming
abilities based on these trajectory tasks.

The data collected with students have clearly re-
vealed tasks demanding relational level responses
which better correlate with code writing when com-
pared to tracing. Our approach involved develop-
ing a trajectory of tasks rooted in a multidimen-
sional framework that combined different levels of the
SOLO taxonomy with multiple domains. It is our be-
lief such an approach can lead to better learning out-
comes in coding as code writing requires analytical
ability to understand the problem domain, as well as
abstraction skills and the ability to come up with al-
gorithms which can be coded and implemented.

ART type instruments designed to get relational
level responses showed greater correlation with code
writing when compared to tracing. The Random For-
est regression model had an accuracy of 84.5% in pre-
dicting student success in code writing based on al-
gorithmic reasoning tasks. The Spearman Rank Cor-
relation coefficient was substantially higher for ART
types when compared to tracing. Within the Algorith-
mic Reasoning Tasks, comparison questions showed
substantially higher feature importance when com-
pared to tracing, ART-detection and ART-analysis.
Our preliminary results show new types of instru-
ments that gather relational responses can be devel-
oped resulting in greater similarity to the reasoning
skills needed in code writing. We have shown that
these ART type instruments form a loose trajectory
starting from Code Tracing Questions to ART Anal-
ysis questions, to ART Detection questions, to ART
Comparison questions to code writing. By classify-
ing such instruments using machine learning, novices
can be provided with a learning trajectory that equips
them better with the cognitive skills needed for code
writing.

Our preliminary studies with tasks combining
multiple domains (problem domain and coding) sug-
gest these tasks demand even greater cognitive depth.
To further evaluate we would consider collecting
more data over the next few semesters. We also aim to
use the final exam results and predict the student suc-
cess in passing or failing the exam based on how well
they perform in ART questions in their mid-semester.
We also would like to identify more instruments that
can be used to assess the students’ programming abil-
ities.

Creating a Trajectory for Code Writing: Algorithmic Reasoning Tasks

655



REFERENCES

Abreu, P. H., Silva, D. C., and Gomes, A. (2018). Multiple-
choice questions in programming courses: Can we use
them and are students motivated by them? TOCE,
19(1):1–16.

Abubakar, Y. and Ahmad, N. B. H. (2017). Prediction of
students’ performance in e-learning environment us-
ing random forest. IJIC, 7(2).

Bennedsen, J. and Caspersen, M. E. (2019). Failure rates
in introductory programming: 12 years later. ACM
inroads, 10(2):30–36.

Biggs, J. and Collis, K. (1982). A system for evaluating
learning outcomes: The solo taxonomy.

Chettaoui, N., Atia, A., and Bouhlel, M. S. (2021). Pre-
dicting student performance in an embodied learning
environment. In MIUCC, pages 1–7. IEEE.

Cutts, Q., Barr, M., Bikanga Ada, M., Donaldson, P.,
Draper, S., Parkinson, J., Singer, J., and Sundin, L.
(2019). Experience Report: Thinkathon–Countering
an ”I Got It Working” mentality with pencil-and-paper
exercises. In ITiCSE, pages 203–209.

Denny, P., Luxton-Reilly, A., and Simon, B. (2008). Eval-
uating a new exam question: Parsons problems. In
ICER, pages 113–124.

Echeverrı́a, L., Cobos, R., Machuca, L., and Claros,
I. (2017). Using collaborative learning scenarios
to teach programming to non-cs majors. CAEE,
25(5):719–731.

Fincher, S., Robins, A., Baker, B., Box, I., Cutts, Q.,
de Raadt, M., Haden, P., Hamer, J., Hamilton, M.,
Lister, R., et al. (2006). Predictors of success in a
first programming course. In ACE, pages 189–196.

Furnham, A., Batey, M., and Martin, N. (2011). How would
you like to be evaluated? the correlates of students’
preferences for assessment methods. Personality and
Individual Differences, 50(2):259–263.

Harms, K. J., Chen, J., and Kelleher, C. L. (2016). Distrac-
tors in parsons problems decrease learning efficiency
for young novice programmers. In ICER, pages 241–
250.

Izu, C., Schulte, C., Aggarwal, A., Cutts, Q., Duran, R.,
Gutica, M., Heinemann, B., Kraemer, E., Lonati, V.,
Mirolo, C., et al. (2019). Fostering program compre-
hension in novice programmers-learning activities and
learning trajectories. In ITiCSE-WGR, pages 27–52.

Kuechler, W. L. and Simkin, M. G. (2003). How well do
multiple choice tests evaluate student understanding
in computer programming classes? ISE, 14(4):389.

Kumar, M. and Singh, A. (2017). Evaluation of data min-
ing techniques for predicting student’s performance.
MECS, 9(8):25.

Lister, R., Fidge, C., and Teague, D. (2009). Further ev-
idence of a relationship between explaining, tracing
and writing skills in introductory programming. ACM
SIGCSE Bulletin, 41(3):161–165.

Lister, R., Simon, B., Thompson, E., Whalley, J. L., and
Prasad, C. (2006). Not seeing the forest for the trees:
novice programmers and the SOLO taxonomy. ACM
SIGCSE Bulletin, 38(3):118–122.

Lopez, M., Whalley, J., Robbins, P., and Lister, R. (2008).
Relationships between reading, tracing and writing
skills in introductory programming. In ICER, pages
101–112.

Maaliw, R. R. (2021). Early prediction of electronics engi-
neering licensure examination performance using ran-
dom forest. In AIIoT, pages 41–47. IEEE.

Malik, S. I., Mathew, R., Al-Nuaimi, R., Al-Sideiri, A.,
and Coldwell-Neilson, J. (2019). Learning prob-
lem solving skills: Comparison of e-learning and m-
learning in an introductory programming course. EIT,
24(5):2779–2796.

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Ha-
gan, D., Kolikant, Y. B.-D., Laxer, C., Thomas, L.,
Utting, I., and Wilusz, T. (2001). A multi-national,
multi-institutional study of assessment of program-
ming skills of first-year cs students. In ITiCSE-WGR,
pages 125–180.

Meylani, R., Bitter, G. G., and Castaneda, R. (2014). Pre-
dicting student performance in statewide high-stakes
tests for middle school mathematics using the results
from third party testing instruments. Journal of Edu-
cation and Learning, 3(3):135–143.

Namoun, A. and Alshanqiti, A. (2020). Predicting student
performance using data mining and learning analytics
techniques. Applied Sciences, 11(1):237.

Parsons, D., Wood, K., and Haden, P. (2015). What are
we doing when we assess programming? In ACE,
volume 27, page 30.

Robins, A., Rountree, J., and Rountree, N. (2003). Learning
and teaching programming: A review and discussion.
Computer science education, 13(2):137–172.

Sandoval, A., Gonzalez, C., Alarcon, R., Pichara, K., and
Montenegro, M. (2018). Centralized student perfor-
mance prediction in large courses based on low-cost
variables in an institutional context. IHE, 37:76–89.

Silva-Maceda, G., Arjona-Villicana, P. D., and Castillo-
Barrera, F. E. (2016). More time or better tools?
Transactions on Education, 59(4):274–281.

Simon, Chinn, D., de Raadt, M., Philpott, A., Sheard, J.,
Laakso, M.-J., D’Souza, D., Skene, J., Carbone, A.,
Clear, T., et al. (2012). Introductory programming:
examining the exams. In ACE, pages 61–70.

Spichkova, M. (2019). Industry-oriented project-based
learning of software engineering. In ICECCS, pages
51–60. IEEE.

Spichkova, M. (2022). Teaching and learning requirements
engineering concepts: Peer-review skills vs. problem
solving skills. In RE, pages 316–322. IEEE.

Teague, D., Corney, M., Ahadi, A., and Lister, R. (2013). A
qualitative think aloud study of the early neo-piagetian
stages of reasoning in novice programmers. In ACE,
pages 87–95. ACS.

Thevathayan, C., Spichkova, M., and Hamilton, M. (2017).
Combining agile practices with incremental visual
tasks. In ACE, pages 103–112.

Xie, B., Loksa, D., Nelson, G. L., Davidson, M. J., Dong,
D., Kwik, H., Tan, A. H., Hwa, L., Li, M., and Ko,
A. J. (2019). A theory of instruction for introductory
programming skills. CSE, 29(2-3):205–253.

ENASE 2024 - 19th International Conference on Evaluation of Novel Approaches to Software Engineering

656


