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Abstract: This paper presents pyZtrategic: a library that embeds strategic term rewriting and attribute grammars in the
Python programming language. Strategic term rewriting and attribute grammars are two powerful programming
techniques widely used in language engineering: The former relies on strategies to apply term rewrite rules in
defining large-scale language transformations, while the latter is suitable to express context-dependent language
processing algorithms. Thus, pyZtrategic offers Python programmers recursion schemes (strategies) which
apply term rewrite rules in defining large scale language transformations. It also offers attribute grammars to
express context-dependent language processing algorithms. PyZtrategic offers the best of those two worlds,
thus providing powerful abstractions to express software maintenance and evolution tasks.
Moreover, we developed several language engineering problems in pyZtrategic, and we compare it to well
established strategic programming and attribute grammar systems. Our preliminary results show that our library
offers similar expressiveness as such systems, but, unfortunately, it does suffer from the current poor runtime
performance of the Python language.

1 INTRODUCTION

Modern software languages offer powerful mecha-
nisms to improve the productivity of their program-
mers, like powerful type and modular systems, bad
smell detection and refactorings, etc. To design and
implement such mechanisms, we need powerful tech-
niques to analyse, manipulate and evolve such lan-
guages.

Strategic term rewriting (Luttik and Visser,
1997; Visser et al., 1998) and Attribute Grammars
(AG) (Knuth, 1968) have a long history in support-
ing the development of modern software language
analysis, maintenance, refactoring, evolution and op-
timizations. The former relies on recursion schemes,
called strategies, to traverse a tree while applying a
set of rewrite rules, while the latter is suitable to ex-
press static context-dependent language processing
algorithms. The expressiveness and usefulness of such
techniques can be seen by the many language systems
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supporting both AGs (Gray et al., 1992; Reps and
Teitelbaum, 1984; Kuiper and Saraiva, 1998; Mernik
et al., 1995; Ekman and Hedin, 2007; Dijkstra and
Swierstra, 2005; Van Wyk et al., 2008) and rewriting
strategies (van den Brand et al., 2001; Balland et al.,
2007; Lämmel and Visser, 2002; Cordy, 2004; Sloane
et al., 2010; Visser, 2001). In fact, these systems have
been used to express software maintenance and evolu-
tion of large (real) language/programs, such as smell
detection and program refactoring (Lämmel and Visser,
2002; Macedo et al., 2024).

Most of these powerful systems, however, are large
language engineering systems that support their own
AG or strategic notation. These systems require a con-
siderable development effort to build, to maintain, and
to extend. As a result, most of these systems support
one of the techniques only. A more flexible approach
is obtained when we consider the embedding of such
techniques in a general purpose language. A language
embedding, however, usually relies on advanced mech-
anisms of the host language. In this paper, we present
the pyZtrategic system which embeds both strategic
term rewriting and attribute grammars in the Python
language. PyZtrategic offers the first embedding of
these techniques in Python, thus making such powerful
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language engineering techniques available to Python
programmers.

In this paper, we show how our Python strate-
gic term rewriting embedding can be used to express
source code optimisations. Moreover, we use AGs to
express scope rules in the same language and show
how it can be combined with strategies to provide
powerful context dependent tree transformations. Fi-
nally, we compare the expressiveness of pyZtrategic
with the well-known Stratego system (Visser, 2001)
and we benchmark our library against the Ztrategic
library (Macedo et al., 2022): a Haskell combined em-
bedding of strategies and AGs. Our first results show
that the expressiveness of our library is similar to Strat-
ego strategic notation. Python is known to be a slow
language (Pereira et al., 2021) and our benchmarks
show this poor performance of the language: pyZ-
trategic is slower than the similar Ztrategic Haskell
library (Macedo et al., 2022; Macedo et al., 2024).

This paper is organised as follows: Section 2
presents a usage example using Stratego and then our
zipper-based embedding of strategic term rewriting.
In Section 3, we show how to combine zipper-based
strategic term rewriting with attribute grammars. In
Section 4 we compare our library against Stratego and
Ztrategic and use it to define usage examples. Sec-
tion 5 discusses related work, and in Section 6 we
present our conclusions.

2 ZIPPER-BASED STRATEGIC
PROGRAMMING

Both strategic term-rewriting (Luttik and Visser,
1997; Lämmel and Visser, 2002) and attribute gram-
mars (Knuth, 1968) rely on generic (abstract syntax)
tree traversal mechanisms to navigate on trees (Saraiva
and Swierstra, 1999). The former to express large
scale tree transformations (Visser et al., 1998; Lämmel
and Visser, 2003) while the latter to express context-
dependent algorithms (Saraiva, 1999; Saraiva, 2002).
Because most useful large scale transformations rely
on context information, there are several approaches
that combine both techniques, namely the Kiama
framework (Sloane et al., 2010) - an embedding of
strategies and AGs in the Scala language - and the
Ztrategic library (Macedo et al., 2022) - a Haskell-
based embedding of both techniques.

This paper presents the pyZtrategic framework:
a multi paradigm embedding of strategies and AGs
in the Python programming language. This section
discusses the embedding of strategies in Python, while
in Section 3.1 we combine this embedding with AGs.

Before presenting this embedding in detail, let us

add(e,const(0))→ e (1)
add(const(0),e)→ e (2)

add(const(a),const(b))→ const(a+b) (3)
sub(e1,e2)→ add(e1,neg(e2)) (4)

neg(neg(e))→ e (5)
neg(const(a))→ const(−a) (6)

var(id) | (id, just(e)) ∈ env → e (7)
Figure 1: Optimization Rules.

consider a motivating example we will use throughout
the paper. Consider the (sub)language of Let expres-
sions, as usually expressed in functional languages.
Next, we show an example of a valid let expression.

p = let a = b + 0
c = 2
b = let c = 3 in c + c

in a + 7 - c

In the definition of p several names are defined in
the same scope. Typically, in let expressions, defining
the same name twice in the same scope is a semantic
error, as well as using a non-defined name. It is also
valid to re-define names that were defined in an outer
scope. For example, in p the name c is re-defined in a
nested let expression.

Our objective with this example is to define an
optimizer for such let expressions. This optimizer fol-
lows the rules presented in Figure 1 given in (Kramer
and Van Wyk, 2020). Rules 1 through 6 are relatively
simple, as they consist of matching certain patterns in
an expression and replacing them. For example, rules
1 and 2 define that the addition of any expression e
with the constant value 0 should be replaced by just
the expression e. In fact, rules 1 to 6 are the perfect
setting to be expressed as a strategic program, as we
will show in the next subsection.

Rule 7, however, requires the knowledge of the
environment env, which contains all defined names
in the scope and its respective values. The rule itself
defines that any variable id can be replaced by its value
as defined in the environment. Strategic programming,
however, is context-free and, consequently, it does not
provide a natural setting to express such rules. In Sec-
tion 3, we use the same Python zipper-based setting
to embed attribute grammars: a suitable formalism
to define context-dependent computations. By using
a uniform setting to express both the strategic and
AGs embeddings, we can easily combine the two for-
malisms and get the best of both worlds. As a result,
our multi-paradigm embedding provides an elegant
setting to express context-dependent re-writings such
as required by rule 7.
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2.1 Stratego

In order to present strategic term-rewriting, we start
by presenting a strategic program expressed in the no-
tation used by the well-known Stratego system. The
Stratego system, developed by Eelco Visser, is a widely
used and powerful strategic term rewriting based sys-
tem which is part of the Spoofax Language Designer’s
Workbench (Kats and Visser, 2010). Stratego uses a
domain specific language (DSL) to express algebraic
data types, re-writing rules, and strategies to apply
such rules. Stratego is based on a traditional architec-
ture: it includes a language processor that translates
the Stratego specification into an efficient strategic pro-
gram (expressed in C). Such systems, however, tend
to be large, complex, and thus difficult to maintain
and evolve. In this section, we show an embedding of
strategic term re-writing that does not rely on such a
large language system. Instead, it uses techniques to
embed a DSL - defining a strategic program - directly
into the Python general purpose language.

In order to briefly introduce strategic term re-
writing, we start by expressing our running example
in Stratego (rules 1 to 6). At the end of this section,
we will present an equivalent and very similar solu-
tion, but now fully expressed as an embedded DSL in
Python.

Let us start by defining the abstract syntax of the let
(sub)language via Stratego abstract data type notation.

signature
sorts
Let List Exp

constructors
Let : List * Exp -> Let
NestedLet : STRING * Let * Exp

-> List↪→

Assign : STRING * Let * Exp
-> List↪→

Empty : List
Add : Exp * Exp -> Exp
Sub : Exp * Exp -> Exp
Neg : Exp -> Exp
Var : STRING -> Exp
Const : INT -> Exp

We omit here the explanation of these data types,
since they are self-explanatory. 1 Let us consider now
that we wish to implement the simple arithmetic opti-
mizer for our example. In Stratego we define the first
6 rules shown in Figure 1 as follows.

1The reader can also find ample documentation about
the Stratego system from its webpage.

rules
Opt : Add(Const(0),x) -> x
Opt : Add(x,Const(0)) -> x
Opt : Add(Const(x),Const(y)) ->

Const(<add> (x, y))↪→

Opt : Sub(x,y) -> Add(x, Neg(y))
Opt : Neg(Neg(x)) -> x
Opt : Neg(Const(x)) -> Const(<mul> (x

,-1))↪→

These 6 rules work on a single node of the tree. In
order to express the application of this re-writing while
traversing the tree, we need to use pre-defined Stratego
strategies. Next, we show the strategic solution of
our optimization where expr is applied to the input
tree in an innermost strategy. This strategy performs
a transformation as many times as possible, starting
from the inside nodes.

strategies
main = io-wrap(eval)
eval = innermost(Opt)

As mentioned before, strategic term rewriting does
not provide a natural way to express rule 7. The Strat-
ego system is no exception. In Section 3 we will
provide an elegant solution for rule 7. Next, we show
how to embed strategic term rewriting in Python and
to express rule 1 to 6 directly as a Python program.

2.2 Python Embedding of Strategies

The Stratego system uses standard language engineer-
ing techniques to implement a DSL. Indeed, it imple-
ments a language processor for that DSL. PyZtrategic
uses a different approach: it embeds strategies in the
Python programming language. The idea is that writ-
ing a strategic program in pyZtrategic is similar to
express it in Stratego. The key advantage of pyZtrate-
gic is that we do not have to implement a language
processor from scratch for the strategic DSL.

Next, we show the key ingredients of our embed-
ding, namely the use of algebraic data types, the defini-
tion of type (node) specific transformations by relying
on pattern matching, and the use of our Python strate-
gic combinator library to perform such specific trans-
formation while traversing the tree using a reusable
recursion pattern (i.e. strategy).

One of the key ingredients of most strategic term
rewriting systems (Kats and Visser, 2010; Lämmel and
Visser, 2002; Macedo et al., 2022; Sloane et al., 2010)
is the use of algebraic data types to express the abstract
syntax of the language under analysis/transformation.
Algebraic data types are not native in Python. Thus,
we rely on a Python library 2 that offers algebraic data

2https://pypi.org/project/algebraic-data-types/

pyZtrategic: A Zipper-Based Embedding of Strategies and Attribute Grammars in Python

617



types to Python programmers. Using this library, we
are able to express the previous Stratego definition of
the let language directly in Python.
@adt
class Let:

LET: Case["List", "Exp"]

@adt
class List:

NESTEDLET: Case[str, "Let", "List"]
ASSIGN: Case[str, "Exp", "List"]
EMPTY: Case

@adt
class Exp:

ADD: Case["Exp", "Exp"]
SUB: Case["Exp", "Exp"]
NEG: Case["Exp"]
VAR: Case[str]
CONST: Case[int]

Each data type (or grammar symbol) corresponds
in Python to a class, upon which we apply the @adt
decorator. For each constructor/production, we declare
a field with its case annotation. As a result, we are able
to express the abstract syntax very much like Stratego
programmers do.

Having defined the algebraic data type, we can
write p directly as a Python expression:
p = Let.LET(List.ASSIGN("a",

Exp.ADD(Exp.VAR("b"), Exp.CONST(0)),↪→
List.ASSIGN("c", Exp.CONST(2),
List.NESTEDLET("b",

Let.LET(List.ASSIGN("c",
Exp.CONST(3), List.EMPTY()),
Exp.ADD(Exp.VAR("c"),
Exp.VAR("c"))),

↪→
↪→
↪→
↪→
List.EMPTY()))),

Exp.SUB(Exp.ADD(Exp.VAR("a"),
Exp.CONST(7)), Exp.VAR("c")))↪→

The algebraic data type library also offers pattern
matching that we may use to define a type/node spe-
cific transformation, in the form of the match function.
Now we define the first 6 rules in Python as follows:
def optAdd(x, y):

# rule 1
if (y == Exp.CONST(0)):

return x
# rule 2
elif (x == Exp.CONST(0)):

return y
# rule 3
elif (lambda a, b: x == Exp.CONST() and

y == Exp.CONST()):↪→
return Exp.CONST(x.const() +

y.const())↪→
else:

return st.StrategicError

def optNeg(x):
# rule 5
if (lambda a: x == Exp.NEG()):

return x.neg()
# rule 6
elif (lambda b: x == Exp.CONST()):

return Exp.CONST(-x.neg())
else:

return st.StrategicError

def expr(exp):
x = exp.match(

add=lambda x, y: optAdd(x, y),
neg=lambda x: optNeg(x),
var=lambda x: st.StrategicError,
const=lambda x: st.StrategicError,
#rule4
sub=lambda x, y: Exp.ADD(x,

Exp.NEG(y))↪→
)
if x is st.StrategicError:

raise x
else:

return x

Functions optAdd and optNeg check for specific
patterns and apply the optimizations if said patterns
are found. We include comments in the code for bet-
ter readability on where each rule is defined in these
functions. In function expr, we check what the con-
structor of the node is, and apply the corresponding
optimizations for that constructor. For Add nodes, we
call optAdd, and so on.

As the match function requires the pattern match-
ing to be total, we have to return a result for con-
structors which we do not want to modify; for this,
we return the StrategicError value. This is an excep-
tion defined in the pyZtrategic library to signal failure,
and thus we signal it by raising the exception when
we are not interested in modifying a node. Because
StrategicError is an exception, we need an if clause to
disambiguate if the computed value x is an exception
to be raised, or a value to be returned.

As we mentioned, expr works on a single tree node,
only. In order to apply this rule to all possible nodes in
the tree, we need a generic tree traversal mechanism
like the one offered by Stratego strategic combinators
(for example, function innermost).

Having expressed all rewriting rules from 1 to 6
in expr, now we need to use our strategic combina-
tors that navigate in the tree while applying the rules.
These combinators rely on the Zipper data structure:
a generic mechanism to navigate on heterogeneous
trees (Huet, 1997) 3. To guarantee that all the pos-
sible optimizations are applied, we use an innermost

3Zippers are also implemented as a Python library https:
//pypi.org/project/zipper/
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traversal scheme. Thus, our optimization is expressed
as:
def optR(z):

return st.innermost(lambda x:
st.adhocTP(st.failTP, expr, x),
z).node()

↪→
↪→

The transformation failTP is an always failing
transformation (raises our StrategicError exception)
and the adhocTP combinator joins two transformations
into a single one by trying to apply the rightmost func-
tion, and if it fails, applies the left one. Therefore, the
result of the usage of adhocTP here is a transformation
function that attempts to apply expr when possible,
and in any other cases, it fails due to failTP. The in-
nermost traversal scheme will attempt to apply this
transformation as many times as possible until a fixed
point is reached.

Rule 7 is context dependent and requires first
to compute the environment where a name is used.
Rewriting rules relying on context information are not
easily expressed as pure strategic definitions. The com-
putation and flow of context information, in a (abstract
syntax) tree, is the natural setting for AGs. Thus, we
will return to rule 7 after we extend our Python embed-
ding with AGs.

3 STRATEGIC ATTRIBUTE
GRAMMARS

There are transformations that rely on contextual in-
formation that needs to be collected first so that the
transformation can be applied. Rule 7 from Figure 1 is
such a case. This section will explain how to combine
strategies with AGs, showing how to implement rule 7.

3.1 Zipper-Based Attribute Grammars

We show a visual representation of our AG in Fig.2
along with its definition in Python. In Fig.2, produc-
tions are shown with the parent node above and chil-
dren nodes below, inherited attributes are on their left
and synthesized attributes on their right, and arrows
show how information flows between productions and
their children to compute attributes.

In this AG, the attribute dcli is an accumulator, used
to collect all variables defined in a let. The complete
list is synthesized in the attribute dclo. Our attributes
will be a list of triples containing the variable name,
the level where it’s defined (to distinguish between
declarations of the same name) and the expression
associated with it.

We start with the synthesized attribute dclo. For
example, looking at the diagram, we verify that the

dclo of Let productions is the dclo of its first child. On
the other hand, on the EmptyList production, the dclo
is a copy of dcli (presented later in this section).
def dclo(x):

match constructor(x):
case Constructor.CRoot:

return dclo(x.z_dollar(1))
case Constructor.CLet:

return dclo(x.z_dollar(1))
case Constructor.CNestedLet:

return dclo(x.z_dollar(3))
case Constructor.CAssign:

return dclo(x.z_dollar(3))
case Constructor.CEmpty:

return dcli(x)

The attribute lev is used to distinguish declarations
with the same name in different levels. It is omitted
in our diagram due to its simple nature. This attribute
is passed downwards as a copy of the parent node,
with two exceptions: when in a Let subtree whose
parent is a Root, and when visiting a NestedLet. In the
former the level is 0, while in the latter, since we are
descending to a nested block, we increment the level
of the outer one.
def lev(x):

match constructor(x):
case Constructor.CLet:

match constructor(x.up()):
case Constructor.CNestedLet:

return lev(x.up()) + 1
case Constructor.CRoot:

return 0
case _:

return lev(x.up())

Now, let us consider the accumulator attribute dcli.
The function, when visiting nodes of type Let, has to
consider two alternatives: the parent node can be a
Root or a NestedLet. This happens because the rules
to define its value differ: in the Root node it corre-
sponds to an empty list, while in a nested block, the
accumulator dcli starts as the env of the outer block.
Finally, there are three different cases: when the parent
is a Let node, dcli is a copy of the parent. When the
parent is an Assign, then the Name, level and the as-
sociated Exp are accumulated in the dcli of the parent.
Finally, in the case of NestedLet the Name, level, and
an exception are accumulated in dcli.
def dcli(x):

match constructor(x):
case Constructor.CLet:

match constructor(x.up()):
case Constructor.CRoot:

return []
case Constructor.CNestedLet:

return env(x.up())
case _:

match constructor(x.up()):

pyZtrategic: A Zipper-Based Embedding of Strategies and Attribute Grammars in Python
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Figure 2: Attribute Grammar Specifying the Scope Rules of Let.

case Constructor.CLet:
return dcli(x.up())

case Constructor.CAssign:
return

[(lexeme_Name(x.up()),
lev(x.up()),
lexeme_Exp(x.up()))] +
dcli(x.up())

↪→
↪→
↪→
↪→

case Constructor.CNestedLet:
return

[(lexeme_Name(x.up()),
lev(x.up()),
st.StrategicError)] +
dcli(x.up())

↪→
↪→
↪→
↪→

Finally, we have the env attribute. In most dia-
grams, an occurrence of attribute env is defined as a
copy of the parent. There are two exceptions: in pro-
ductions Root and NestedLet where Let subtrees occur.
In both cases, env gets its value from the synthesized
attribute dclo of the same non-terminal/type. We use
the default rule of the case statement to express similar
AG copy equations.
def env(x):

match constructor(x):
case Constructor.CRoot:

return dclo(x)
case Constructor.CLet:

return dclo(x)
case _:

return env(x.up())

3.2 Strategic Attribute Grammars

As we mention before, rule 7 requires knowledge of
the context to be implemented. This rule states that
an occurrence of a variable can be changed by its
definition. Therefore, we will need and environment
of all the defined variables, which we have done with
the env attribute. In order for the strategy to expose
the zipper so that it can be used to compute a given
attribute, we will make use of a new adhoc function
called adhocTPZ.

Then, we can define a function that implements
our rule 7:

def expC(exp, z):
x = exp.match(

add=lambda x, y: st.StrategicError,
sub=lambda x, y: st.StrategicError,
neg=lambda x: st.StrategicError,
var=lambda x: expand((x, lev(z)),

env(z)),↪→
const=lambda x: st.StrategicError

)
if x is st.StrategicError:

raise x
else:

return x

Note that expC has two arguments, exp which is the
current node to be processed, and z which is the zipper
pointing to our current position. With z now visible,
we can compute the attributes lev and env using it.
We use an auxiliary expand function that looks up the
variable x in the environment produced by env, with
a nesting level not bigger than the value computed by
lev.

Finally, we combine rule 7 with the others previ-
ously defined. For readability, we split rule 7 into a
definition named exp1, and the combination of exp1
with the first 6 rules in exp2. We apply exp2 as many
times as possible using the innermost strategy, and the
resulting function is named optRC.
def optRC(z):

def exp1(y):
return st.adhocTPZ(st.failTP, expC,

y)↪→

def exp2(x):
return st.adhocTP(exp1, expr, x)

return st.innermost(exp2, z).node()

4 EXPRESSIVENESS AND
PERFORMANCE

In this section, we compare the expressiveness of the
pyZtrategic Python library with the well-known and
established Stratego system. After that, we benchmark
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our embedding, and we compare its runtime perfor-
mance with the Ztrategic library4: a Haskell based
embedding of both techniques (Macedo et al., 2022).

4.1 pyZtrategic versus Stratego

We have presented the Stratego and pyZtrategic solu-
tion for our let optimization problem. The two solu-
tions are similar. However, because Stratego uses a
proper notation to express re-writing rules, it offers
more concise and readable solutions than our embed-
ding. This can be clearly seen in the definition of
the type-specific transformation where the lack of a
pre-defined pattern matching mechanism in Python,
makes the solutions longer and harder to read. This is,
however, a well-known disadvantage of using a pure
embedded DSL approach when compared to the use
of proper notation that is processed by (a large and
complex) language processor. The other disadvantage
of using our Python embedding concerns errors report-
ing: while the Stratego processor can produce error
messages in the context of a strategic program, our
Python embedding relies on the (dynamic and more
liberal) type system of Python and, thus, errors are
reported as general Python errors.

There is, however, a key advantage of pyZtrate-
gic: it is a simple library that does not require a
large/complex language processor. A language proces-
sor is always a complex and time-consuming system to
build, maintain and evolve. An embedded DSL, such
as the one defined by pyZtrategic, uses the language
infrastructure of the host language and can easily be
maintained - by using Python tools such as debuggers,
profiles, etc - and evolved - which consists in defining
new combinators to the existing Python library.

4.2 pyZtrategic versus Ztrategic

The Ztrategic library in the Haskell programming lan-
guage presents a similar embedding of zippers and
attribute grammars as our Python solution. However,
there are some key differences between the two:

• While in Python, we need to use a library to pro-
vide support for algebraic data types, Haskell pro-
vides a way to create them by default.

• The Python ADT library offers a poor pattern
matching mechanism when compared to Haskell,
where we can have more elegant worker functions.

• The Python programming language offers gener-
ally poor performance when compared to Haskell,
and performance differences are also noticeable
when using both libraries.
4https://bitbucket.org/zenunomacedo/ztrategic/

We ran an advanced Software Maintenance and
Evolution course for Master’s Degree students, for
which the students had to develop a parser, optimizer
and pretty-printer for the Unix BC calculator language.
For the optimizer, the students had to use strategic
programming, with freedom to choose either Python
pyZtrategic or Haskell Ztrategic libraries since they
were familiar with both programming languages. Next,
we select two solutions developed by our students us-
ing both libraries, and we compare their number of
lines of code. We believe these solutions to be rep-
resentative of the average usage experience for these
libraries. The results are shown in Table 1.

Note that these solutions are not strictly similar.
For example, the Python solution uses the Lark pars-
ing toolkit to build a parser, while the Haskell solu-
tion uses parser combinators. The Haskell solution
implements 52 optimizations, while the Python solu-
tion implements 29 optimizations. Nevertheless, as
expected, these results illustrate that Python imple-
mentations tend to be more verbose when compared
to their Haskell counterpart.

Table 1: Number of Lines of Code - Python vs Haskell.

Python Haskell
Data Type Declarations 219 32

Parser 90 78
Pretty-Printer 49 42

Strategy 6 3
Optimizations 208 76

Next, we will compare the performance of the
pyZtrategic library with Ztrategic and Kiama, a Scala
lightweight language processing library for attribute
grammars and strategy-based term rewriting.

4.3 Let Optimization

We implemented the let optimizer presented in this
paper in both pyZtrategic, Ztrategic and Kiama, as all
libraries provide Attribute Grammars and strategies.
In Figure 3 we show the performance of optimizing
several Let inputs of different sizes in terms of runtime
and memory usage. Let size, as seen in the X axis of
the figure, refers to the number of nested let blocks
present in the input. As we can see in the figure, our
pyZtrategic implementation presents the poorest run-
time performance of the three. We expect bad runtime
performance for Python implementations when com-
pared to other, more efficient languages, which both
Haskell and Scala qualify as.
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Figure 3: Let Optimization: Python versus Ztrategic versus Kiama.

4.4 Repmin

The repmin problem is a well-known one. The goal of
it is to transform a binary tree of integers into a new
one with the same shape, but where all leaves are re-
placed by the minimum leaf value of the original tree.
We solve the repmin problem using a strategy to com-
pute the minimum value of the tree, and then another
strategy to propagate the computed value throughout
the tree.

In Figure 4 we show our implementation results.
The Repmin size refers to the number of nodes the
input tree contains. Again, Ztrategic outperforms both
pyZtrategic and Kiama, who behave similarly in terms
of runtime. The memory consumption is similar, ex-
cept for Kiama, who presents by far the poorest perfor-
mance.

5 RELATED WORK

The Ztrategic (Macedo et al., 2022; Macedo et al.,
2024) library is an embedded library for combining
Attribute Grammars and strategic programming in
the Haskell language. It is built on top of the Zip-
perAG (Martins et al., 2013) library, which provides
support for Attribute Grammars. The work presented
in this paper is inspired by Ztrategic and ZipperAG,
and it also showcases that these techniques are valid
in languages other than Haskell. The Ztrategic library
and our Python pyZtrategic counterpart are inspired by
Strafunski (Lämmel and Visser, 2002). There is, how-
ever, a key difference between these libraries: while
Strafunski accesses the data structure directly, pyZ-
trategic and Ztrategic operate on zippers. As a conse-
quence, in both zipper-based libraries, the program-
mer can easily access attributes from strategic func-
tions and strategic functions from attribute equations.
Accessing attributes, and thus performing context-
dependent transformations/refactorings, are not possi-
ble in Strafunski.

The Stratego program transformation language
(now part of the Spoofax Language Workbench (Kats
and Visser, 2010)) supports the definition of rewrite
rules and programmable rewriting strategies, and it
is able to construct new rewrite rules at runtime, to
propagate contextual information for concerns such as
lexical scope. It is argued in (Kramer and Van Wyk,
2020) that contextual information is better specified
through the usage of inherited attributes for issues
such as scoping, name-binding, and type-checking.
We present this same usage of inherited attributes in
our attribute grammar examples.

Kiama was developed by Sloane (Sloane et al.,
2010; Kats et al., 2009): an embedding of strategic
term rewriting and AGs in the Scala programming lan-
guage. While our approach expresses both attribute
computations and strategic term rewriting as pure func-
tions, Kiama caches attribute values in a global cache,
in order to reuse attribute values computed in the orig-
inal tree that are not affected by the rewriting. Such
global caching, however, induces an overhead in order
to keep it updated, for example, attribute values associ-
ated with subtrees discarded by the rewriting process
need to be purged from the cache (Sloane et al., 2014).
In our setting, which is inspired in a purely functional
setting, we only compute attributes in the desired re-
written tree (as is the case of the let example shown in
section 3.1).

Influenced by Kiama, Kramer and Van
Wyk (Kramer and Van Wyk, 2020) present strategy
attributes, which is an integration of strategic term
rewriting into attribute grammars. Strategic rewriting
rules can use the attributes of a tree to reference
contextual information during rewriting, much like we
present in our work. They present several practical
applications, namely the evaluation of λ-calculus,
a regular expression matching via Brzozowski
derivatives, and the normalization of for-loops. All
these examples can be directly expressed in our
setting. They also present an application to optimize
translation of strategies. Because our techniques
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Figure 4: Strategic Repmin: Python versus Ztrategic versus Kiama.

rely on a shallow embedding, we are unable to
express strategy optimizations without relying on
meta-programming techniques (Sheard and Jones,
2002). Nevertheless, pyZtrategic embedding result
in a very simple and concise Python libraries that
are easier to extend and maintain, specially when
compared with the complexity of extending a full
language system such as Silver (Van Wyk et al., 2008).

JastAdd is a reference attribute grammar based
system (Ekman and Hedin, 2007). It supports most
of AG extensions, including reference and circular
AGs (Söderberg and Hedin, 2013). It also supports
tree rewriting, with rewrite rules that can reference
attributes. JastAdd, however, provides no support for
strategic programming, that is to say, there is no mech-
anism to control how the rewrite rules are applied.

6 CONCLUSIONS

This paper presented pyZtrategic: a Python library that
supports the combined embedding of strategic term
rewriting and attribute grammars in Python. This is the
first library offering the power of strategic term rewrit-
ing and attribute grammars to Python programming.
This library has been used to support an advanced MSc
course on software maintenance and evolution, namely
in developing source code analysis and transformation
tools.

We showed several examples of using pyZtrate-
gic and comparing its expressiveness and performance
with other similar systems, namely Stratego and Ztrate-
gic. Our first results show that pyZtrategic offers
the expressiveness of the other libraries, while be-
ing its runtime performance affected by the current
poor performance of the Python language. PyZtrate-
gic, however, is implemented as a pure embedded DSL
in Python and, consequently, is immediately affected
by any development in such host language. Thus, we
expect a significant increase on the pyZtrategic perfor-
mance when new Python compilers are widely avail-

able, such as the recently presented high-performance
Codon compiler (Shajii et al., 2023).
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